Добірка наукової літератури з теми "Biomedical analysis techniques"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Biomedical analysis techniques".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Biomedical analysis techniques"
Kataoka, Hiroyuki. "SPME techniques for biomedical analysis." Bioanalysis 7, no. 17 (September 2015): 2135–44. http://dx.doi.org/10.4155/bio.15.145.
Повний текст джерелаWitte, H., and M. Wacker. "Time-frequency Techniques in Biomedical Signal Analysis." Methods of Information in Medicine 52, no. 04 (2013): 279–96. http://dx.doi.org/10.3414/me12-01-0083.
Повний текст джерелаMalet-Martino, M., and U. Holzgrabe. "NMR techniques in biomedical and pharmaceutical analysis." Journal of Pharmaceutical and Biomedical Analysis 55, no. 1 (April 2011): 1–15. http://dx.doi.org/10.1016/j.jpba.2010.12.023.
Повний текст джерелаSzultka, Malgorzata, Pawel Pomastowski, Viorica Railean-Plugaru, and Boguslaw Buszewski. "Microextraction sample preparation techniques in biomedical analysis." Journal of Separation Science 37, no. 21 (September 25, 2014): 3094–105. http://dx.doi.org/10.1002/jssc.201400621.
Повний текст джерелаKataoka, Hiroyuki, and Keita Saito. "Recent advances in SPME techniques in biomedical analysis." Journal of Pharmaceutical and Biomedical Analysis 54, no. 5 (April 2011): 926–50. http://dx.doi.org/10.1016/j.jpba.2010.12.010.
Повний текст джерелаTurnell, David C., and John D. H. Cooper. "Automation of liquid chromatographic techniques for biomedical analysis." Journal of Chromatography B: Biomedical Sciences and Applications 492 (August 1989): 59–83. http://dx.doi.org/10.1016/s0378-4347(00)84464-3.
Повний текст джерелаCerutti, S. "On Time-frequency Techniques in Biomedical Signal Analysis." Methods of Information in Medicine 52, no. 04 (2013): 277–78. http://dx.doi.org/10.1055/s-0038-1627060.
Повний текст джерелаAbaid Mahdi, Muhammed, and Samaher Al_Janabi. "Evaluation prediction techniques to achieve optimal biomedical analysis." International Journal of Grid and Utility Computing 1, no. 1 (2019): 1. http://dx.doi.org/10.1504/ijguc.2019.10020511.
Повний текст джерелаScriba, Gerhard K. E. "Chiral electromigration techniques in pharmaceutical and biomedical analysis." Bioanalytical Reviews 3, no. 2-4 (September 27, 2011): 95–114. http://dx.doi.org/10.1007/s12566-011-0024-3.
Повний текст джерелаKalish, Heather, and Terry Phillips. "The Application of Micro-Analytical Techniques to Biomedical Analysis." Current Pharmaceutical Analysis 5, no. 3 (August 1, 2009): 208–28. http://dx.doi.org/10.2174/157341209788922057.
Повний текст джерелаДисертації з теми "Biomedical analysis techniques"
Esposito, Andrea. "Techniques of proteomic analysis as tools for studies in biomedical field." Doctoral thesis, Universita degli studi di Salerno, 2017. http://hdl.handle.net/10556/2487.
Повний текст джерелаIt is known that prenatal exposure to pollutants and particularly heavy metals can have long term damaging consequences on infants, due to their accumulation in-body. Since the 1990s, ten million tonnes of waste have been illegally dumped in the area around Caserta and Naples. Thus, direct exposure to waste and heavy metals during the last two decades was very frequent in the so-called “Lands of fires”. The number of children suffering from cancer and of malformed fetuses in Italy's "Land of Fires", an area where toxic waste has been dumped by the mafia, is reported significantly higher than elsewhere in the country. In this thesis we examined the proteome of the umbilical cords from malformed fetuses obtained by therapeutic abortions, after mothers' being exposed to the pollution on “land of fire” during early pregnancy, and analyzed the differences between umbilical cords from malformed fetuses to healthy ones. The main goals were to understand the impact of the contamination by heavy metals on the fetus development, and to identify new putative biomarkers of exposure to metal contaminants. All umbilical cords were obtained in Campania region (Naples and Caserta, mainly in the “land of fires”). The collection of the biological samples was carried out in collaboration with the Caserta Hospital “Sant’Anna e San Sebastiano” and with the Avellino Hospital “San Giuseppe Moscati”. A proteomic approach based on Filter-Aided Sample Preparation (FASP) method was set up and performed. This bio-analytical strategy combines the advantages of in-gel and in-solution digestion for mass spectrometry–based proteomics, greatly reduces the time required for sample preparation and enables more flexibility in sample processing. Protein identification and quantification were performed by matching mass spectrometry data in on-line protein database, using the MaxQuant 1.5.2.8 software. Statistical analyses were employed to identify proteins whose levels were sensibly different in the umbilical cords from malformed fetuses. Gene Ontology (GO) classification was used in order to obtain functional information of the differentially expressed proteins and to correlate them to the embryonic development. Finally, Matrix Metalloproteinases (MMPs) have been shown to play significant roles in a number of physiological processes, including embryogenesis and angiogenesis, but they also contribute to the development of pathological processes. Thus, gelatin zymography technique was performed to detect MMPs enzymatic activity in the umbilical cords. Our results support a significant role of MMPs in the fetus development. [edited by author]
XIV n.s.
Harris, Justin Clay. "NEW BIOINFORMATIC TECHNIQUES FOR THE ANALYSIS OF LARGE DATASETS." UKnowledge, 2007. http://uknowledge.uky.edu/gradschool_diss/544.
Повний текст джерелаRohen, V. E. "Applications of statistical pattern recognition techniques to the analysis of ballistocardiograms." Thesis, University of Cambridge, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235284.
Повний текст джерелаJeon, Seonghye. "Bayesian data mining techniques in public health and biomedical applications." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/43712.
Повний текст джерелаJakeway, Stephen Christopher. "Development of optical techniques for biomolecule detection in miniaturized total analysis systems." Thesis, Imperial College London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271699.
Повний текст джерелаSeydnejad, Saeid Reza. "Analysis of heart rate variability and blood pressure variation by nonlinear modelling techniques." Thesis, Imperial College London, 1998. http://hdl.handle.net/10044/1/7814.
Повний текст джерелаD'Angelo, Maurissa S. "Analysis of Amputee Gait using Virtual Reality Rehabilitation Techniques." Wright State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=wright1279121086.
Повний текст джерелаBERNACCHIA, NATASCIA. "Measurement techniques based on image processing for the assessment of biomedical parameters." Doctoral thesis, Università Politecnica delle Marche, 2014. http://hdl.handle.net/11566/242751.
Повний текст джерелаBiomedical imaging represents an important topic in the field of diagnosis and clinical research. Image analysis and processing software also helps to automatically identify what might not be apparent to the human eye. The technological development and the use of different imaging modalities create more challenges, as the need to analyse a significant volume of images so that high quality information can be produced for disease diagnosis, treatment and monitoring, in clinical structures as well as at home. All the measurement systems routinely used in clinical environment require to be put in di-rect contact with the subject, which in some cases can be uncomfortable or even non-suited for long monitoring. On the other hand, in some cases contact could alter shape or composition of the samples under study, and state-of-the-art techniques could require a lot of time and provide very low resolution. This doctoral thesis presents a series of new experimental applications of the image analysis and processing in the biomedical field. The aim was to develop and validate new method-ologies, based on image analysis, for non contact measurement of quantities of different nature. The study is focused on the extraction of morphological characteristics of cell ag-gregates to assess of the regeneration processes in infarcted hearts, the design of a non con-tact methodology to measure mechanical properties of rabbit patellar tendons subjected to tensile tests, the development of new methods for the monitoring of physiological parame-ters (heart and respiration rate, chest volume variations) through the use of image acquisi-tion systems, as Kinect™ device and a digital camera. The experimental setups, designed in this work, were validated, showing high correlation respect to the reference methods. Imaging systems, although so different in many aspects, have demonstrated to be suitable for the respective tasks, confirming the feasibility of the imaging approach in the biomedical field.
Graça, Cristo dos Santos Lopes Ruano Maria da. "Investigation of real-time spectral analysis techniques for use with pulsed ultrasonic Doppler blood flow detectors." Thesis, Bangor University, 1992. https://research.bangor.ac.uk/portal/en/theses/investigation-of-realtime-spectral-analysis-techniques-for-use-with-pulsed-ultrasonic-doppler-blood-flow-detectors(f184d2a8-bde7-492a-b487-438704d3ea04).html.
Повний текст джерелаKirk, E. M. "Biomedical applications of narrow-bore liquid chromatography with computer-aided detection : Application of multivariate digital techniques to biomedical samples in narrow-bore column high-performance liquid chromatography with photodiode array detection." Thesis, University of Bradford, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.384276.
Повний текст джерелаКниги з теми "Biomedical analysis techniques"
Haidekker, Mark A. Advanced biomedical image analysis. Hoboken, N.J: John Wiley & Sons, 2010.
Знайти повний текст джерела1970-, Gonzalez Fabio A., and Romero Eduardo 1963-, eds. Biomedical image analysis and machine learning technologies: Applications and techniques. Hershey, PA: Medical Information Science Reference, 2010.
Знайти повний текст джерелаKaraa, Wahiba Ben Abdessalem, and Nilanjan Dey. Biomedical image analysis and mining techniques for improved health outcomes. Hershey PA: Medical Information Science Reference, 2016.
Знайти повний текст джерела1970-, Gonzalez Fabio A., and Romero Eduardo 1963-, eds. Biomedical image analysis and machine learning technologies: Applications and techniques. Hershey, PA: Medical Information Science Reference, 2010.
Знайти повний текст джерелаNorio, Ichinose, ed. Fluorometric analysis in biomedical chemistry: Trends and techniques including HPLC applications. New York: Wiley, 1991.
Знайти повний текст джерелаSrinivasan, Gokulakrishnan. Vibrational spectroscopic imaging for biomedical applications. New York: McGraw-Hill, 2010.
Знайти повний текст джерелаM, Cullum Brian, Carter J. Chance, and Society of Photo-optical Instrumentation Engineers., eds. Smart medical and biomedical sensor technology IV: 3-4 October 2006, Boston, Massachusetts, USA. Bellingham, Wash., USA: SPIE, 2006.
Знайти повний текст джерелаCullum, Brian M., and Eric S. McLamore. Smart biomedical and physiological sensor technology IX: 26 April 2012, Baltimore, Maryland, United States. Edited by SPIE (Society). Bellingham, Wash: SPIE, 2012.
Знайти повний текст джерелаGannot, Israel. Optical fibers, sensors, and devices for biomedical diagnostics and treatment XI: 22-23 January 2011 San Francisco, California, United States. Bellingham: sponsored and published by SPIE, 2011.
Знайти повний текст джерелаCullum, Brian M. Smart biomedical and physiological sensor technology VI: 16-17 April 2009, Orlando, Florida, United States. Bellingham, Wash: SPIE, 2009.
Знайти повний текст джерелаЧастини книг з теми "Biomedical analysis techniques"
Nisar, Muhammad Shemyal, and Xiangwei Zhao. "Nanophotonic Techniques for Single-Cell Analysis." In Nanophotonics in Biomedical Engineering, 79–109. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6137-5_4.
Повний текст джерелаFeng, Ting, Weiya Xie, Wenyi Xu, Ya Gao, Teng Liu, Dean Ta, Menglu Qian, and Qian Cheng. "Photoacoustic Techniques for Bone Characterization." In Biomedical Photoacoustics, 433–75. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-61411-8_17.
Повний текст джерелаHenao Higuita, María Camila, Macheily Hernández Fernández, Delio Aristizabal Martínez, and Hermes Fandiño Toro. "Analysis of Finger Thermoregulation by Using Signal Processing Techniques." In Bioinformatics and Biomedical Engineering, 537–49. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17935-9_48.
Повний текст джерелаDussaut, J. S., C. A. Gallo, J. A. Carballido, and I. Ponzoni. "Analysis of Gene Expression Discretization Techniques in Microarray Biclustering." In Bioinformatics and Biomedical Engineering, 257–66. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56154-7_24.
Повний текст джерелаPuentes Vargas, Margarita. "Extraction Techniques." In Planar Metamaterial Based Microwave Sensor Arrays for Biomedical Analysis and Treatment, 33–45. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06041-5_3.
Повний текст джерелаPradhan, Jitesh, Arup Kumar Pal, and Haider Banka. "Medical Image Retrieval System Using Deep Learning Techniques." In Deep Learning for Biomedical Data Analysis, 101–28. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71676-9_5.
Повний текст джерелаScriba, Gerhard K. E. "Chiral electromigration techniques in pharmaceutical and biomedical analysis." In Frontiers of Bioanalytical Chemistry, 225–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-36303-0_11.
Повний текст джерелаTina and Ritu Gupta. "Analysis of deep learning techniques in biomedical images." In Artificial Intelligence and Blockchain in Industry 4.0, 78–94. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003452591-6.
Повний текст джерелаPrabha, R., V. Subashini, M. Aishwarya, B. Hemalatha, and A. Sadhana. "Analysis of antenna for biomedical applications." In Antennas for Industrial and Medical Applications with Optimization Techniques for Wireless Communication, 151–61. Boca Raton: CRC Press, 2024. https://doi.org/10.1201/9781003560487-10.
Повний текст джерелаKaur, Raj Kamal, and Sarneet Kaur. "Exploring explainable AI: Techniques and comparative analysis." In Explainable Artificial Intelligence for Biomedical and Healthcare Applications, 1–14. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003220107-1.
Повний текст джерелаТези доповідей конференцій з теми "Biomedical analysis techniques"
Salazar, Sara Valentina Hernández, Javier Chaparro Preciado, and Santiago Agudo Muñoz. "Comparative Analysis of Machine Learning and Deep Learning Techniques for Hand Gesture Recognition Using Surface Electromyography." In 2024 3rd International Congress of Biomedical Engineering and Bioengineering (CIIBBI), 1–6. IEEE, 2024. https://doi.org/10.1109/ciibbi63846.2024.10784625.
Повний текст джерелаMigla, Sandis, Oskars Selis, Pauls Eriks Sics, and Arturs Aboltins. "Error Analysis and Correction Techniques for PPM Communication Links with Jitter and Clock Drift." In 2024 IEEE International Conference on Microwaves, Communications, Antennas, Biomedical Engineering and Electronic Systems (COMCAS), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/comcas58210.2024.10666259.
Повний текст джерелаCerri, G., R. De Leo, and A. Spalvieri. "Microstrip Disk Applicators for Biomedical Applications: A Very Efficient Numerical Analysis Technique." In EMC_1986_Wroclaw, 62–70. IEEE, 1986. https://doi.org/10.23919/emc.1986.10828529.
Повний текст джерелаMa, Jianguo, Min Wei, Lijun Xu, Boya Chen, Yulin Liu, Jie Du, and Zijie Fang. "Ultrasonic spectral analysis for biomedical imaging." In 2017 IEEE International Conference on Imaging Systems and Techniques (IST). IEEE, 2017. http://dx.doi.org/10.1109/ist.2017.8261549.
Повний текст джерелаEssa, Hayder J., and Issa Jaafar. "New analysis techniques for blood pressure biomedical signals." In 2014 IEEE Workshop on Advanced Research and Technology in Industry Applications (WARTIA). IEEE, 2014. http://dx.doi.org/10.1109/wartia.2014.6976177.
Повний текст джерелаChen, Xuequan, Emma Pickwell-MacPherson, Qiushuo Sun, Jiarui Wang, Hannah Lindley, Kai Liu, Kaidi Li, Xavier Barker, Rayko Stantchev, and Arturo Hernandez. "THz Instrumentation and Analysis Techniques for Biomedical Research." In 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, 2019. http://dx.doi.org/10.1109/irmmw-thz.2019.8874398.
Повний текст джерелаRobb, Richard A., Armando Manduca, Dennis P. Hanson, and Ronald A. Karwoski. "Advanced techniques in volume visualization and analysis." In Visualization in Biomedical Computing, edited by Richard A. Robb. SPIE, 1992. http://dx.doi.org/10.1117/12.131124.
Повний текст джерелаOrtiz, Sergio, Pablo Pérez-Merino, Enrique Gambra, and Susana Marcos. "Image analysis and quantification in anterior segment OCT: techniques and applications." In Biomedical Optics. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/biomed.2012.btu2b.6.
Повний текст джерелаCostea, I. M., C. I. Dumitrescu, N. Dumitru, and B. Soare. "Biomedical signals analysis techniques using the signal processor TMS320C6211B." In 2014 37th ISSE International Spring Seminar in Electronics Technology (ISSE). IEEE, 2014. http://dx.doi.org/10.1109/isse.2014.6887617.
Повний текст джерелаGaeta, Giovanni M., Flora Zenone, Carlo Camerlingo, Roberto Riccio, Gianfranco Moro, Maria Lepore, and Pietro L. Indovina. "Data analysis in Raman measurements of biological tissues using wavelet techniques." In Biomedical Optics 2005, edited by Peter Rechmann and Daniel Fried. SPIE, 2005. http://dx.doi.org/10.1117/12.593394.
Повний текст джерелаЗвіти організацій з теми "Biomedical analysis techniques"
Vingre, Anete, Peter Kolarz, and Billy Bryan. On your marks, get set, fund! Rapid responses to the Covid-19 pandemic. Fteval - Austrian Platform for Research and Technology Policy Evaluation, April 2022. http://dx.doi.org/10.22163/fteval.2022.538.
Повний текст джерела