Добірка наукової літератури з теми "Biomass"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Biomass".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Biomass":

1

Naviza, Fania, Gunardi Djoko Winarno, Wahyu Hidayat, and Slamet Budi Yuwono. "PELUANG KEANEKARAGAMAN JENIS BIOMAS UNTUK ENERGI BIOMAS." Gorontalo Journal of Forestry Research 6, no. 2 (October 13, 2023): 63. http://dx.doi.org/10.32662/gjfr.v6i2.3055.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
ABSTRAK Biomassa merupakan senyawa organik yang dihasilkan dari makhluk hidup melalui proses fotosintesis, berupa produk maupun buangan. Biomassa dapat merujuk pada limbah pertanian seperti tongkol jagung, limbah singkong, dan limbah padi. Pemanfaatan limbah belum dilakukan masyarakat. Potensi biomassa di Tegal Yoso bisa digunakan sebagai sumber energi yang jumlahnya sangat melimpah. Tujuan dari penelitian ini untuk mengetahui keanekaragaman jenis biomas yang dapat dimanfaatkan untuk energi biomas, mengetahui perlakuan keanekaragaman jenis biomas, dan mengetahui persepsi masyarakat terhadap pemanfaatan keanekaragaman jenis untuk energi biomas. Jenis perlakuan yang dilakukan yaitu dibuang, dibakar, dan pakan ternak. Penelitian ini dilakukan pada 14 Mei 2023 sampai 14 Juni 2023 di Desa Tegal Yoso kecamatan Purbolinggo, Lampung Timur. Penelitian menggunakan metode wawancara terbuka, wawancara tertutup menggunakan 30 responden dan survei. Data primer yang diperoleh dari wawancara dan survei dengan masyarakat desa Tegal Yoso, data sekunder diperoleh dari jurnal, artikel, dan internet. Data dianalisis dengan menggunakan skala likert. Hasil dari penelitian, persepsi aspek ekonomi menunjukkan nilai tertinggi, sedangkan persepsi aspek ekologi menunjukkan nilai terendah. Potensi biomassa tertinggi yaitu pada tanaman jagung sebesar 1,8 ton dan terendah yaitu tanaman singkong sebesar 1 ton. Kendala terhadap lahan pertanian yang disebabkan oleh gajah yaitu memakan tanaman jagung mendapat kerugian tertinggi sebesar 100%, dan pada tanaman padi mendapat kerugian terendah sebesar 15%. Peluang keanekaragaman jenis biomas untuk energi biomas memberikan peluang positif terhadap aspek ekologi, ekonomi, dan sosial. Kata kunci: Biomassa; Energi Biomas; Persepsi; Skala Likert. ABSTRACTBiomass is an organic compound produced by living creatures through the process of photosynthesis, in the form of products or waste. Biomass can refer to agricultural waste such as corn cobs, cassava waste, and rice waste. The community has not utilized waste. The biomass potential in Tegal Yoso can be used as a very abundant energy source. The aim of this research is to determine the diversity of biomass types that can be used for biomass energy, to understand the treatment of biomass type diversity, and to determine the public's perception of the use of species diversity for biomass energy. The types of treatment carried out are throwing away, burning, and animal feed. This research was conducted from 14 May 2023 to 14 June 2023 in Tegal Yoso Village, Purbolinggo subdistrict, East Lampung. The research used open interview methods, closed interviews using 30 respondents and surveys. Primary data was obtained from interviews and surveys with the Tegal Yoso village community, secondary data was obtained from journals, articles and the internet. Data were analyzed using a Likert scale. The results of the research show that the perception of the economic aspect shows the highest value, while the perception of the ecological aspect shows the lowest value. The highest biomass potential is for corn plants at 1.8 tons and the lowest is for cassava plants at 1 ton. Obstacles to agricultural land caused by elephants, namely eating corn plants, received the highest loss at 100%, and rice plants received the lowest loss at 15%. The opportunity for diversity of biomass types for biomass energy provides positive opportunities for ecological, economic and social aspects. Keywords: Biomass; Biomass Energy; Perception; Likert Scale.
2

Bolin, Olof. "Biomass or biomess?" Energy Policy 25, no. 6 (May 1997): 583–85. http://dx.doi.org/10.1016/s0301-4215(97)00049-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Trentin, Carline Biasoli, Aline Biasoli Trentin, and Dejanira Luderitz Saldanha. "RELAÇÃO ENTRE A BIOMASSA DA VEGETAÇÃO CAMPESTRE NATIVA E DADOS DE SENSORIAMENTO REMOTO ORBITAL." GEOgraphia 21, no. 45 (June 7, 2019): 98. http://dx.doi.org/10.22409/geographia2019.v21i45.a14187.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
As variações da resposta espectral da vegetação estão diretamente relacionadas com a quantidade de biomassa aérea produzida (estocada) além de outros pigmentos. O objetivo deste trabalho foi estimar a biomassa aérea da vegetação através de uma relação entre a biomassa da parte aérea da vegetação campestre nativa coletada em campo e dados de sensoriamento remoto orbital, considerando as estações quente e fria do ano. Para estimar a biomassa aérea da vegetação campestre nativa a partir de dados espectrais, foram analisados os dados de quantidade de biomassa aérea instantânea coletada em campo durante o período de 2012 a 2014 e os dados da resposta espectral da vegetação (medidos pelo sensor MODIS). A partir da elaboração de um perfil temporal dos dados e um gráfico de dispersão entre os valores de biomassa aérea e dados espectrais, foram realizadas análises de correlação e análise de regressão linear, verificando a relação existente entre estes dois conjuntos de dados. Desta forma, observou-se que a vegetação campestre nativa do bioma Pampa tem um comportamento sazonal bem definido, com período de crescimento das espécies nos meses quentes do ano. Foi verificada uma relação direta entre a biomassa aérea e os índices EVI e NDVI e a banda espectral do NIR, com maiores valores no verão e menores no inverno. O coeficiente de correlação foi significativo para as bandas do azul, vermelho, NIR, EVI e NDVI. Desta forma, o modelo resultante demonstrou a aplicabilidade das imagens MODIS para a estimativa da biomassa aérea da vegetação campestre.Palavras-chave: Resposta espectral. Sensor MODIS. Bioma Pampa. RELATIONSHIP BETWEEN BIOMASS OF NATIVE GRASSLANDS AND REMOTE SENSING DATAAbstract: Variations of spectral response are directly related to the amount of aboveground biomass vegetation (stored) in addition to other pigments. We estimate the aboveground biomass vegetation through a relationship between aboveground biomass vegetation in grassland native collected in the field and remote sensing data in the hot and cold seasons of the period from 2012 to 2014. To estimate the biomass of grassland native air from spectral data, the data were related to amount of instant air field collected biomass during the period 2012 to 2014 versus the spectral response of vegetation data (measured by MODIS sensor). From the development of a temporal profile of data and a scatter plot between aboveground biomass values and spectral data, conducted analyses of correlation and linear regression analysis, noting the relationship between these two sets of data. In this way, it was observed a relationship between aboveground biomass and the indices EVI and NDVI and NIR spectral band, with highest values in summer and lower in winter. The correlation coefficient was significant for the bands of blue, red, NIR, EVI and NDVI. In this way, the resulting model demonstrated the applicability of MODIS images for the estimation of aboveground biomass of grassland vegetation.Keywords: Spectral response. MODIS sensor. Pampa Biome. RELACIONES ENTRE LA BIOMASA DE LA VEGETACIÓN CAMPESTRE NATIVA Y DATOS DE DETECCIÓN REMOTA ORBITALResumen: Las variaciones de la respuesta espectral de la vegetación están directamente relacionadas a la cantidad de biomasa aérea producida (estoqueada) además de otros pigmentos. El objetivo de este trabajo fue estimar la biomasa aérea de la vegetación a través de una relación entre la biomasa de la parte aérea de la vegetación campestre nativa colectada en el campo y datos de detección remota orbital, considerando las estaciones caliente y fría del año. Para estimar la biomasa aérea de la vegetación campestre nativa a partir de datos espectrales, fueron analisados los datos de cuantidad de biomasa aérea instantánea colectada en el campo durante el período de 2012 a 2014 y los datos de la respuesta espectral de la vegetación (medidos por el sensor MODIS). A partir de la elaboración de un perfil temporal de los datos y un gráfico de dispersión entre los valores de biomasa aérea y datos espectrales, fueron realizados análisis de correlación y análisis de regresión linear, verificando la relación existente entre estos dos conjuntos de datos. De esta manera, se observó que la vegetación campestre nativa del bioma Pampa tiene un comportamiento estacional bien definido, con período de crecimento de las especies en los meses calientes del año. Fue verificada una relación directa entre la biomasa aérea y los índices EVI y NDVI y la banda espectral del NIR, con mayores valores en el verano y menores en el invierno. El coeficiente de correlacción fue significativo para las bandas del azul, rojo, NIR, EVI y NDVI. Así, el modelo resultante demostró la aplicabilidad de las imagenes MODIS para la estimativa de la biomasa aérea de la vegetación campestre.Palabras clave: Respuesta espectral. Sensor MODIS. Bioma Pampa.
4

Purwanto, Ris Hadi, and Melikaries Silaban. "Inventore Biomasa dan Karbon Jenis Jati (Tectona grandis L.f.) di Hutan Rakyat Desa Jatimulyo, Karanganyar." Jurnal Ilmu Kehutanan 5, no. 1 (January 1, 2011): 40. http://dx.doi.org/10.22146/jik.581.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Hutan menyimpan biomassa dan karbon dalam bentuk pepohonan hidup, bagian organ tumbuhan yang sudah mati yang berada di lantai hutan (misalnya seresah), tanah dan hasil kayu. Kajian ini memaparkan hasil inventore biomassa bagian organ tanaman jati (Tectona grandis L.f.) diatas permukaan tanah (above ground biomass) yang tumbuh di lahan hutan rakyat Desa Jatimulyo, Kabupaten Karanganyar. Diawali dengan penyusunan allometrik, kegiatan inventore dilakukan untuk menaksir potensi biomassa organ tanaman jati di atas permukaan tanah yang tumbuh di lahan hutan rakyat tersebut. Untuk menyusun persamaan allometrik, sebanyak 410 pohon diukur untuk menentukan hubungan antara tinggi pohon (H) dan diameter batang setinggi dada (D). Sepuluh pohon sampel dengan ukuran yang bervariasi ditebang dan berat biomassa masing-masing organ tanaman di atas permukaan tanah (batang, cabang dan daun) diukur. Hasil penyusunan allometrik ini menunjukkan bahwa diameter batang setinggi dada (±1.3 meter diatas permukaan tanah, D) merupakan penduga yang baik untuk tinggi pohon (H) dengan nilai koefisien determinasi r2 diatas 0,8886. Ketika parameter D dikombinasi dengan H, nilai r2 semakin meningkat untuk biomassa batang, cabang dan total biomasa di atas permukaan tanah; menandakan bahwa pola pertumbuhan antar dimensi pohon saling mempengaruhi secara kuat (closely interdependent). Simpanan karbon tegakan jati di hutan rakyat ini diukur dengan asumsi bahwa kadar karbon (C) sebesar 50% dari berat biomasanya. Simpanan biomasa hidup dari organ tanaman jati bagian di atas permukaan tanah yang tumbuh di hutan rakyat Desa Jatimulyo ini selanjutnya diinventore dengan menggunakan beragai persamaan allometrik yang telah disusun. Hasil inventore menunjukkan bahwa total biomasa diatas permukaan tanah untuk tegakan jati yang tumbuh di lahan hutan rakyat Desa Jatimulyo sebesar 27,064 ton/ha, setara dengan simpanan karbon sebesar 13,532 ton/ha, dengan luas bidang dasar sebesar 6,1526 m2/ha. Berdasarkan nilai simpanan karbon dan luas bidang dasarnya, potensi tegakan jati yang tumbuh di hutan rakyat Desa Jatimulyo dikategorikan rendah.Kata kunci: Biomasa dan karbon diatas permukaan tanah, jati, hutan rakyat, allometrik.Biomass and Carbon Inventore of Teak (Tectona grandis L.f.) in the Community Forest of Jatimulyo Village, KaranganyarAbstractForests store biomass and carbon in the form of living trees, forest floor detritus (e.g. litter falls), soil and wood products. This study describes inventory results of the above ground biomass of teak (Tectona grandis L.f.) in the community forest of Jatimulyo Village, Karanganyar District. By developing allometric method, the inventory was designed to estimate the potential of above ground biomass of teak in the community forest. To establish the allometric equations, 410 sample trees were measured to determine the relationships between tree height (H) and diameter of breast height (D). Ten trees of various sizes were cut to measure the above ground biomass (stem, branch and leaves). The results showed that diameter at breast height ( about 1.3 m above the ground, D) was a good predictor of tree height (H) with r2 more than 0.8886. When D was combined with H, r2 was improved somewhat for the stem, branch and total above ground biomass, suggesting the growth patterns of tree dimensions were closely interdependent. Carbon storage of the teak forests was based on the assumption that carbon (C) concentration was 50% of the biomass. A standing stock of the above ground biomass of teak in the community forests of Jatimulyo Village was then inventoried based on the allometric relations. Results showed that the above ground biomass of teak in these community forests were 27.064 ton/ha, equal to 13.532 ton carbon/ha, with a basal area of 6.1526 m2/ha. Based on the carbon stock and basal area, the teak community forests of Jatimulyo Village are categorized as having low stand potential.
5

Prayitno, Joko, Iklima Ika Rahmasari, and Agus Rifai. "Pengaruh Interval Waktu Panen terhadap Produksi Biomassa Chlorella sp. dan Melosira sp. untuk Penangkapan Karbon secara Biologi." Jurnal Teknologi Lingkungan 21, no. 1 (January 30, 2020): 23–30. http://dx.doi.org/10.29122/jtl.v21i1.3777.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
ABSTRACTThe aim of this study was to determine the effect of harvesting frequency on the growth of Chlorella sp. and Melosira sp. and on their total biomass production to estimate the amount of carbon fixed during 11 days of culture. Chlorella sp. and Melosira sp. were cultured in f/2 medium in seawater. The biomass was harvested at harvesting intervals of every day (P1), every 2 days (P2) and every 3 days (P3). The biomass of Chlorella sp. harvested at P1, P2 and P3 were 0,49 g/L, 0,43 g/L, and 0,35 g/L, respectively. The highest total biomass production of Chlorella sp. after 11 days of cultivation was obtained from P1 (8,80 g/L), while total biomass production at P2 and P3 were 52% (4,59 g/L) and 30% (3,25 g/L) of that P1, respectively. The biomass harvested at P1, P2 and P3 were 2,41 g/L, 1,40 g/L, and 1,63 g/L. Total biomass production of Melosira sp. during 11 days of cultivation for P1, P2 and P3 were 34,56 g/L, 17,33 g/L, 11,20 g/L, respectively. Our results showed that the highest total biomass production of both Chlorella sp. and Melosira sp. were obtained from harvesting every day. The estimated value of CO2 bio-fixation based on biomass production by Chlorella sp. and Melosira sp. were 1,5 g/L/day and 5,9 g/L/day, respectively.Keywords: biomass, microalgae, Chlorella sp, harvesting interval, Melosira sp, carbon capture ABSTRAKPenelitian ini bertujuan untuk mengetahui pengaruh interval waktu panen biomassa mikroalga terhadap pertumbuhan Chlorella sp. dan Melosira sp., dan perolehan total biomassanya untuk estimasi CO2 yang difiksasi selama kultur 11 hari. Chlorella sp. dan Melosira sp. dikultivasi dalam media air laut yang berisi nutrien f/2. Biomassa mikroalga dipanen dengan interval waktu panen tiap hari (P1), tiap 2 hari (P2) dan tiap 3 hari (P3). Sebagai kontrol (P0), biomassa mikroalga dipanen hanya pada akhir percobaan yaitu di hari ke-11. Kelimpahan sel kultur Chlorella sp. pada perlakuan P1, P2 and P3 masing-masing adalah 2,38x106 sel/mL, 2x106 sel/mL,1,5x106 sel/mL, sedangkan total biomassa yang diperoleh masing-masing adalah 0,49 g/L, 0,43 g/L, dan 0,35 g/L. Total produksi biomassa Chlorella sp. tertinggi yang diperoleh selama 11 hari kultivasi dijumpai pada perlakuan P1 (8,80 g/L), sedangkan total produksi biomassa pada P2 dan P3 hanya 52% (4,59 g/L) dan 30% (3,25 g/L) dari total biomassa P1. Kelimpahan sel Melosira sp. yang dipanen dengan interval P1, P2 dan P3 masing-masing adalah 4,28x106 sel/mL, 2,22x106 sel/mL, dan 2,36x106 sel/mL, dan biomassa yang diperoleh masing-masing adalah 2,41 g/L, 1,40 g/L, dan 1,63 g/L. Total produksi biomassa Melosira sp. yang diperoleh selama 11 hari kultivasi untuk perlakuan P1, P2 dan P3 masing-masing adalah 34,56 g/L,17,33 g/L, dan 11,20 g/L. Hasil percobaan ini menunjukkan bahwa total produksi biomassa tertinggi pada Chlorella sp. dan Melosira sp.dijumpai pada kultur yang dipanen setiap hari. Estimasi serapan karbon berdasarkan biomasa yang dihasilkan oleh Chlorella sp dan Melosira sp. masing-masing adalah 1,5 g/L/hari dan 5,9 g/L/hari.Kata kunci: biomassa, mikroalga, Chlorella sp., interval panen, Melosira sp., penangkapan karbon
6

Suryono, Suryono, Nirwani Soenardjo, Edi Wibowo, Raden Ario, and Edi Fahrur Rozy. "Estimasi Kandungan Biomassa dan Karbon di Hutan Mangrove Perancak Kabupaten Jembrana, Provinsi Bali." BULETIN OSEANOGRAFI MARINA 7, no. 1 (May 24, 2018): 1. http://dx.doi.org/10.14710/buloma.v7i1.19036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ekosistem mangrove memiliki fungsi ekologis sebagai penyerap dan penyimpan karbon. Mangrove menyerap CO2 pada saat proses fotosintesis, kemudian mengubahnya menjadi karbohidrat dengan menyimpannya dalam bentuk biomassa pada akar ,pohon, serta daun. Tujuan dari penelitian ini adalah untuk mengetahui total above ground biomass, belowground biomass, simpanan karbon atas, simpanan karbon bawah, dan karbon organik pada sedimen dasar di Hutan Mangrove Perancak, Jembrana, Bali. Sampling dilakukan dengan metode purposive sampling dengan dasar pertimbangan berupa jenis, kerapatan serta diameter pohon mangrove. Estimasi biomassa digunakan metode tanpa pemanenan dengan mengukur diameter at breast height (DBH, 1.3 m) mangrove. Simpanan karbon diestimasi dari 46% biomasa. Kandungan karbon organik pada sedimen diukur dengan menggunakan metode lost on ignition (LOI). Hasil penelitian menunjukkan total above ground biomass sebesar 187,21 ton/ha, below ground biomass sebesar 125,43 ton/ha, simpanan karbon atas sebesar 86,11 ton/ha, simpanan karbon bawah sebesar 57,69 ton/ha, sedangkan karbon organik sedimen sebesar 359,24 ton/ha. The mangrove ecosystem has ecological functions as an absorber and carbon storage. Mangrove absorbs CO2 during the process of photosynthesis, then changes it into carbohydrates bystoring it in the form of tree biomass. The aim of this research is to know the total of above ground biomass, below ground biomass, upper carbon storage, lower carbon storage, and sediment organic carbon in Perancak Mangrove Forest, Jembrana, Bali. The selection of sampling location using purposive sampling method with consideration of type, density and diameter of mangrove. The estimatorion of biomass using the method without harvesting by measuring diameter at breast height (DBH, 1.3 m) mangrove. Carbon deposits are estimated from46% of biomass. The organic carbon content of sediment was measured using the lost on ignition (LOI) method. The results showedthat the total of above ground biomass of 187.21 ton / ha, below ground biomass 125,43 ton / ha, upper carbon store of 86,11 ton / ha, lower carbon store of 57,69 ton / ha, and organic carbon sedimen to 359.24 tons / ha.
7

Djunaedi, Ali, Sunaryo Sunaryo, Chrisna Adi Suryono, and Adi Santosa. "Kandungan Pigmen Fikobiliprotein dan Biomassa Mikroalga Chlorella vulgaris pada media dengan Salinitas Berbeda." Jurnal Kelautan Tropis 20, no. 2 (November 22, 2017): 112. http://dx.doi.org/10.14710/jkt.v20i2.1736.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Phyobilliprotein (phycocyanin and allophycocyanin) pigments content and biomass of Chlorella vulgarisare affected by salinity related to osmotic pressure and density of media. This study was to determine the effect of salinity on phycobiliproteins pigment contents and biomass of microalgae Chlorella vulgaris. The cultivation used microalgae derived from Balai Besar Pengembangan Budidaya Air Payau (BBPBAP), Jepara. Research method was the Laboratory study with a Completely Randomized Design (CRD). Consisting of one treatment with five stages of salinity treatments: 20, 25, 30, 35, and 40 ppt and using three times of repetition. Analysis of pigments used UV-Vis spectrophotometric extracted with acetone as the solvent. Harvesting time was when it reached at the stationair phase using flocculation method. The results showed that salinity had the significant effect (p <0.05) on Phycobilliprotein pigment and biomass. The treatments of 35 ppt showed that the highest content of phycocyanin and allophycocyanin pigments 1,4426 mg/gram and 1,254 mg/gram and biomass were 0,648 g/L respectively.Keywords: Chlorella vulgaris, salinity, Phycobilliprotein pigment, biomass. Kandungan pigmen fikobiliprotein (fikosianin dan allofikosianin)dan biomasa Chlorella vulgaris dipengaruhi oleh salinitas yang berkaitan dengan tekanan osmotik dan densitas media. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh salinitas terhadap kandungan pigmen fikobiliproteindan laju pertumbuhan Chlorella vulgaris. Biota uji diperoleh dari Balai Besar Pengembangan Budidaya Air Payau (BBPBAP), Jepara. Metode penelitian adalah eksperimen laboratoris dengan Rancangan Acak Lengkap (RAL) yang terdiri dari 5 taraf perlakuan salinitas, yaitu: 20, 25, 30, 35, dan 40 ppt dengan pengulangan sebanyak 3 kali. Analisis pigmen dengan metode spektrofotometer UV-Vis yang diekstraksi menggunakan larutan aseton. Pemanenan biomassa pada fase stasioner dengan menggunakan metode flokulasi. Hasil penelitian menunjukkan bahwa salinitas berpengaruh nyata (p<0.05) terhadap kandungan pigmen fikobiliprotein dan biomasa Chlorella vulgaris. Perlakuan salinitas 35 ppt menghasilkan kadar pigmen fikosianin dan allofikosianin tertinggi, yaitu 1,4426 mg/gram, dan 1,254 mg/gram dan biomassa tertinggi yaitu 0,648 gr/L. Kata Kunci : Chlorella vulgaris, salinitas, pigmen fikobiliprotein, biomasa
8

Dirgantara, Made, Karelius Karelius, and Marselin Devi Ariyanti, Sry Ayu K. Tamba. "Evaluasi Prediksi Higher Heating Value (HHV) Biomassa Berdasarkan Analisis Proksimat." Risalah Fisika 4, no. 1 (July 14, 2020): 1–7. http://dx.doi.org/10.35895/rf.v4i1.166.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstrak – Biomassa merupakan salah satu energi terbarukan yang sangat mudah ditemui, ramah lingkungan dan cukup ekonomis. Keberadaan biomassa dapat dimaanfaatkan sebagai pengganti bahan bakar fosil, baik itu minyak bumi, gas alam maupun batu bara. Analisi diperlukan sebagai dasar biomassa sebagai energi seperti proksimat dan kalor. Analisis terpenting untuk menilai biomassa sebagai bahan bakar adalah nilai kalori atau higher heating value (HHV). HHV secara eksperimen diukur menggunakan bomb calorimeter, namun pengukuran ini kurang efektif, karena memerlukan waktu serta biaya yang tinggi. Penelitian mengenai prediksi HHV berdasarkan analisis proksimat telah dilakukan sehingga dapat mempermudah dan menghemat biaya yang diperlukan peneliti. Dalam makalah ini dibahas evaluasi persamaan untuk memprediksi HHV berdasarkan analisis proksimat pada biomassa berdasarkan data dari penelitian sebelumnya. Prediksi nilai HHV menggunakan lima persamaan yang dievaluasi dengan 25 data proksimat biomassa dari penelitian sebelumnya, kemudian dibandingkan berdasarkan nilai error untuk mendapatkan prediksi terbaik. Hasil analisis menunjukan, persamaan A terbaik di 7 biomassa, B di 6 biomassa, C di 6 biomassa, D di 5 biomassa dan E di 1 biomassa.Kata kunci: bahan bakar, biomassa, higher heating value, nilai error, proksimat Abstract – Biomass is a renewable energy that is very easy to find, environmentally friendly, and quite economical. The existence of biomass can be used as a substitute for fossil fuels, both oil, natural gas, and coal. Analyzes are needed as a basis for biomass as energy such as proximate and heat. The most critical analysis to assess biomass as fuel is the calorific value or higher heating value (HHV). HHV is experimentally measured using a bomb calorimeter, but this measurement is less effective because it requires time and high costs. Research on the prediction of HHV based on proximate analysis has been carried out so that it can simplify and save costs needed by researchers. In this paper, the evaluation of equations is discussed to predict HHV based on proximate analysis on biomass-based on data from previous studies. HHV prediction values using five equations were evaluated with 25 proximate biomass data from previous studies, then compared based on error value to get the best predictions. The analysis shows that Equation A predicts best in 7 biomass, B in 6 biomass, C in 6 biomass, D in 5 biomass, and E in 1 biomass. Key words: fuel, biomass, higher heating value, error value, proximate
9

Namoua, Dilivia J., Adnan S. Wantasen, Khristin I. F. Kondoy, Rene Ch Kepel, Febry S. I. Menajang, and Wilmy Pelle. "Carbon Absorption in Seagrasses in Tongkaina Coastal Waters, Bunaken District, Manado City, North Sulawesi." Jurnal Ilmiah PLATAX 10, no. 2 (September 30, 2022): 433. http://dx.doi.org/10.35800/jip.v10i2.43485.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This study was conducted to determine the types of seagrasses and calculate biomass and calculate how much carbon absorption in seagrasses was found in the location of Tongkaina Beach, Bunaken District, Manado City, North Sulawesi. The sampling procedure in the field is the method of cruising surveys. A cruising survey is a sample collection method that is carried out by walking through the coastal area of all seagrasses found. After the sampling at the site is completed, the sample in the inventory is then photographed. The samples that have been obtained are analyzed in the laboratory using the loss on ignition (LOI) method. The results of the study on Tongkaina coastal waters covering an area of 25,000 meters with a coastal length of ±500 meters, in an area parallel to the coastline as wide as ±50 meters towards the sea and six types of seagrasses were obtained, namely: Enhalus acoroides, Thalassia hemprichii, Syringodium isoetifolium, Cymodocea rotundata, Halodule uninervis, and Halodule pinifolia. The biomass in seagrasses found had an average value of 78.10% with the highest individual seagrass biomass found in seagrass type Enhalus acoroides with a biomass value of 87.23grams of dry weight (gbk)/individual and the lowest type of seagrass individual biomass value was found in seagrass type seagrass with a biomass value of 66.67grams of dry weight (gbk)/individual. The total carbon content calculated in the entire seagrass obtained was 46,0941gCKeywords: Tongkaina Beach; seagrasses; biomass; carbon absorptionAbstrakPenelitian ini dilakukan untuk mengetahui jenis-jenis lamun dan menghitung biomassa serta menghitung berapa serapan karbon pada lamun yang ditemukan dilokasi Perairan Pantai Tongkaina Kecamatan Bunaken Kota Manado Provinsi Sulawesi Utara. Prosedur pengambilan sampel di lapangan menggunakan metode survei jelajah. Survei jelajah adalah metode pengumpulan sampel yang di lakukan dengan cara menyusuri daerah pantai terhadap semua lamun yang ditemukan. Setelah pengambilan sampel di lokasi selesai, sampel di inventarisir kemudian difoto. Sampel yang telah diperoleh dianalisa di laboratorium dengan menggunakann metode loss on ignition (LOI). Hasil penelitian pada perairan pantai Tongkaina seluas 25.000 meter dengan panjang pantai ±500 meter sejajar garis pantai dan lebar ±50 meter ke arah laut. Ditemukan enam jenis lamun yaitu: Enhalus acoroides, Thalassia hemprichii, Syringodium isoetifolium, Cymodocea rotundata, Halodule uninervis dan Halodule pinifolia. Biomassa pada lamun yang ditemukan memiliki nilai rata-rata 78,53% dengan biomassa individu lamun tertinggi terdapat pada lamun jenis Enhalus acoroides dengan nilai biomassa mencapai 87,23gram berat kering (gbk)/individu dan nilai biomassa individu jenis lamun terendah terdapat pada lamun jenis Syringodium isoetifolium dengan nilai biomassa 66,67gram berat kering (gbk)/individu. Untuk total kandungan karbon yang dihitung pada keseluruhan lamun yang didapat sebesar 46,0941gC.Kata kunci: Pantai Tongkaina; Lamun; biomasa, serapan carbon
10

Silva, Jaciely Gabriela Melo da, José Alberto Quintanilha, Carlos Henrique Grohmann, Danilo Ribeiro da Costa, José Douglas Monteiro da Costa, and José Mauro Santana da Silva. "Distribuição da Biomassa vegetal e sequestro de carbono na sub-bacia do Rio Pirajibu no município de Sorocaba/SP." Revista Brasileira de Geografia Física 16, no. 3 (June 5, 2023): 1647. http://dx.doi.org/10.26848/rbgf.v16.3.p1647-1656.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A estimativa de biomassa, com base em dados de sensoriamento desempenha um importante papel a respeito da quantificação da matéria vegetal, tanto de florestas primárias quanto de florestas secundárias ou fragmentadas. Por isso, o objetivo central deste trabalho é mostrar a distribuição da biomassa vegetal e o fluxo de carbono na sub-bacia do rio Pirajibu em Sorocaba/SP. Como objetivo específico classificar os níveis de biomassa de acordo com o algoritmo de aprendizado de máquina Random Forest. As classes escolhidas para o treinamento foram: “Muito alta biomassa”, “alta biomassa”, “média biomassa”, “baixa biomassa” e "muito baixa biomassa”. Foram obtidas 100 amostras de treinamento. A classificação supervisionada foi realizada pelo método Random Forest, com 10 árvores de decisão e 5.000 de variáveis que foram selecionadas e treinadas. A classe muito alta biomassa foi encontrada em 4.833,34 ha (10,52%), a classe alta foi identificada em 8.425,94 ha (18,34%), a classe média biomassa em 12.026,28 ha (26,18%), a baixa biomassa em 11.881,05 ha (25,87%) e muito baixa biomassa em 8.753,80 ha (19,06%). Foi avaliada a acurácia da classificação, a previsão de acurácia total chegou em 84%. Para o índice CO2Flux, se obteve os valores de -0,43 para as áreas sem vegetação (área urbana), valores na faixa de 0,19 a 0,23 representam áreas de pastagem mais degradadas e com solo exposto, já os maiores valores de fluxo de CO2 > 0,32 mostram uma maior concentração de estoque de carbono, são regiões com vegetação robusta e saudável. A distribuição da biomassa para as classes muito alta, alta e média pode ser ainda maior considerando outros reservatórios de carbono, como os reservatórios abaixo do solo.Palavras-chave: biomassa, sensoriamento remoto, random forest, CO2Flux. Plant biomass distribution and carbon sequestration in the Pirajibu River sub-basin in the municipality of Sorocaba/SPA B S T R A C TBiomass estimation, based on sensing data, plays an important role regarding the quantification of plant matter, both from primary forests and from secondary or fragmented forests. Therefore, the main objective of this work is to show the distribution of plant biomass and carbon flux in the Pirajibu River sub-basin in Sorocaba/SP. As a specific objective to classify the biomass levels according to the Random Forest machine learning algorithm. The classes chosen for training were: “Very high biomass”, “high biomass”, “medium biomass”, “low biomass” and “very low biomass”. 100 training samples were obtained. The supervised classification was performed by the Random method Forest, with 10 decision trees and 5,000 variables that were selected and trained. The very high biomass class was found in 4,833.34 ha (10.52%), the high class was identified in 8,425.94 ha (18.34%), middle class biomass in 12,026.28 ha (26.18%), low biomass in 11,881.05 ha (25.87%) and very low biomass in 8,753.80 ha (19.06% The classification accuracy was evaluated, the total accuracy forecast reached 84%. For the CO2Flux index, values of -0.43 were obtained for areas without vegetation (urban area), values in the range of 0.19 at 0.23 represent more degraded pasture areas with exposed soil, whereas the higher values of CO2 flux > 0.32 show a higher concentration of carbon stock, they are regions with robust and healthy vegetation. The biomass distribution for the very high, high, and medium classes can be even greater considering other carbon pools, such as the underground pools.Keywords: biomass; remote sensing; random forest; CO2Flux.

Дисертації з теми "Biomass":

1

Smarž, Patrik. "Využití odpadní biomasy pro výrobu elektrické energie." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2015. http://www.nusl.cz/ntk/nusl-221204.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Diploma thesis, in its introduction, describes the expression biomass and the ways of its production from various sources, focused particularly on waste biomass In the following part it deals with the description of its origin and the advantages of its usage. It describes the usage of biomass in the world as well as in the Slovak Republic. It also looks into the possibilities of processing of biomass and the following use at heat and electricity production. In its last part this work describes, on particular examples, the usage of biomass in electricity and heat production, from businesses with high power to its usage in houses.
2

Gavilà, Terrades Llorenç. "Different biomass conversion strategies for valuable chemical production." Doctoral thesis, Universitat Rovira i Virgili, 2017. http://hdl.handle.net/10803/457135.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Com a alternativa a la producció química a partir fonts petroquímiques, la conversió de biomassa en productes químics valuosos és un camp actualment en desenvolupament. En aquest camp, una àmplia gamma d'enfocaments és fa servir. En aquesta tesi es presenten tres diferents noves estratègies per a la conversió de biomassa: i) producció de sucres fermentables (glucosa) a partir de: cel•lulosa, polpa produïda amb líquid iònic commutable i biomassa. Els sucres obtinguts es sotmeten a una fermentació microbiana; ii) desenvolupar una nova estratègia integrada per a produir un producte químic de valor afegit (5-acetoximetilfurfural) a partir de lignocelulosa, utilitzant acetat de cel•lulosa com a material de partida en lloc de cel•lulosa i aprofitant la solubilitat augmentada d'acetat de cel•lulosa; iii) millorar un producte químic de valor afegit tal com furfural cap a un producte final com el 1,5-pentanodienol per mitjà d'una reacció en cascada usant per primera vegada un catalitzador metàl•lic no noble. Per mitjà de la metodologia descrita, es produeix, respectivament, àcid làctic (amb ús estès com a precursor bioplàstic), 5-acetoximetilfurfural (un component estratègic amb una àmplia gamma de potencials conversions a productes químics valuosos) i 1,5-pentanodienol (1 producte final amb moltes aplicacions com resina o precursor bioplàstic).
Como alternativa a la producción química a partir fuentes petroquímicas, la conversión de biomasa en productos químicos valiosos es un campo actualmente en desarrollo. En este campo, una amplia gama de enfoques es usada. En esta tesis se presentan tres diferentes nuevas estrategias para la conversión de biomasa: i) producción de azúcares fermentables (glucosa) a partir de: celulosa, pulpa producida con líquido iónico conmutable y biomasa. Los azúcares obtenidos se someten entonces a ensayo para la fermentación microbiana; ii) desarrollar una nueva estrategia integrada para producir un producto químico de valor añadido (5-acetoximetilfurfural) a partir de lignocelulosa, utilizando acetato de celulosa como material de partida en lugar de celulosa y aprovechando la solubilidad aumentada de acetato de celulosa; iii) mejorar un producto químico de valor añadido tal como furfural en un producto final como el 1,5-pentanodienol por medio de una reacción en cascada usando por primera vez un catalizador metálico no noble. Por medio de la metodología descrita, se produce, respectivamente, ácido láctico (con uso extendido como precursor bioplástico), 5-acetoximetilfurfural (un componente estratégico con una amplia gama de potenciales conversiones a productos químicos valiosos) y 1,5-pentanodienol (un producto final con muchas aplicaciones como resina o precursor bioplástico).
As an alternative to chemical production from petrochemical sources, biomass conversion into valuable chemicals is a field in current development. In this field, a broad range of approaches is targeted. In this thesis, three new different strategies for the whole picture of biomass conversion are presented i) producing fermentable sugars (glucose) from: cellulose, pulp produced with switchable ionic liquid, and biomass. The obtained sugars are then tested for microbial fermentation; ii) developing a new integrated strategy to produce a valuable building block (5-acetoxymethylfurfural) from lignocellulose, using cellulose acetate as starting material rather than cellulose and taking benefit of cellulose acetate enhanced solubility; and iii) upgrading a building block such as furfural to an end product like 1,5-pentanedienol by means of cascade reaction using for the first time a non-noble metal catalyst. By means of the described methodology, is produced, respectively, lactic acid (with extended use as bioplastic precursor), 5-acetoxymethylfurfural (a strategic building block with a wide range of potential conversions to valuable chemicals), and 1,5-pentanedienol (an end product with a lot of applications as a resin or bioplastic precursor).
3

Ptáček, Pavel. "Teplotní pole v tuhém palivu." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-417431.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The diploma thesis deals with a temperature field in a solid fuel during the combustion process. At the beginning of this thesis, research of available literature was conducted to obtain information about the composition of wood, properties affecting the combustion process, and the basics of heat transfer. Afterward, the temperature profiles of the samples were recorded during the measurement in the observation furnace. The temperature profiles of samples of six different sizes which were made of spruce and beech wood were subsequently evaluated and compared. Based on experimentally obtained data, a mathematical model was created in the OpenModellica software. Finally, the results of the mathematical model were compared with experimentally obtained data and appropriate conclusions were deduced.
4

Křivák, Petr. "Návrh roštového kotle s přirozenou cirkulací na spalování slámy z pšenice,žita a ječmene." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231257.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The aim of the thesis is the design of the steam grate boilers of 40 t/h for straw burning. The required parameters are generated steam temperature 420 ° C and a pressure of 5.5 MPa. The specified fuel is cereal straw with a calorific value of 9.5 MJ/kg. The calculation is made from the stoichiometric calculation of elemental analysis, to calculate the individual dimensions and heating surfaces of the boiler.
5

Němec, Radim. "Roštový kotel s přirozenou cirkulací na spalování slámy z pšenice,žita a ječmene,20t/h." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2013. http://www.nusl.cz/ntk/nusl-230887.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The aim of this thesis is to propose a grate steam boiler for combustion of straw from wheat, rye and barley output of 20 t / h The calculation is performed by stoichiometric calculation of elemental analysis to calculate the dimensions of a boiler heating surfaces. Default superheated steam can be used mainly for electricity generation.
6

Pang, Cheng Heng. "The characterisation of biomass and biomass/coal blends." Thesis, University of Nottingham, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.588061.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A series of detailed studies have been performed to further understand the characteristics of biomass for solid fuel combustion purposes. The characterisation work was carried out in three separate (but interrelated) parts studying each of the different forms/stages of biomass during combustion i.e. original raw biomass, biomass char and biomass ash, respectively. These findings were examined and correlated to see if predictions about combustion behaviour could be made. The effects of blending biomass and coal on milling performance and ash behaviour were also investigated to show the relevance of co-milling and co-firing. The lignocellulosic components, i.e. lignin, cellulose and hemicellulose are the key constituents of plants cell wall, and hence form the major part of biomass. The contributions of these components on biomass behaviour were explored by analysing a matrix of samples with varying lignocellulosic compositions including; a base suite of 11 biomass samples with different lignocellulose contents; samples pre-treated chemically to alter their compositions; pseudo biomass samples synthesised by mixing commercially obtained lignin, cellulose and hemicellulose in different weight percentages. All raw samples, both treated and untreated, as well as their corresponding char samples prepared via the fast heating drop tube furnace and slow heating muffle furnace, were analysed to determine their respective thermal properties, structural characteristics, grindability, etc. Ash samples were characterised using the sinter strength test and the newly developed PAnG (Picture Analysis and Graphing) advanced ash fusion test. The former was originally devised for coal ash characterisation whilst the latter was designed to accommodate the large variability in fuels. The PAnG test incorporates dilatometry and sinter strength test by means of image analysis. It is believed that lignin, cellulose and hemicellulose play a significant role in determining the characteristics of biomass. Results have shown that the data of raw biomass, biomass char and biomass ash correlate well with that of lignocellulosic composition. The major components of biomass, particularly cellulose and/or lignin, reflect the various behaviours of biomass in different ways, and hence can be used as a potential predictive tool. Depending on the original unblended fuel, the blending of biomass and coal at different weight percentages can have favourable effects on fuel properties.
7

Ching, Diego. "Upgrading of biomass: alternative ways for biomass treatment." Thesis, KTH, Kraft- och värmeteknologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-149373.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
As the world population and wealth increases it is necessary to look for sustainable alternatives to guarantee modern living standards. With depleting resources and the threat of global warming, biomass is emerging as a promising alternative to lay the basis for a bio-based sustainable economy. New biomass upgrading trends lead to the concept of biorefinery, where a large array of chemicals, fuels and energy can be produced, maximizing the value of biomass. The aim of the present work is to find industrial biorefinery processes developed to produce chemicals and fuels but that at the same time yield considerable amounts of combustible by-products that can be employed as a fuel in Vattenfall´s power plants. This paper is focused on lignocellulosic biomass as a feedstock. A comprehensive review of existing technologies at different maturity levels to upgrade biomass is done. The review covers biomass pretreatment operations, thermochemical, chemical and biochemical processes. It starts by describing simple unitary operations that are used to build complex biorefinery systems. A selection of some of the possible biorefinery schemes is briefly described. After listing and describing different biomass upgrading processes, three process were selected for further analysis. Two biorefinery processes with different maturity levels were selected: the Biofine process and Lignocellulosic Ethanol. A process to produce a solid fuel, Hydrothermal Carbonization, was selected as well. The process selection was done according to Vattenfall´s interests. The three processes selected were further analyzed performing a mass and energy balance. To achieve these tasks, a model of the processes using Microsoft Excel was done. The estimation of the product yields and energy usage was done assuming woodchips as a feedstock. Sensitive operating conditions where the energy usage can be improved are identified. After the mass and energy balance an economical evaluation by means of OPEX and CAPEX calculations was done to determine the profitability of the processes. Opportunities for each process are identified and conditions to achieve or improve the profitability of the processes were pinpointed. The biorefinery concept is an emerging technology and as any new technology there are obstacles that need to be surpassed for being introduced into the market. A discussion on these issues was made as they will drive R&D efforts, industrial development and policies in the upcoming years. The importance of innovation in technology through R&D and market push policy measures was analyzed as it plays a fundamental role in the industrial dynamics of emerging technologies. Synergies and cooperation between the pulp and paper, forest, petrochemical and energy industries should be seek to tackle the challenges these technologies present and endorse a sustainable bio-based economy.
8

Huéscar, Medina Clara. "Explosion safety of biomass and torrefied biomass powders." Thesis, University of Leeds, 2014. http://etheses.whiterose.ac.uk/8460/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The use of pulverised biomass for electrical power generation is of growing importance in the UK as a route to low carbon electricity. It can be used in existing power stations co-fired with coal or 100% biomass firing. However, this use of biomass has led to several major biomass storage or burner feed explosions in recent years. There is minimal information in the open literature on the explosion risks of pulverised biomass, as the fibrous nature of pulverised biomass results in it blocking the injection system of the standard ISO 1 m3 and 20 L spheres. New injection systems for fibrous biomass developed and calibrated for the ISO 1 m3 spherical explosion vessel were used in this research. In addition to the explosion safety data, the experimental methods enabled the measurement of the turbulent spherical flame speed, from which the fundamental laminar burning velocity of the pulverised biomass could be determined, this data is relevant to practical burner design and flame stability. In dust explosion research the dust concentration has always been reported as g/m3 and not converted to equivalence ratio, Ø. An important feature of the present work was the presentation of the flame propagation properties as a function of equivalence ratio, Ø. This enabled comparison to be made with equivalent burner operating conditions and gas explosions data. A feature of dust explosions was found, that has rarely been reported elsewhere, and this was that around 50% of the dust that was injected was left as a debris in the vessel after an explosion test. This debris was vacuumed out of the vessel, collected, weighed and analysed. The debris was composed of ash from the biomass that did burn, completely unreacted biomass and partially pyrolysed particles. The mass of the debris was deducted from the mass injected and the actual Ø that the flame propagated through was determined. Torrefaction is a process involving heating the biomass in an inert atmosphere at about 200°C-300°C, which breaks up the biomass fibres and makes it easier to handle and pulverise. The present work presents the first measurements of the explosion and flame propagation properties of these new biomass materials. The results are compared with the raw biomass from which the torrefied material was derived. Research was undertaken on the explosion and flame propagation characteristics of a range of raw biomass, torrefied biomass, coal and mixtures of biomass with coal. Fuel characteristics (chemical composition, particle morphology, size distribution) were compared in order to assess the most influential parameters on the reactivity of torrefied and raw biomass. The experimental evidence suggests that pulverised biomass flame propagation occurred in the gas phase, leaving no char residue, indicating that for the biomass that participated in the flame propagation all the mass was burned. Evidence suggested that coal and torrefied biomass flames did result in enhanced char in the debris and that surface reactions through the diffusion of oxygen were part of the flame propagation process. For minimum explosion concentration measurements the Hartmann tube explosion technique was modified to work repeatably for fibrous biomass and to determine flame speeds. This enabled the most reactive mixture to be determined. The MEC of biomass and torrefied biomass were found to be leaner (Ø=0.2-0.3) than for coal or gaseous hydrocarbons. This supports the conclusion that for the Hartmann equipment all the mass injected must burn, as if only part burned the MEC would be richer. The current methods for determining the MEC in the ISO 1 m3 and 20 L sphere were shown to be invalid as they were based on the injected concentration of dust, with no account taken of the fact that most of it did not burn, so the actual concentration at the lean limit was unknown. More work is required on the reliable determination of MEC. Torrefied biomass was found to be more reactive than the raw biomass due to the presence of finer particles in the torrefied biomass samples and not due to the material being inherently more reactive. Torrefied, raw biomass and coal samples were found to have KSt values ranging from 60 to 150 barm/s and the maximum explosion pressure ranged between 8 and 9 bar. The mixtures that gave these peak reactivities and pressures was around Ø = 2 – 3, quite different from the peak reactivity of gases at Ø=1.05. The reason for peak reactivity occurring at richer mixtures was addressed as part of the research. Biomass and coal were found to have a similar range of reactivity and peak pressures. Synergistic effects in the reactivity of biomass/coal mixtures were observed with certain fuels and blend ratios. TGA analysis gave indication of such synergistic effects which are likely to occur due to interaction of the fuels during the devolatilisation step. However, no synergistic effects were detected for a mixture containing 50% torrefied biomass.
9

Oguri, Guilherme [UNESP]. "Correlação entre biomassa e nutrientes de galhos e folhas em um plantio adensado de Eucalyptus grandis x Eucalyptus urophylla." Universidade Estadual Paulista (UNESP), 2012. http://hdl.handle.net/11449/90512.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Made available in DSpace on 2014-06-11T19:24:40Z (GMT). No. of bitstreams: 0 Previous issue date: 2012-08-09Bitstream added on 2014-06-13T20:31:54Z : No. of bitstreams: 1 oguri_g_me_botfca.pdf: 243798 bytes, checksum: 20643e681c99093c1964743a3aecb04a (MD5)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Universidade Estadual Paulista (UNESP)
Este estudo teve com objetivo avaliar a produção de biomassa e correlacionar com os nutrientes de galhos e folhas que poderão ser exportados através da colheita mecanizada, bem como o poder calorífico dos galhos em função de diferentes espaçamentos e adubações em um plantio de Eucalyptus urophylla x Eucalyptus grandis de curta rotação. O plantio da área em estudo ocorreu em dezembro de 2008, totalizando 5,8 ha. A área total foi dividida em cinco espaçamentos utilizando três diferentes doses de adubação. Nas idades de 18 meses, 24 meses e 30 meses após o plantio, foi realizado um inventário coletando informações de diâmetro a altura do peito (DAP) para escolha das árvores-amostra com o intuito de obter dados sobre a biomassa de galhos e folhas, assim como o poder calorífico dos galhos e nutrientes nas folhas e nos galhos. Amostras de galhos e folhas foram coletadas e pesadas no campo e levadas para estufa para posterior cálculo de biomassa seca por unidade de área. Os nutrientes em estudo foram os macronutrientes, nitrogênio, fósforo e potássio e; os micronutrientes, boro e zinco. Para o cálculo do poder calorífico superior (PCS) utilizou-se uma bomba calorimétrica seguindo a norma NBR 8633. Todos os resultados foram analisados pela análise de variância e, posteriormente, teste de Tukey. Concluiu-se que a biomassa de galhos e folhas aumentou de acordo com o nível de adubação e, também que aumentando a dose de fertilizantes, maior será a exportação de nutrientes nas folhas e nos galhos
The aim of this study was to evaluate the biomass production and correlate with branches and leaves nutrients content that will be exported by mechanical harvesting, as well as the calorific value of branches as a function of spacements with three levels of fertilization in an Eucalyptus grandis x Eucalyptus urophylla short rotation forest. The forest was planted in December 2008 in a total of 5,8 ha. At 18 months, 24 months and 30 months after planting we collected information about diameter to choose the sample-trees in order to obtain branches and leaves biomass data, as well as the branches and leaves nutrients content and calorific value of branches. Leaves and branches samples were collected and weighted on the field and taken at greenhouse to calculate dry biomass. The macronutrients - N, P and K – and the micronutrients – B and Z – were studied. The gross calorific value was calculated using a calorimeter according to NBR 8633. All results were analyzed by ANOVA and Tukey test. It was concluded that branches and leaves biomass increases at the same way the fertilizer level increases and also we noted that increasing the fertilizer amount, larger will be branches and leaves export nutrients.
10

Scalet, Verônica. "Caracterização e confecção de briquetes de casca de liquri (Syagrus coronata (Mart) Becc.) para produção de energia." Universidade Federal de São Carlos, 2015. https://repositorio.ufscar.br/handle/ufscar/8330.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Submitted by Milena Rubi (milenarubi@ufscar.br) on 2016-11-16T18:43:35Z No. of bitstreams: 1 SCALET_Veronica_2015.pdf: 6163891 bytes, checksum: 998b5b328d95cff68d4e7e2929fb655e (MD5)
Approved for entry into archive by Milena Rubi (milenarubi@ufscar.br) on 2016-11-16T18:43:44Z (GMT) No. of bitstreams: 1 SCALET_Veronica_2015.pdf: 6163891 bytes, checksum: 998b5b328d95cff68d4e7e2929fb655e (MD5)
Approved for entry into archive by Milena Rubi (milenarubi@ufscar.br) on 2016-11-16T18:43:50Z (GMT) No. of bitstreams: 1 SCALET_Veronica_2015.pdf: 6163891 bytes, checksum: 998b5b328d95cff68d4e7e2929fb655e (MD5)
Made available in DSpace on 2016-11-16T18:43:57Z (GMT). No. of bitstreams: 1 SCALET_Veronica_2015.pdf: 6163891 bytes, checksum: 998b5b328d95cff68d4e7e2929fb655e (MD5) Previous issue date: 2015-04-06
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
The Licuri bark is a potential source of biomass for energy production. This study aims at making briquettes and the physicochemical characterization of Licuri bark aiming to expand its use as fuel. The material was collected in Great Cauldron - BA and briquettes were made with five different compositions: 100% Licuri bark (T1), 75% Licuri bark + 25% sugar cane straw (T2), 50% Licuri bark + 50% sugar cane straw (T3), 25% Licuri bark + 75% sugar cane straw (T4) and finally 100% sugar cane straw (T5). The briquettes were measured to obtain the value of its expansion and density, passed through drumming test and was made mechanical test on the tensile strength by diametrical compression. Also were made the following analyzes to Licuri bark: moisture content, density, particle size, ash and volatile content, fixed carbon, high heat value, extraction with hot water and cyclohexane / ethanol, lignin and thermogravimetry analysis. Statistical analyzes were made when appropriate (ANOVA and Tukey's test). The expansion of briquettes stabilized after 24 hours of its confection, about the expansion in height, there was no significant difference between treatments, as for the expansion in diameter treatments with the highest percentage of Licuri bark (T1 and T2) showed the lowest expansion. Finally, for the mechanical test the T1 and T2 differed from the other treatments with larger maximum force (34.09 and 34.64 kgf respectively). The moisture content observed was 11.15% ± 1.31, suitable for energy use. The gross calorific value (4652 Kcal.Kg-1 ± 18), the ash content (3.90% + 1.42) and lignin content (36.86 ± 2.6%) of the observed material are high when compared to other biomass. Therefore, the use of Licuri in order to produce energy can be very important for families living of their extraction, because it has favorable characteristics for such use. Moreover, the production of briquettes may optimize the transport process and the burning of the material.
A casca de Licuri é uma potencial fonte de biomassa para a produção de energia. O presente trabalho tem como objetivo a confecção de briquetes e a caracterização físicoquímica da casca de Licuri visando à ampliação de seu uso como combustível. O material foi coletado em Caldeirão Grande – BA e foram confeccionados briquetes com cinco formulações distintas: 100% casca de Licuri (T1), 75% casca de Licuri + 25% palha de cana-de-açúcar (T2), 50% casca de Licuri + 50% palha de cana-de-açúcar (T3), 25% casca de Licuri + 75% palha de cana-de-açúcar (T4) e por fim 100% palha de cana-de-açúcar (T5). Os briquetes foram medidos para obtenção do valor da sua expansão e densidade, passaram pelo teste de tamboramento e realizou-se ensaio mecânico quanto à resistência a tração por compressão diametral. Além disso foram realizadas as seguintes análises para a casca de Licuri: teor de umidade, densidade, granulometria, teor de cinzas e teor de voláteis, carbono fixo, poder calorífico superior, extrações por água quente e por ciclohexano/etanol, teor de lignina e análise termogravimétria. Foram realizadas análises estatísticas quando pertinente (ANOVA e Teste de Tukey). A expansão dos briquetes estabilizou após 24h de sua confecção, quanto a expansão em altura, não houve diferença significativa entre os tratamentos, já para a expansão em diâmetro os tratamentos com maior porcentagem de casca de Licuri (T1 e T2) apresentaram a menor expansão. Para o ensaio mecânico os tratamentos T1 e T2 diferenciaram-se dos demais tratamentos apresentando maior força máxima (34,09 e 34,64 Kgf respectivamente). O poder calorífico superior (4652 Kcal.Kg-1 ± 18), o teor de cinzas (3,90% + 1,42) e o teor de lignina (36,86% ± 2,6) do material são elevados quando comparados a outras biomassas. Com os resultados, a casca de Licuri mostrou-se potencialmente interessante para a produção de energia. Assim, o uso do Licuri com a finalidade de se produzir energia pode ser de grande importância para as famílias que vivem de sua extração, pois o mesmo possui características favoraveis para tal uso. Além disso, a confecção de briquetes pode otimizar o processo de transporte e queima do material.

Книги з теми "Biomass":

1

Coombs, J. Biomass. London: Palgrave Macmillan UK, 1986. http://dx.doi.org/10.1007/978-1-349-08012-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hall, D. O. Biomass. Washington, DC (1818 H St., NW, Washington 20433): Office of the Vice President, Development Economics, World Bank, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

A, Wood Willis, and Kellogg Scott T, eds. Biomass. San Diego: Academic Press, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

A, Wood Willis, and Kellogg Scott T, eds. Biomass. San Diego: Academic Press, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

1921-, Wood Willis A., and Kellogg Scott T, eds. Biomass. San Diego: Academic Press, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Atazadeh, Islam. Biomass and remote sensing of biomass. Rijeka: InTech, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Križan, Peter. Biomass Compaction. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-89956-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Himmel, Michael E., ed. Biomass Conversion. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-956-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Baskar, Chinnappan, Shikha Baskar, and Ranjit S. Dhillon, eds. Biomass Conversion. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28418-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ferrero, G. L., G. Grassi, and H. E. Williams, eds. Biomass Energy. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-011-7879-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Biomass":

1

Ernst, Michaela, Achim Walter, and Ulrich Schurr. "Biomass biomass Production biomass production." In Encyclopedia of Sustainability Science and Technology, 1476–87. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_242.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hornung, Andreas. "Biomass biomass Pyrolysis biomass pyrolysis." In Encyclopedia of Sustainability Science and Technology, 1517–31. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_258.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ernst, Michaela, Achim Walter, and Ulrich Schurr. "Biomass biomass Production biomass production." In Renewable Energy Systems, 510–21. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5820-3_242.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hornung, Andreas. "Biomass biomass Pyrolysis biomass pyrolysis." In Renewable Energy Systems, 553–66. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5820-3_258.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Faaij, André. "Biomass biomass Resources biomass resources , Worldwide." In Encyclopedia of Sustainability Science and Technology, 1531–83. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_259.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Faaij, André. "Biomass biomass Resources biomass resources , Worldwide." In Renewable Energy Systems, 567–619. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5820-3_259.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Coombs, J. "Argentina." In Biomass, 3. London: Palgrave Macmillan UK, 1986. http://dx.doi.org/10.1007/978-1-349-08012-0_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Coombs, J. "Costa Rica." In Biomass, 24. London: Palgrave Macmillan UK, 1986. http://dx.doi.org/10.1007/978-1-349-08012-0_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Coombs, J. "Cuba." In Biomass, 24. London: Palgrave Macmillan UK, 1986. http://dx.doi.org/10.1007/978-1-349-08012-0_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Coombs, J. "Cyprus." In Biomass, 25. London: Palgrave Macmillan UK, 1986. http://dx.doi.org/10.1007/978-1-349-08012-0_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Biomass":

1

Fábio Cordeiro de Lisboa, Mara Rúbia da Silva Miranda, and Alexandre Caires Rodrigues. "BRASILIAN BIOMASS GASIFICATION: A NUMERICAL SIMULATION OF BIOMASS GASIFICATION FROM DIFFERENT BIOMES." In 23rd ABCM International Congress of Mechanical Engineering. Rio de Janeiro, Brazil: ABCM Brazilian Society of Mechanical Sciences and Engineering, 2015. http://dx.doi.org/10.20906/cps/cob-2015-1886.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Huesemann, Michael, Scott Edmunson, Song Gao, Taraka Dale, Sangeeta Negi, Lieve Laurens, Philip Pienkos, et al. "DISCOVR: Development of Integrated Screening, Cultivar Optimization, and Verification Research." In Algae Biomass Summit. US DOE, 2020. http://dx.doi.org/10.2172/1676405.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wyble, Ethan, and Philip Aucoin. "Biomass Torrefaction: Improving the Fuel Properties of Biomass." In 2012 IEEE Green Technologies Conference. IEEE, 2012. http://dx.doi.org/10.1109/green.2012.6200987.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Banda, Francesco, Davide Giudici, Shaun Quegan, and Klaus Scipal. "The Retrieval Concept of the Biomass Forest Biomass Prototype Processor." In IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2018. http://dx.doi.org/10.1109/igarss.2018.8518434.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kolodynskij, Vitalij, and Pranas Baltrėnas. "Experimental Research of Biogas Yield and Quality Produced from Chicken Manure." In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Biogas is a fuel, which can be produced from a renewable energy source – biomass. Such a gas can be freely used in small farms or food industry to produce heat or electricity. Two main components of biogas – metahne CH4 and carbon dioxide CO2. In some case, if biomass has a big amount of proteins, there can be an aggressive to different constructions gas – hydrogen sulphide H2S in biogas composition. Also, there can be other gases, such as ammonia or hydrogen, but their concentrations are very low. Nowadays it’s extremely important to find a biomass with high energy potential not only to produce “green” energy, but to save the environment from gaseous emissions (greenhouse gases) and soil pollution. The aim of this study – to examine biogas yield and quality, which was produced from chicken manure biomass. To implement research, a small-sized bioreactor of periodic operation (total volume – 30 l, operating volume – 20 l) was used. One of the important parameters of biomass is total quality of volatile solids (VS) and quantity of organic matter in one liter of biomass (organic load – VS/l). In this research, there were examined two chicken manure biomasses with different VS and VS/l. The first one reached relatively 3188 g and 160 g/l. The second’s biomass volatile solids quantity reached 1993 g and organic load was 100 g/l. Both biomasses were of the same type and organic matter (chicken manure with 39.85 % concentration of organic matter). During the experimental research, the temperature of anaerobic digestion was mesophilic (35–37 oC). The operation of bioreactor was periodic, this means, that the biomass was held in anaerobic condition till the complete degasation without any partial refill. The total experiment duration reached 66 days. It was found, that the maximum CH4 concentration reached 72.2% (biomass with organic load 100 g/l). To compare biogas yield from biomasses with different organic loading, it must be recalculated to an amount of biogas produced per day from 1 kg of volatile solids (l/d/kg VS). By implementing gained data analysis, it was discovered, that the maximum biogas yield is 7.8 l/d/kg VS (biomass with organic load 100 g/l). According to this research, it will be possible to create and use a small-sized bioreactor with chicken manure biomass in small farms to reduce pollution and generate energy.
6

"CIGR Handbook of Agricultural Engineering, Volume V Energy and Biomass Engineering, Chapter 3 Biomass Engineering, Part 3.5 Biomass Feedstocks, Part 3.5.3 Chemical Ingredients from Biomass." In CIGR Handbook of Agricultural Engineering Volume V Energy & Biomass Engineering. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 1999. http://dx.doi.org/10.13031/2013.36425.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Olatunji, Obafemi O., Nkosinathi Madushele, Paul A. Adedeji, and Stephen Akinlabi. "Digitalisation of Biomass Exploration: A Case Study of Biomass Feedstock Classification." In ASME 2020 Power Conference collocated with the 2020 International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/power2020-16772.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Biomass is one of the renewable energy (RE) sources with high prospects in the clean energy strata. The diversity of its application and sources have made digitalisation of its exploration presents an array of attractive opportunity to deploy different categories of biomass in a manner that mitigates climate change, advances economies and reduces power dependency. This study discusses the drivers of digitalisation in bioenergy exploration with the associated opportunities and challenges along the bioenergy value chain. As proof of concept, a case study based on the intelligent classification perspective of digitalisation of biomass was discussed. Two classifiers: Sparse Random Error-Correcting Output-based Support Vector Machine (SRECO-SVM) and Euclidean distance-based k-Nearest Neighbour (KNN-EUM) were elaborated while the procedures for the model development were highlighted. Relevant performance indices were applied to evaluate the models developed. Most significantly, the Accuracy, Sensitivity, Specificity were 0.77, 0.81, 0.97 respectively for SRECO-SVM at the computational time (CT) of 20.41 secs while 0.55, 0.56, 0.96 respectively were reported for KNN-EUM at the computational time (CT) of 20.40 secs. Some other composite metrics, which include G-means, F1-score, Mathews correlation coefficient (MCC), Discriminant power (DP) were reported. On the overall, a synergistic relationship is needed between the data analytics, artificial intelligence and other blockchain technologies in order to unleash the full benefits of digitalisation.
8

Hala Chaoui, Steven Eckhoff, and K C Ting. "Designing a biomass storage system: Part of a biomass production system." In 2009 Reno, Nevada, June 21 - June 24, 2009. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2009. http://dx.doi.org/10.13031/2013.40609.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

"Residue distribution and biomass recovery following biomass harvest of plantation pine." In 2016 ASABE International Meeting. American Society of Agricultural and Biological Engineers, 2016. http://dx.doi.org/10.13031/aim.20162458172.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Timsina, Ramesh, Rajan K. Thapa, and Marianne S. Eikeland. "Aspen Plus simulation of biomass gasification for different types of biomass." In The 60th SIMS Conference on Simulation and Modelling SIMS 2019, August 12-16, Västerås, Sweden. Linköping University Electronic Press, 2020. http://dx.doi.org/10.3384/ecp20170151.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Biomass":

1

Skone, Timothy J. Biomass Drying for Coal-Biomass Cofiring. Office of Scientific and Technical Information (OSTI), May 2012. http://dx.doi.org/10.2172/1509242.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Skone, Timothy J. Biomass Grinding for Coal-Biomass Cofiring. Office of Scientific and Technical Information (OSTI), July 2011. http://dx.doi.org/10.2172/1509243.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Skone, Timothy J. Biomass Torrefaction for Coal-Biomass Cofiring. Office of Scientific and Technical Information (OSTI), July 2011. http://dx.doi.org/10.2172/1509244.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Crow, Stuart J. Biomass Economy. Fort Belvoir, VA: Defense Technical Information Center, November 1985. http://dx.doi.org/10.21236/ada163647.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Author, Not Given. Direct-fired biomass. Office of Scientific and Technical Information (OSTI), January 2009. http://dx.doi.org/10.2172/1216658.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Author, Not Given. Gasification-based biomass. Office of Scientific and Technical Information (OSTI), January 2009. http://dx.doi.org/10.2172/1216660.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kobayashi, Atsushi, and M. Steinberg. Hydropyrolysis of biomass. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/5787496.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kobayashi, Atsushi, and M. Steinberg. Hydropyrolysis of biomass. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/10132392.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bain, R. L. Material and Energy Balances for Methanol from Biomass Using Biomass Gasifiers. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/15016381.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lowell, Eini C., Daniel J. Parrent, Robert C. Deering, Dan Bihn, and Dennis R. Becker. Community biomass handbook. Volume 2: Alaska, where woody biomass can work. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 2015. http://dx.doi.org/10.2737/pnw-gtr-920.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії