Добірка наукової літератури з теми "Biological optical systems"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Biological optical systems".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Biological optical systems"

1

Fujimoto, J. G., C. A. Puliafito, R. Margolis, A. Oseroff, S. De Silvestri, and E. P. Ippen. "Femtosecond optical ranging in biological systems." Optics Letters 11, no. 3 (March 1, 1986): 150. http://dx.doi.org/10.1364/ol.11.000150.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Espina Palanco, Marta, Klaus Bo Mogensen, Nils H. Skovgaard Andersen, Kirstine Berg-SØrensen, Claus Hélix-Nielsen, and Katrin Kneipp. "Optical Biosensors to Explore Biological Systems." Biophysical Journal 110, no. 3 (February 2016): 638a—639a. http://dx.doi.org/10.1016/j.bpj.2015.11.3417.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cho, Ukrae, and James K. Chen. "Lanthanide-Based Optical Probes of Biological Systems." Cell Chemical Biology 27, no. 8 (August 2020): 921–36. http://dx.doi.org/10.1016/j.chembiol.2020.07.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

dos Santos, Diego Mendes, Marcella Cogo Muniz, Gustavo Gonçalves Dalkiranis, Fernando Costa Basílio, Adriano de Queiroz, Alexandre Marletta, Renata Cristina de Paula, Sydnei Magno da Silva, and Raigna Augusta da Silva Zadra Armond. "Raman optical activity applied to biological systems." Physica Medica 32 (September 2016): 329. http://dx.doi.org/10.1016/j.ejmp.2016.07.233.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Goris, Toon, Daniel P. Langley, Paul R. Stoddart, and Blanca del Rosal. "Nanoscale optical voltage sensing in biological systems." Journal of Luminescence 230 (February 2021): 117719. http://dx.doi.org/10.1016/j.jlumin.2020.117719.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhang, Shu, Lachlan J. Gibson, Alexander B. Stilgoe, Itia A. Favre-Bulle, Timo A. Nieminen, and Halina Rubinsztein-Dunlop. "Ultrasensitive rotating photonic probes for complex biological systems." Optica 4, no. 9 (September 12, 2017): 1103. http://dx.doi.org/10.1364/optica.4.001103.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

HAYDON, P. G., S. MARCHESE-RAGONA, T. A. BASARSKY, M. SZULCZEWSKI, and M. McCLOSKEY. "Near-field confocal optical spectroscopy (NCOS): subdiffraction optical resolution for biological systems." Journal of Microscopy 182, no. 3 (June 1996): 208–16. http://dx.doi.org/10.1111/j.1365-2818.1996.tb04798.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Andrew, Philippa-Kate, Martin Williams, and Ebubekir Avci. "Optical Micromachines for Biological Studies." Micromachines 11, no. 2 (February 13, 2020): 192. http://dx.doi.org/10.3390/mi11020192.

Повний текст джерела
Анотація:
Optical tweezers have been used for biological studies since shortly after their inception. However, over the years research has suggested that the intense laser light used to create optical traps may damage the specimens being studied. This review aims to provide a brief overview of optical tweezers and the possible mechanisms for damage, and more importantly examines the role of optical micromachines as tools for biological studies. This review covers the achievements to date in the field of optical micromachines: improvements in the ability to produce micromachines, including multi-body microrobots; and design considerations for both optical microrobots and the optical trapping set-up used for controlling them are all discussed. The review focuses especially on the role of micromachines in biological research, and explores some of the potential that the technology has in this area.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Balasubramanian, D. "In situ optical spectroscopy of some systems of biological interest." Bioscience Reports 8, no. 6 (December 1, 1988): 497–508. http://dx.doi.org/10.1007/bf01117328.

Повний текст джерела
Анотація:
Monitoring the optical absorption or emission spectrum of a condensed phase sample offers information about the supramolecular assembly, packing effects and other features characteristic of the phase that would be missed when one studies solution-state spectra. We have used the technique of photoacoustic spectroscopy to study intact biological specimens, such as algae, parasite cells and the eye lens. Such a study has offered information about the status of endogenous hemin in Plasmodium cells and the mode of interaction of antimalarial drugs of the chloroquine class therein. We have also attempted to do in situ fluorescence spectroscopy on isolated intact eye lenses, which has enabled us to follow the photochemistry and the status of the photoproduct of the oxidation of the trp residues of the crystallins of the lens.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Raugei, Simone, Francesco Luigi Gervasio, and Paolo Carloni. "DFT modeling of biological systems." physica status solidi (b) 243, no. 11 (September 2006): 2500–2515. http://dx.doi.org/10.1002/pssb.200642096.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Biological optical systems"

1

Гнатенко, О. С., and О. О. Кальна. "Modeling the interaction of laser radiation with complex biological optical systems." Thesis, Sumy State University, Ukraine, 2018. http://openarchive.nure.ua/handle/document/5784.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dubaj, Vladimir, and n/a. "Novel optical fluorescence imaging probe for the investigation of biological function at the microscopic level." Swinburne University of Technology, 2005. http://adt.lib.swin.edu.au./public/adt-VSWT20060905.084615.

Повний текст джерела
Анотація:
Existing optic fibre-bundle based imaging probes have been successfully used to image biological signals from tissue in direct contact with the probe tip (Hirano et al. 1996). These fibre-bundle probe systems employed conventional fluorescence microscopy and thus lacked spatial filtering or a scanned light source, two features used by laser scanning confocal microscopes (LSCMs) to improve signal quality. Improving the methods of imaging tissue in its natural state, deep in-vivo and at cellular resolution is an ever-present goal in biological research. Within this study, a novel (580 μm diameter) optic fibre-bundle direct-contact imaging probe, employing a LSCM, was developed to allow for improved imaging of deep biological tissue in-vivo. The new LSCM/probe system possessed a spatial resolution of 10 μm, and a temporal resolution of 1 msec. The LSCM/probe system was compared to a previously used direct-contact probe system that employed a conventional fluorescence microscope. Quantitative and qualitative data indicated that the LSCM/probe system possessed superior image contrast and quality. Furthermore, the LSCM/probe system was approximately 16 times more effective at filtering unwanted contaminating light from regions below the imaging plane (z-axis). The unique LSCM/probe system was applied to an exploratory investigation of calcium activity of both glial and neuronal cells within the whisker portion of the rat primary somatosensory cortex in-vivo. Fluorescence signals of 106 cells were recorded from 12 female Sprague Dawley rats aged between 7-8 weeks. Fluo-3(AM) fluorophore based calcium fluctuations that coincided with 10 - 14 Hz sinusoidal stimulation of rat whiskers for 0.5-1 second were observed in 8.5% of cells (9 of 106). Both increases and decreases in calcium levels that coincided with whisker stimulation were observed. Of the 8.5 % of cells, 2.8% (3 cells) were categorized as glial and 5.7% (6 cells) as neuronal, based on temporal characteristics of the observed activity. The remaining cells (97 of 106) displayed sufficient calcium-based intensity but no fluctuations that coincided with an applied stimulus. This was partially attributed to electronic noise inherent in the prototype system obscuring potential very weak cell signals. The results indicate that the novel LSCM/probe system is an advancement over previously used systems that employed direct-contact imaging probes. The miniature nature of the probe allows for insertion into soft tissue, like a hypodermic needle, and provides access to a range of depths with minimal invasiveness. Furthermore, when combined with selected dyes, the system allows for imaging of numerous forms of activity at cellular resolution.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wanko, Marius [Verfasser], and Marcus [Akademischer Betreuer] Elstner. "Optical Excitations in Biological Systems: Multiscale-Simulation Strategies and Applications to Rhodopsins / Marius Wanko ; Betreuer: Marcus Elstner." Braunschweig : Technische Universität Braunschweig, 2009. http://d-nb.info/1175829730/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Roland, Thibault. "Localized Surface Plasmon Imaging : a non intrusive optical tool to cover nanometer to micrometer scales in biological systems." Lyon, École normale supérieure (sciences), 2009. http://www.theses.fr/2009ENSL0538.

Повний текст джерела
Анотація:
La plupart des microscopies impliquées dans l'étude d'échantillons ou de processus biologiques utilise des marqueurs ou des sondes, qui peuvent modifier artificiellement, plus ou moins fortement, les échantillons observés. Afin de proposer une alternative à ces techniques, un microscope haute résolution à plasmons de surface (le SSPM) a été développé. Les plasmons sont des oscillations collectives des électrons libres d'un métal, dont les conditions de résonance sont très sensibles à la variation d'indice diélectrique à la surface de ce métal. L'utilisation d'un objectif à forte ouverture numérique permet la focalisation de la lumière incidente dans une petite zone de l'interface métal/milieu d'observation, et entraîne ainsi la localisation et la structuration de ces ondes. Enfin, un balayage de la surface est réalisé, permettant de détecter les variations locales d'indice diélectrique de l'échantillon. Tout d'abord, nous présentons le principe expérimental du SSPM, mais aussi la modélisation de sa réponse par l'intermédiaire d'une résolution 3D des équations de Maxwell. Dans un deuxième temps, nous étudions la structure des couches minces d'or déposées par évaporation thermique sur des substrats de verre, et utilisées lors des expériences de microscopie SSPM. Puis nous visualisons dans l'air et dans l'eau, des nanoparticules métalliques et diélectriques, de 10 à 200 nm de diamètre, et montrons qu'il est possible de les différencier suivant leur taille ou leur indice diélectrique. Enfin, nous imageons des nucléosomes (complexes nucléoprotéiques d'environ 10 nm de diamètre) non marqués, ainsi que des fibroblastes dont nous résolvons certaines des sous structures
Most of the microscopy techniques used to study biological samples or processes relies on the use of markers or physical probes, which may modify artificially the phenomena considered. So as to propose an alternate to these techniques, a high resolution Scanning Surface Plasmon Microscope (SSPM) has been developed. Plasmons consist in collective oscillations of the free electrons at the surface of a metal. A high numerical aperture objective focuses the incident light on a small area of the metal/observation medium interface, which leads to the localization and the structuring of these waves here. Finally, the local variations of the sample dielectric index are detected while scanning the sample surface. First of all, we present the experimental principle of the SSPM, as well as a modelization of its response thanks to a 3D resolution of the Maxwell's equations. In chapter two, we study the structure of the thin gold films used during the SSPM experiments, after being deposited onto glass substrates by thermal evaporation. We address in the third chapter the problem of imaging in air and in water isolated nanoparticles of different sizes (from 10 to 200 nm of diameter). We show that this method is well suited to visualize such objects and also to discriminate them from their size or the material they are made of (depending on their dielectric index). Finally, we apply in the last chapter the SSPM to the visualization of unlabelled biological samples, such as nucleosomes (nucleoproteic complexes of about 10 nm of diameter) as well as human fibroblasts in which we resolve several subcellular structures (nucleus, nucleolus, cytoskeleton structures)
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Li, Weiwei. "Optimal control for biological movement systems." Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2006. http://wwwlib.umi.com/cr/ucsd/fullcit?p3205051.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--University of California, San Diego, 2006.
Title from first page of PDF file (viewed April 4, 2006). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 131-146).
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Panchea, Adina. "Inverse optimal control for redundant systems of biological motion." Thesis, Orléans, 2015. http://www.theses.fr/2015ORLE2050/document.

Повний текст джерела
Анотація:
Cette thèse aborde les problèmes inverses de contrôle optimal (IOCP) pour trouver les fonctions de coûts pour lesquelles les mouvements humains sont optimaux. En supposant que les observations de mouvements humains sont parfaites, alors que le processus de commande du moteur humain est imparfait, nous proposons un algorithme de commande approximative optimale. En appliquant notre algorithme pour les observations de mouvement humaines collectées: mouvement du bras humain au cours d'une tâche de vissage industrielle, une tâche de suivi visuel d’une cible et une tâche d'initialisation de la marche, nous avons effectué une analyse en boucle ouverte. Pour les trois cas, notre algorithme a trouvé les fonctions de coût qui correspondent mieux ces données, tout en satisfaisant approximativement les Karush-Kuhn-Tucker (KKT) conditions d'optimalité. Notre algorithme offre un beau temps de calcul pour tous les cas, fournir une opportunité pour son utilisation dans les applications en ligne. Pour la tâche de suivi visuel d’une cible, nous avons étudié une modélisation en boucle fermée avec deux boucles de rétroaction PD. Avec des données artificielles, nous avons obtenu des résultats cohérents en termes de tendances des gains et les critères trouvent par notre algorithme pour la tâche de suivi visuel d’une cible. Dans la seconde partie de notre travail, nous avons proposé une nouvelle approche pour résoudre l’IOCP, dans un cadre d'erreur bornée. Dans cette approche, nous supposons que le processus de contrôle moteur humain est parfait tandis que les observations ont des erreurs et des incertitudes d'agir sur eux, étant imparfaite. Les erreurs sont délimitées avec des limites connues, sinon inconnu. Notre approche trouve l'ensemble convexe de de fonction de coût réalisables avec la certitude qu'il comprend la vraie solution. Nous numériquement garanties en utilisant des outils d'analyse d'intervalle
This thesis addresses inverse optimal control problems (IOCP) to find the cost functions for which the human motions are optimal. Assuming that the human motion observations are perfect, while the human motor control process is imperfect, we propose an approximately optimal control algorithm. By applying our algorithm to the human motion observations collected for: the human arm trajectories during an industrial screwing task, a postural coordination in a visual tracking task and a walking gait initialization task, we performed an open loop analysis. For the three cases, our algorithm returned the cost functions which better fit these data, while approximately satisfying the Karush-Kuhn-Tucker (KKT) optimality conditions. Our algorithm offers a nice computational time for all cases, providing an opportunity for its use in online applications. For the visual tracking task, we investigated a closed loop modeling with two PD feedback loops. With artificial data, we obtained consistent results in terms of feedback gains’ trends and criteria exhibited by our algorithm for the visual tracking task. In the second part of our work, we proposed a new approach to solving the IOCP, in a bounded error framework. In this approach, we assume that the human motor control process is perfect while the observations have errors and uncertainties acting on them, being imperfect. The errors are bounded with known bounds, otherwise unknown. Our approach finds the convex hull of the set of feasible cost function with a certainty that it includes the true solution. We numerically guaranteed this using interval analysis tools
Стилі APA, Harvard, Vancouver, ISO та ін.
7

AMARAL, Thiago Magalhães. "Optimal control in biological systems as a support for clinical decisions." Universidade Federal de Pernambuco, 2009. https://repositorio.ufpe.br/handle/123456789/6002.

Повний текст джерела
Анотація:
Made available in DSpace on 2014-06-12T17:43:11Z (GMT). No. of bitstreams: 2 arquivo988_1.pdf: 2441078 bytes, checksum: 571bd2c7f61193398e8587dfeb171c6d (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2009
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
O controle ótimo no mundo biológico tem uma vasta aplicação em incontáveis sistemas os quais influenciam enormemente nossas vidas. Objetiva-se a aplicação desta ferramenta em dois sistemas. O primeiro diz respeito ao controle ótimo de dosagem de drogas no tratamento de pacientes infectados pelo vírus HIV . O modelo de Campello de Souza (1999) é usado para estimar a dosagem de drogas onde a função objetivo é minimizada. Esta função representa um balanço entre os benefícios do tratamento e os efeitos colaterais. A técnica de controle ótimo usada é o Princípio do Máximo de Pontryagin, a qual é simulada através do PROPT-TOMLAB - Matlab Optimal Control System Software em uma versão de demonstração. As simulações objetivam a análise de três diferentes pacientes em dois diferentes cenários. Estes cenários têm como objetivo forçar as variáveis de estado a atingirem valores "normais" a fim de estabilizar a carga viral próximo a uma taxa que seja insignificante e elevar o nível de CD4 do paciente. São simulados tratamentos cedos e tardios. As simulações computacionais compararam diferentes cenários para investigar os parâmetros de incerteza da dinâmica entre o vírus HIV e os linfócitos CD4 e CD8. Os resultados mostram que o controle ótimo permite uma melhor administração entre os efeitos positivos da terapia e os efeitos colaterais, ao invés de se usar dosagens constantes de drogas como na atual prática médica. O segundo sistema descreve a aplicação do controle ótimo, também através do Princípio Máximo de Pontryagin, para controlar o nível de glicose em indivíduos diabéticos usando o modelo matemático desenvolvido por Bergman (1971, 1981). Correlacionam-se dados reais da literatura com o modelo teórico para analisar a robustez do modelo. É também estudada a minimização do funcional objetivo para diminuir os efeitos colaterais e consequentemente melhorar o estado de saúde do paciente. Os resultados mostram os benefícios de se utilizar o controle ótimo para regular a taxa de glicose em pacientes diabéticos
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rijhwani, Vishal. "A biologically inspired optical flow system for motion detection and object identification." Diss., Columbia, Mo. : University of Missouri-Columbia, 2007. http://hdl.handle.net/10355/5064.

Повний текст джерела
Анотація:
Thesis (M.S.)--University of Missouri-Columbia, 2007.
The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on April 7, 2008) Includes bibliographical references.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

De, Angelis Annalisa. "Electro-optical pump-probe system suitable for the investigation of electroporated biological cells." Limoges, 2012. http://aurore.unilim.fr/theses/nxfile/default/46acb249-db11-4e5f-a29e-8bfcec5a48f4/blobholder:0/2012LIMO4016.pdf.

Повний текст джерела
Анотація:
A sufficiently strong electric field is able to change the cell membrane permeability, forming aqueous pores across it, hence the name electroporation, permitting the passage, otherwise forbidden, of ions and molecules. Since its efficient application in biotechnology and medicine (e. G. Electrochemotherapy), ms/μs-pulse-induced electroporation draws growing interest. Recently, the application of nanosecond pulses has showed electroperturbation on intracellular membranes, opening the way to subcellular manipulations. To date, the mechanisms beyond the electroporation are not still well known. The lack of ultra-rapid and flexible pulsers for cell stimulation on the one hand, and the rapid and subcellular-scale involved dynamics on the other hand, make the investigations complex. In this context, we have designed and realized a compact system providing both the electric pump and the optical probe for electroporation studies. The electric pump consists of a photocommutation-based pulse generator triggered by a sub-nanosecond microchip laser that also provides the optical excitation of the multiplex-CARS microscope used for cell imaging. The main innovation of this system is represented by the sub-nanosecond regime of the common laser source. This choice is justified by the need for synchronizing the nanosecond electrical stimulation with the optical detection. A detailed analysis in the time and frequency domains has been performed in order to verify the whole system efficiency and applicability to nano-electroporation investigations
Un champ électrique suffisamment intense induit des effets sur la membrane cellulaire, notamment la formation des pores qui permettent le passage , autrement interdit, de ions et molécules, d’où le nom électroporation. Grâce à son application à la biotechnologie et à la médecine (électrochimiothérapie), l’électroporation représente un phénomène de grand intérêt. Récemment, des impulsions de l’ordre de la nanoseconde ont étés appliquées, montrant des effets sur les membranes intracellulaires. Les mécanismes qui sont à la base de l’électroporation ne sont pas encore complètement compris. D’une part, il n’y a pas en commerce de générateurs ultra-rapides et flexibles pour une stimulation électrique adaptée. D’autre part, la détection de phénomènes à l’échelle subcellulaire et de dynamiques temporelles rapides résulte très difficile. En ce contexte, nous avons conçu et réalisé un système électro-optique pompe-sonde. Il se compose d’un système optoélectronique dédié à la génération d’impulsions ultracourtes et de forte intensité, et d’une source pour l’imagerie optique non linéaire basée sur la microspectroscopie multiplex-CARS. Les deux sources sont déclenchées par le même laser fonctionnant en régime sub-nanoseconde. Ce régime temporel permet une synchronisation efficace des deux systèmes, mais il nécessite d’une étude approfondie des effets optiques non linéaires qui induisent l’élargissement spectral du faisceau, indispensable pour l’imagerie multiplex-CARS. Une caractérisation dans le temps et en fréquence a été menée afin de vérifier les performances du system entier et son emploi aux études de nano-électroporation
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lee, Peter S. M. Massachusetts Institute of Technology. "Using optical tweezers, single molecule fluorescence and the ZIF268 protein-DNA system to probe mechanotransduction mechanisms." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/34490.

Повний текст джерела
Анотація:
Thesis (S.M.)--Massachusetts Institute of Technology, Biological Engineering Division, 2006.
Includes bibliographical references (p. 42-43).
Optical tweezers instruments use laser radiation pressure to trap microscopic dielectric beads. With the appropriate chemistry, such a bead can be attached to a single molecule as a handle, permitting the application of force on the single molecule. Measuring the force applied in real-time is dependent on detecting the bead's displacement from the trapping laser beam axis. Back-focal-plane detection provides a way of measuring the displacement, in two-dimensions, at nanometer or better resolution. The first part of this work will describe the design of a simple and inexpensive position sensing module customized for optical tweezers applications. Single molecule fluorescence is another powerful technique used to obtain microscopic details in biological systems. This technique can detect the arrival of a single molecule into a small volume of space or detect the conformational changes of a single molecule. Combining optical tweezers with single-molecule fluorescence so that one can apply forces on a single molecule while monitoring its effects via single molecule fluorescence provides an even more powerful experimental platform to perform such microscopic studies. Due to the enhanced photobleaching of fluorophores caused by the trapping laser, this combined technology has only been demonstrated under optimized conditions.
(cont.) The second part of this work will describe a straightforward and noninvasive method of eliminating this problem. The study of mechanotransduction in biological systems is critical to understanding the coupling between mechanical forces and biochemical reactions. Due to the recent advances in single molecule technology, it is now possible to probe such mechanisms at the single molecule level. The third and final part of this work will describe a basic mechanotransduction experiment using the well-studied ZIF268 protein-DNA system. An experimental assay and method of analysis will be outlined.
by Peter Lee.
S.M.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Biological optical systems"

1

Kao, Fu-Jen, and Peter Török. Optical imaging and microscopy: Techniques and advanced systems. Berlin: Springer, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mexican Meeting on Mathematical and Experimental Physics (2nd 2004 Mexico City, Mexico). Materials science and applied physics: 2nd Mexican Meeting on Mathematical and Experimental Physics, México City, México, 6-10 September, 2004. Edited by Hernández-Pozos J. L and Olayo-González R. Melville, N.Y: American Institute of Physics, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

e, Costa Fernando Almeida, ed. Advances in artificial life: 9th European conference, ECAL 2007, Lisbon, Portugal, September 10-14, 2007 ; proceedings. Berlin: Springer, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mathematical modelling in biomedicine: Optimal control of biomedical systems. Dordrecht, Holland: D. Reidel Pub. Co., 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Doncieux, Stéphane. From Animals to Animats 11: 11th International Conference on Simulation of Adaptive Behavior, SAB 2010, Paris - Clos Lucé, France, August 25-28, 2010. Proceedings. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Magnenat-Thalmann, Nadia. Modelling the Physiological Human: 3D Physiological Human Workshop, 3DPH 2009, Zermatt, Switzerland, November 29 – December 2, 2009. Proceedings. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

L, Teo K., ed. Optimal control of drug administration in cancer chemotherapy. Singapore: World Scientific, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Liu, Shu-Jun. Stochastic Averaging and Stochastic Extremum Seeking. London: Springer London, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Joan, Cabestany, ed. Bio-inspired systems: Computational and ambient intelligence : 10th International Work-Conference on Artificial Neural Networks, IWANN 2009, Salamanca, Spain, June 10-12, 2009 : proceedings. Berlin: Springer-Verlag, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hiroshi, Watanabe, and International Symposium on Dynamics of Macromolecules by Electric and Optical Methods. 1988 : Tokyo, Japan), eds. Dynamic behavior of macromolecules, colloids, liquid crystals and biological systems by optical and electro-optical methods. Tokyo: Hirokawa Publishing Company, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Biological optical systems"

1

Nagel, Hans-Hellmut. "Direct Estimation of Optical Flow and of Its Derivatives." In Artificial and Biological Vision Systems, 193–224. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77840-7_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mohanty, Subhrajit, and Usharani Subuddhi. "Fluorescence Lifetime: A Multifaceted Tool for Exploring Biological Systems." In Optical Spectroscopic and Microscopic Techniques, 77–111. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-4550-1_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wald, M. J., J. M. Considine, and K. T. Turner. "Indentation Measurements on Soft Materials Using Optical Surface Deformation Measurements." In Mechanics of Biological Systems and Materials, Volume 4, 41–51. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00777-9_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Fu, J., M. Haghighi-Abayneh, F. Pierron, and P. D. Ruiz. "Assessment of Corneal Deformation Using Optical Coherence Tomography and Digital Volume Correlation." In Mechanics of Biological Systems and Materials, Volume 5, 155–60. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4427-5_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Starman, La Vern, D. Torres, H. J. Hall, J. P. Walton, and R. A. Lake. "Post Processed Foundry MEMS Actuators for Large Deflection Optical Scanning." In Mechanics of Biological Systems & Micro-and Nanomechanics, Volume 4, 55–58. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95062-4_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Blondin, G., and J. J. Girerd. "Magnetic and Optical Phenomena in Biological Iron-Sulfur Mixed Valence Complexes and Their Chemical Models. A Theoretical Approach." In Mixed Valency Systems: Applications in Chemistry, Physics and Biology, 119–35. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3606-8_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Claude, D., and N. Nadjar. "Nonlinear Control under Constraints of a Biological System." In Computational Optimal Control, 291–301. Basel: Birkhäuser Basel, 1994. http://dx.doi.org/10.1007/978-3-0348-8497-6_23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lukins, P. B., and T. Oates. "STM of Light-Sensitive Biological Systems." In Optics and Lasers in Biomedicine and Culture, 269–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-56965-4_51.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Stelzer, Ernst H. K. "The Intermediate Optical System of Laser-Scanning Confocal Microscopes." In Handbook Of Biological Confocal Microscopy, 207–20. Boston, MA: Springer US, 2006. http://dx.doi.org/10.1007/978-0-387-45524-2_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Stelzer, Ernst H. K. "The Intermediate Optical System of Laser-Scanning Confocal Microscopes." In Handbook of Biological Confocal Microscopy, 139–54. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-5348-6_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Biological optical systems"

1

Pickwell-MacPherson, Emma, Yiwen Sun, and Edward P. J. Parrott. "Probing biological systems with terahertz spectroscopy." In SPIE Optical Engineering + Applications, edited by Manijeh Razeghi, Alexei N. Baranov, Henry O. Everitt, John M. Zavada, and Tariq Manzur. SPIE, 2012. http://dx.doi.org/10.1117/12.928185.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

FUJIMOTO, J. G., S. DE SILVESTRI, E. P. IPPEN, CARMEN A. PULIAFITO, R. MARGOLIS, and ALLAN R. OSEROFF. "Femtosecond optical ranging in biological systems." In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 1985. http://dx.doi.org/10.1364/cleo.1985.wl3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wolpert, H. D. "Drawing inspiration from biological optical systems." In SPIE NanoScience + Engineering, edited by Raul J. Martin-Palma and Akhlesh Lakhtakia. SPIE, 2009. http://dx.doi.org/10.1117/12.823851.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Choi, Seung Ho, and Young L. Kim. "Natural production of biological optical systems." In SPIE BiOS, edited by Luke P. Lee, John A. Rogers, and Seok Hyun A. Yun. SPIE, 2015. http://dx.doi.org/10.1117/12.2082642.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gariaev, Peter P., Viktor I. Chudin, Gennady G. Komissarov, Andrey A. Berezin, and Anatoly A. Vasiliev. "Holographic associative memory of biological systems." In Optical Memory and Neural Networks, edited by Andrei L. Mikaelian. SPIE, 1991. http://dx.doi.org/10.1117/12.50435.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bystrov, Vladimir, and Natalia Bystrova. "Bioferroelectricity and optical properties of biological systems." In SPIE Proceedings, edited by Andris Krumins, Donats Millers, Inta Muzikante, Andris Sternbergs, and Vismants Zauls. SPIE, 2003. http://dx.doi.org/10.1117/12.515713.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Townsend, Daniel J., Charles A. DiMarzio, Gary Laevsky, and Milind Rajadhyaksha. "Multimodal optical microscope for imaging biological systems." In Biomedical Optics 2005, edited by Jose-Angel Conchello, Carol J. Cogswell, and Tony Wilson. SPIE, 2005. http://dx.doi.org/10.1117/12.591341.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Valdez, Carson. "Integrated optical phased arrays for optical trapping." In Adaptive Optics and Wavefront Control for Biological Systems VII, edited by Thomas G. Bifano, Sylvain Gigan, and Na Ji. SPIE, 2021. http://dx.doi.org/10.1117/12.2582881.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

da Silva, Anabela, Pierre Stahl, Simon Rehn, I. Vanzetta, and Carole Deumié. "Depth selectivity in biological tissues by polarization analysis of backscattered light." In SPIE Optical Systems Design, edited by Gérard Berginc. SPIE, 2011. http://dx.doi.org/10.1117/12.898618.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Xie, Sunney. "New advances in optical microscopy of biological systems." In Laser Applications to Chemical and Environmental Analysis. Washington, D.C.: OSA, 2002. http://dx.doi.org/10.1364/lacea.2002.tha1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Biological optical systems"

1

VerMeulen, Holly, Jay Clausen, Ashley Mossell, Michael Morgan, Komi Messan, and Samuel Beal. Application of laser induced breakdown spectroscopy (LIBS) for environmental, chemical, and biological sensing. Engineer Research and Development Center (U.S.), June 2021. http://dx.doi.org/10.21079/11681/40986.

Повний текст джерела
Анотація:
The Army is interested in sensors capable of characterizing/monitoring the environment (battlefield or military training ranges) at proximal distances. Recently, we evaluated laser induced breakdown spectroscopy (LIBS) systems (hand-held, proximal, and bench top) for the characterization of metals (antimony, copper, lead, tungsten, and zinc) in soils obtained from military training ranges. We then compared the results to findings obtained with standard field and laboratory instrumentation for metals analysis -X-ray Fluorescence (XRF) and Inductively Couple Plasma- Optical Emission Spectroscopy (ICP-OES).
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Glushko, E. Ya, and A. N. Stepanyuk. Optopneumatic medium for precise indication of pressure over time inside the fluid flow. Астропринт, 2018. http://dx.doi.org/10.31812/123456789/2874.

Повний текст джерела
Анотація:
In this work, a gas-filled 1D elastic pneumatic photonic crystal is proposed as an optical indicator of pressure which can unite several pressure scales of magnitude. The indicator includes layered elastic platform, optical fibers and switching valves, all enclosed into a chamber. We have investigated the pneumatic photonic crystal bandgap structure and light reflection changes under external pressure. At the chosen parameters the device may cover the pressure interval (0, 10) bar with extremely high accuracy (1 μbar) for actual pressures existing inside the biofluid systems of biological organisms. The size of the indicator is close to 1 mm and may be decreased. The miniaturized optical devices considered may offer an opportunity to organize simultaneous and total scanning monitoring of biofluid pressure in different parts of the circulatory systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kadakia, Madhavi P. Optical Inverted Microscope Imaging System for Biological and Non-Biological Samples. Fort Belvoir, VA: Defense Technical Information Center, February 2009. http://dx.doi.org/10.21236/ada499962.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kularatne, Dhanushka N., Subhrajit Bhattacharya, and M. Ani Hsieh. Computing Energy Optimal Paths in Time-Varying Flows. Drexel University, 2016. http://dx.doi.org/10.17918/d8b66v.

Повний текст джерела
Анотація:
Autonomous marine vehicles (AMVs) are typically deployed for long periods of time in the ocean to monitor different physical, chemical, and biological processes. Given their limited energy budgets, it makes sense to consider motion plans that leverage the dynamics of the surrounding flow field so as to minimize energy usage for these vehicles. In this paper, we present two graph search based methods to compute energy optimal paths for AMVs in two-dimensional (2-D) time-varying flows. The novelty of the proposed algorithms lies in a unique discrete graph representation of the 3-D configuration space spanned by the spatio-temporal coordinates. This enables a more efficient traversal through the search space, as opposed to a full search of the spatio-temporal configuration space. Furthermore, the proposed strategy results in solutions that are closer to the global optimal when compared to greedy searches through the spatial coordinates alone. We demonstrate the proposed algorithms by computing optimal energy paths around the Channel Islands in the Santa Barbara bay using time-varying flow field forecasts generated by the Regional Ocean Model System. We verify the accuracy of the computed paths by comparing them with paths computed via an optimal control formulation.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Neeley, Aimee, Stace E. Beaulieu, Chris Proctor, Ivona Cetinić, Joe Futrelle, Inia Soto Ramos, Heidi M. Sosik, et al. Standards and practices for reporting plankton and other particle observations from images. Woods Hole Oceanographic Institution, July 2021. http://dx.doi.org/10.1575/1912/27377.

Повний текст джерела
Анотація:
This technical manual guides the user through the process of creating a data table for the submission of taxonomic and morphological information for plankton and other particles from images to a repository. Guidance is provided to produce documentation that should accompany the submission of plankton and other particle data to a repository, describes data collection and processing techniques, and outlines the creation of a data file. Field names include scientificName that represents the lowest level taxonomic classification (e.g., genus if not certain of species, family if not certain of genus) and scientificNameID, the unique identifier from a reference database such as the World Register of Marine Species or AlgaeBase. The data table described here includes the field names associatedMedia, scientificName/ scientificNameID for both automated and manual identification, biovolume, area_cross_section, length_representation and width_representation. Additional steps that instruct the user on how to format their data for a submission to the Ocean Biodiversity Information System (OBIS) are also included. Examples of documentation and data files are provided for the user to follow. The documentation requirements and data table format are approved by both NASA’s SeaWiFS Bio-optical Archive and Storage System (SeaBASS) and the National Science Foundation’s Biological and Chemical Oceanography Data Management Office (BCO-DMO).
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dahl, Geoffrey E., Sameer Mabjeesh, Thomas B. McFadden, and Avi Shamay. Environmental manipulation during the dry period of ruminants: strategies to enhance subsequent lactation. United States Department of Agriculture, February 2006. http://dx.doi.org/10.32747/2006.7586544.bard.

Повний текст джерела
Анотація:
The project resulted from earlier observations that environmental factors, especially photoperiod and temperature, had profound effects on milk yield in dairy cattle during lactation. More recently we had determined that photoperiod manipulation during the dry period altered milk yield in the next lactation, and this was associated with shifts in circulating concentrations of prolactin; specifically exposure to short days during the dry period decreases prolactin but increases milk yield. Because prolactin is also affected by temperature, with heat stress causing an increase in prolactin similar to that of long day exposure, we focused our efforts on determining prolactin signaling provides a common pathway for generation of environmental effects on mammary growth, development and subsequent function during the dry period of dairy ruminants. Over the project period we made significant progress toward testing our hypotheses that (I): In cows, there is a discrete duration of time during the dry period in which exposure to short days will result in optimal enhancement of mammary development and milk yield in the following lactation, and that this effect is mediated through demonstrable changes in mammary gland development, prolactin signaling, and mammary gene expression; and (II): Modulation of photoperiod and temperature during the dry period will affect milk yield in goats in the subsequent lactation via shifts in nutrient and endocrine partitioning, and mammary gene expression, during the dry period and into lactation. Cows exposed to short days for only the final 21 days of the dry period did not produce more milk that those on long day or natural photoperiod when dry. However, cows on short days for the entire 60 days dry did produce more milk than the other 3 groups. This indicates that there is a duration effect of short day exposure on subsequent milk yield. Results of the second study in cows indicate that mammary growth increases differentially during the dry period under long vs. short days, and that short days drive more extensive growth which is associated with altered prolactin signaling via decreases in an suppressors of cytokine signaling that represent an inhibitory pathway to mammary growth. Evidence from the studies in Israel confirms that goats respond to short days during the dry period in a similar manner to cows. In addition, heat stress effects on during the dry period can be limited by exposure to short days. Here again, shifts in prolactin signaling, along with changes in IGF-I secretion, are associated with the observed changes in mammary function in goats. These results have a number of biological and practical implications. For dairy producers, it is clear that we can recommend that cows and goats should be on reduced light exposure during the dry period, and further, cows and goats should be cooled to avoid heat stress during that time. Environmental influences on mammary growth are apparent during the dry period, and those effects have persistent impact in the subsequent lactation. Prolactin signaling is a consistent mechanism whereby extended light exposure and heat stress may depress mammary growth and development during the dry period. Thus, the prolactin signaling system offers an opportunity for further manipulation to improve production efficiency in dairy ruminants.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії