Добірка наукової літератури з теми "Biological and Biomedical Applications"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Biological and Biomedical Applications".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Biological and Biomedical Applications"

1

Patching, Simon. "NMR-Active Nuclei for Biological and Biomedical Applications." Journal of Diagnostic Imaging in Therapy 3, no. 1 (June 18, 2016): 7–48. http://dx.doi.org/10.17229/jdit.2016-0618-021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chen, Yu‐Cheng, and Xudong Fan. "Biological Lasers for Biomedical Applications." Advanced Optical Materials 7, no. 17 (June 11, 2019): 1900377. http://dx.doi.org/10.1002/adom.201900377.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kaushik, Nagendra, Neha Kaushik, Nguyen Linh, Bhagirath Ghimire, Anchalee Pengkit, Jirapong Sornsakdanuphap, Su-Jae Lee, and Eun Choi. "Plasma and Nanomaterials: Fabrication and Biomedical Applications." Nanomaterials 9, no. 1 (January 14, 2019): 98. http://dx.doi.org/10.3390/nano9010098.

Повний текст джерела
Анотація:
Application of plasma medicine has been actively explored during last several years. Treating every type of cancer remains a difficult task for medical personnel due to the wide variety of cancer cell selectivity. Research in advanced plasma physics has led to the development of different types of non-thermal plasma devices, such as plasma jets, and dielectric barrier discharges. Non-thermal plasma generates many charged particles and reactive species when brought into contact with biological samples. The main constituents include reactive nitrogen species, reactive oxygen species, and plasma ultra-violets. These species can be applied to synthesize biologically important nanomaterials or can be used with nanomaterials for various kinds of biomedical applications to improve human health. This review reports recent updates on plasma-based synthesis of biologically important nanomaterials and synergy of plasma with nanomaterials for various kind of biological applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Khanmohammadi Chenab, Karim, Beheshteh Sohrabi, and Atyeh Rahmanzadeh. "Superhydrophobicity: advanced biological and biomedical applications." Biomaterials Science 7, no. 8 (2019): 3110–37. http://dx.doi.org/10.1039/c9bm00558g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bruckmann, Franciele da Silva, Franciane Batista Nunes, Theodoro da Rosa Salles, Camila Franco, Francine Carla Cadoná, and Cristiano Rodrigo Bohn Rhoden. "Biological Applications of Silica-Based Nanoparticles." Magnetochemistry 8, no. 10 (October 18, 2022): 131. http://dx.doi.org/10.3390/magnetochemistry8100131.

Повний текст джерела
Анотація:
Silica nanoparticles have been widely explored in biomedical applications, mainly related to drug delivery and cancer treatment. These nanoparticles have excellent properties, high biocompatibility, chemical and thermal stability, and ease of functionalization. Moreover, silica is used to coat magnetic nanoparticles protecting against acid leaching and aggregation as well as increasing cytocompatibility. This review reports the recent advances of silica-based magnetic nanoparticles focusing on drug delivery, drug target systems, and their use in magnetohyperthermia and magnetic resonance imaging. Notwithstanding, the application in other biomedical fields is also reported and discussed. Finally, this work provides an overview of the challenges and perspectives related to the use of silica-based magnetic nanoparticles in the biomedical field.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wang, Jiali, Guo Zhao, Liya Feng, and Shaowen Chen. "Metallic Nanomaterials with Biomedical Applications." Metals 12, no. 12 (December 12, 2022): 2133. http://dx.doi.org/10.3390/met12122133.

Повний текст джерела
Анотація:
Metallic nanomaterials have attracted extensive attention in various fields due to their photocatalytic, photosensitive, thermal conducting, electrical conducting and semiconducting properties. Among all these fields, metallic nanomaterials are of particular importance in biomedical sensing for the detection of different analytes, such as proteins, toxins, metal ions, nucleotides, anions and saccharides. However, many problems remain to be solved, such as the synthesis method and modification of target metallic nanoparticles, inadequate sensitivity and stability in biomedical sensing and the biological toxicity brought by metallic nanomaterials. Thus, this Special Issue aims to collect research or review articles focused on electrochemical biosensing, such as metallic nanomaterial-based electrochemical sensors and biosensors, metallic oxide-modified electrodes, biological sensing based on metallic nanomaterials, metallic nanomaterial-based biological sensing devices and chemometrics for metallic nanomaterial-based biological sensing. Meanwhile, studies related to the synthesis and characterization of metallic nanomaterials are also welcome, and both experimental and theoretical studies are welcome for contribution as well.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lodhi, Gaurav, Yon-Suk Kim, Jin-Woo Hwang, Se-Kwon Kim, You-Jin Jeon, Jae-Young Je, Chang-Bum Ahn, Sang-Ho Moon, Byong-Tae Jeon, and Pyo-Jam Park. "Chitooligosaccharide and Its Derivatives: Preparation and Biological Applications." BioMed Research International 2014 (2014): 1–13. http://dx.doi.org/10.1155/2014/654913.

Повний текст джерела
Анотація:
Chitin is a natural polysaccharide of major importance. This biopolymer is synthesized by an enormous number of living organisms; considering the amount of chitin produced annually in the world, it is the most abundant polymer after cellulose. The most important derivative of chitin is chitosan, obtained by partial deacetylation of chitin under alkaline conditions or by enzymatic hydrolysis. Chitin and chitosan are known to have important functional activities but poor solubility makes them difficult to use in food and biomedicinal applications. Chitooligosaccharides (COS) are the degraded products of chitosan or chitin prepared by enzymatic or chemical hydrolysis of chitosan. The greater solubility and low viscosity of COS have attracted the interest of many researchers to utilize COS and their derivatives for various biomedical applications. In light of the recent interest in the biomedical applications of chitin, chitosan, and their derivatives, this review focuses on the preparation and biological activities of chitin, chitosan, COS, and their derivatives.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Papi, Massimiliano. "Graphene-Based Materials: Biological and Biomedical Applications." International Journal of Molecular Sciences 22, no. 2 (January 12, 2021): 672. http://dx.doi.org/10.3390/ijms22020672.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yang, Wenrong, Pall Thordarson, J. Justin Gooding, Simon P. Ringer, and Filip Braet. "Carbon nanotubes for biological and biomedical applications." Nanotechnology 18, no. 41 (September 12, 2007): 412001. http://dx.doi.org/10.1088/0957-4484/18/41/412001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Shin, C. S., C. R. Dunnam, P. P. Borbat, B. Dzikovski, E. D. Barth, H. J. Halpern, and J. H. Freed. "ESR Microscopy for Biological and Biomedical Applications." Nanoscience and Nanotechnology Letters 3, no. 4 (August 1, 2011): 561–67. http://dx.doi.org/10.1166/nnl.2011.1206.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Biological and Biomedical Applications"

1

Beyeler, Felix Martin. "Capacitive micro force sensing for biological and biomedical applications /." Zürich : ETH, 2008. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=18100.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pareta, Rajesh. "Electrohydrodynamic processing and forming of biological systems for biomedical applications." Thesis, Queen Mary, University of London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.430795.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tsafnat, Guy Computer Science &amp Engineering Faculty of Engineering UNSW. "Abstraction and representation of fields and their applications in biomedical modelling." Awarded by:University of New South Wales. School of Computer Science and Engineering, 2006. http://handle.unsw.edu.au/1959.4/24207.

Повний текст джерела
Анотація:
Computer models are used extensively to investigate biological systems. Many of these systems can be described in terms of fields???spatially- and temporally- varying scalar, vector and tensor properties defined over domains. For example, the spatial variation of muscle fibers is a vector field, the spatial and temporal variation in temperature of an organ is a scalar field, and the distribution of stress across muscle tissue is a tensor field. In this thesis I present my research on how to represent fields in a format that allows researchers to store and distribute them independently of models and to investigate and manipulate them intuitively. I also demonstrate how the work can be applied to solving and analysing biomedical models. To represent fields I created a two-layer system. One layer, called the Field Representation Language (FRL), represents fields by storing numeric, analytic and meta data for storage and distribution. The focus of this layer is efficiency rather than usability. The second layer, called the Abstract Field Layer (AFL), provides an abstraction of fields so that they are easier for researchers to work with. This layer also provides common operations for manipulating fields as well as transparent conversion to and from FRL representations. The applications that I used to demonstrate the use of AFL and FRL are (a) a fields visualisation toolkit, (b) integration of models from different scales and solvers, and (c) a solver that uses AFL internally. The layered architecture facilitated the development of tools that use fields. A similar architecture may also prove useful for representations of other modelled entities.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ambardar, Sharad. "Combining Thermo-plasmonics with Microfluidics for Biological Applications." Scholar Commons, 2018. https://scholarcommons.usf.edu/etd/7600.

Повний текст джерела
Анотація:
In this project we, for the first time, integrated microfluidics with thermo-plasmonics. While microfluidics is a popular platform allowing experiments with small volumes of fluid, thermo-plasmonics can be used for powerful particle manipulation including capturing, mixing, filtering and projection. Combined, these two techniques give us an opportunity to work with numerous complex fluids containing particles, cells, and micro-beads. Here we designed, developed and tested several devices demonstrating various aspects of this exciting hybrid technology. This required use of soft lithography, metal deposition, 3D printing, oxygen plasma treatment and several other surface modification techniques. Additional challenges were in the fabrication of a multi-layer chip with several types of surfaces binding at several interfaces. The detailed design optimization was conducted, and many characteristics of the microfluidic channel were varied. After that, optimal flow patterns were determined using high-quality syringe pumps. An experiment with the simultaneous flow of two colored solutions through the same microfluidic chip demonstrated controlled laminar flow with minimal mixing. Next, thermo-plasmonic experiments were conducted in optimized micro-fluidic channels. Efficient capturing of microbeads were demonstrated using low power green laser with a wavelength 532 nm. In future, these experiments have many important applications including separation of bacteria from blood on a microfluidic chip. This might help with treatment of sepsis, analysis of blood pathogens and better prescription of antibiotics.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rieter, William J. Lin Wenbin. "Development of inorganic-organic hybrid nanomaterials for biological and biomedical applications." Chapel Hill, N.C. : University of North Carolina at Chapel Hill, 2008. http://dc.lib.unc.edu/u?/etd,1979.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--University of North Carolina at Chapel Hill, 2008.
Title from electronic title page (viewed Dec. 11, 2008). "... in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry." Discipline: Chemistry; Department/School: Chemistry.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Register, Joseph. "SiC For Advanced Biological Applications." Scholar Commons, 2014. https://scholarcommons.usf.edu/etd/5113.

Повний текст джерела
Анотація:
Silicon carbide (SiC) has been used for centuries as an industrial abrasive and has been actively researched since the 1960's as a robust material for power electronic applications. Despite being the first semiconductor to emit blue light in 1907, it has only recently been discovered that the material has crucial properties ideal for long-term, implantable biomedical devices. This is due to the fact that the material offers superior biocompatibility and hemocompatibility while providing rigid mechanical and chemical stability. In addition, the material is a wide-bandgap semiconductor that can be used for optoelectronics, light delivery, and optical sensors, which is the focus of this dissertation research. In this work, we build on past accomplishments of the USF-SiC Group to develop active SiC-based Brain Machine Interfaces (BMIs) and develop techniques for coating other biomaterials with amorphous SiC (a-SiC) to improve device longevity. The work is undertaken to move the state of the art in in vivo biomedical devices towards long term functionality. In this document we also explore the use of SiC in other bio photonics work, as demonstrated by the creation of the first reported photosensitive capacitor in semi-insulating 4H-SiC, thus providing the mechanism for a simple, biocompatible, UV sensor that may be used for biomedical applications. Amorphous silicon carbide coatings are extremely useful in developing agile biomaterial strategies. We show that by improving current a-SiC technology we provide a way that SiC biomaterials can coexist with other materials as a biocompatible encapsulation strategy. We present the development of a plasma enhanced chemical vapor deposition (PECVD) a-SIC process and include material characterization analysis. The process has shown good adhesion to a wide variety of substrates and cell viability tests confirm that it is a highly biocompatible coating whereby it passed the strict ISO 10993 standard tests for biomaterials and biodevices. In related work, we present a 64-channel microelectrode array (MEA) fabricated on a cubic 3C-SiC polytype substrate as a preliminary step in making more complex neurological devices. The electrode-electrolyte system electrical impedance is studied, and the device is tested against the model. The system is wire-bonded and packaged to provide a full neural test bed that will be used in future work to compare substrate materials during long-term testing. Expanding on this new MEA technology, we then use 3C-SiC to develop an active, implantable, BMI interface. New processes were developed for the dry etching of SiC neural probes. The developed 7 mm long implantable devices were designed to offer four channels of single-unit electrical recording with concurrent optical stimulation, a combination of device properties that is indeed at the state-of-the-art in neural probes at this time. Finally, work in SiC photocapacitance is presented as it relates to radio-frequency tuning circuits as well as bio photonics. A planar geometry UV tunable photocapacitor is fabricated to demonstrate the effect of below-bandgap optical tuning. The device can be used in a number of applications ranging from fluorescence sensing to the tuning of antennas for low-power communications. While technology exists for a wide variety of in vivo interfaces and sensors, few active devices last in the implantable environment for more than a few months. If these devices are going to reach a long-term implant capability, use of better materials and processing strategies will need to be developed. Potential devices and strategies for harnessing the SiC materials family for this very important application are reviewed and presented in this dissertation to serve as a possible roadmap to the development of advanced SiC-based biomedical devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jia, Xinghua. "Physical Origin of Biological Propulsion and Inspiration for Underwater Robotic Applications." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1483681387845279.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ferrell, Nicholas Jay. "Polymer Microelectromechanical Systems: Fabrication and Applications in Biology and Biological Force Measurements." Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1204824627.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rajaraman, Swaminathan. "Silicon MEMS-Based Development and Characterization of Batch Fabricated Microneedles for Biomedical Applications." University of Cincinnati / OhioLINK, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=ucin978636001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Choi, Sungmoon. "Fluorescent noble metal nanodots for biological applications." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37195.

Повний текст джерела
Анотація:
Commercial organic dyes are widely used for cellular staining due to their small size, high brightness, and chemical functionality. However, their blinking and photobleaching are not ideal for studying dynamics inside live cells. An improvement over organics and much larger quantum dots, silver nanodots (Ag NDs) exhibit low cytotoxicity and excellent brightness and photostability, while retaining small size. We have utilized ssDNA hairpin structures to encapsulate Ag NDs with excellent spectral purity, high concentration, and good chemical and photophysical stability in a variety of biological media. Multi-color staining of fixed and live cells has been achieved, suggesting the promise of Ag NDs as good fluorophores for intracellular imaging. The great brightness and photostability of Ag nanodots indicate that they might be outstanding imaging agents for in vivo studies when encapsulated in delivery vehicles. In addition, Ag NDs can be optically modulated, resulting in increased sensitivity within high backgrounds. These good characteristics are combined with delivery vehicles such as PLGA and nanogels. After encapsulation, Ag nanodots still retain their good photophysical properties and modulation. It might be useful for in vivo applications in the near future
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Biological and Biomedical Applications"

1

Liu, Bin Liu, ed. Conjugated Polymers for Biological and Biomedical Applications. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527342747.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Barbucci, Rolando. Hydrogels: Biological Properties and Applications. Milano: Springer-Verlag Milan, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

service), SpringerLink (Online, ed. Supramolecular Chemistry: From Biological Inspiration to Biomedical Applications. Dordrecht: Springer Science+Business Media B.V., 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Datta, Ashim K. An introduction to modeling of transport processes: Applications to biomedical systems. Cambridge: Cambridge University Press, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Galdi, Giovanni P., Tomáš Bodnár, and Šárka Nečasová. Fluid-structure interaction and biomedical applications. Basel: Birkhäuser, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Vineet, Rakesh, ed. An introduction to modeling of transport processes: Applications to biomedical systems. Cambridge, UK: Cambridge University Press, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Numerical methods, with applications in the biomedical sciences. Chichester: Ellis Horwood, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dutta, Mitra, and Michael A. Stroscio. Biological nanostructures and applications of nanostructures in biology: Electrical, mechanical, and optical properties. New York: Kluwer Academic/Plenum Publishers, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

R, Diller Kenneth, and SpringerLink (Online service), eds. Biotransport: Principles and Applications. New York, NY: Springer Science+Business Media, LLC, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Modeling and simulation in biomedical engineering: Applications in cardiorespiratory physiology. New York: McGraw-Hill, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Biological and Biomedical Applications"

1

Maximilien, Jacqueline, Selim Beyazit, Claire Rossi, Karsten Haupt, and Bernadette Tse Sum Bui. "Nanoparticles in Biomedical Applications." In Measuring Biological Impacts of Nanomaterials, 177–210. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/11663_2015_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Weber, P. L. "Biomedical applications and biological systems." In Handbook of Capillary Electrophoresis Applications, 411–24. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-1561-9_29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Stoimenov, Peter K., and Kenneth J. Klabunde. "Nanotechnology in Biological Agent Decontamination." In Nanofabrication Towards Biomedical Applications, 365–72. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603476.ch14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Falk, Magnus, Sergey Shleev, Claudia W. Narváez Villarrubia, Sofia Babanova, and Plamen Atanassov. "Biological Fuel Cells for Biomedical Applications." In Enzymatic Fuel Cells, 422–50. Hoboken, New Jersey: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118869796.ch19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Apiletti, Daniele, Giulia Bruno, Elisa Ficarra, and Elena Baralis. "Extraction of Constraints from Biological Data." In Biomedical Data and Applications, 169–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02193-0_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ceylan, H., A. B. Tekinay, and M. O. Guler. "Mussel‐inspired Adhesive Interfaces for Biomedical Applications." In Biological and Biomimetic Adhesives, 103–16. Cambridge: Royal Society of Chemistry, 2013. http://dx.doi.org/10.1039/9781849737135-00103.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gillies, Elizabeth R. "Glycodendrimers and their Biological Applications." In Engineered Carbohydrate-Based Materials for Biomedical Applications, 261–305. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470944349.ch7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Baldes, F. "Biological Applications of Light Forces." In Biomedical Optical Instrumentation and Laser-Assisted Biotechnology, 391–99. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1750-7_32.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Patel, Himanshu K. "Applications of Machine Olfaction." In Biological and Medical Physics, Biomedical Engineering, 207–41. New Delhi: Springer India, 2013. http://dx.doi.org/10.1007/978-81-322-1548-6_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Niemz, Markolf H. "Medical Applications of Lasers." In Biological and Medical Physics, Biomedical Engineering, 151–247. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-72192-5_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Biological and Biomedical Applications"

1

Moiseev, Lev, Charles R. Cantor, Anna K. Swan, Bennett B. Goldberg, and M. S. ›nl’. "Biological applications of spectral self-interference." In Biomedical Optics 2004, edited by Alexander N. Cartwright. SPIE, 2004. http://dx.doi.org/10.1117/12.530441.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Volkov, Yuri P., and Vladimir A. Tsykanov. "Scanning tunneling microscope for biological applications." In Europto Biomedical Optics '93, edited by Adolf F. Fercher, Aaron Lewis, Halina Podbielska, Herbert Schneckenburger, and Tony Wilson. SPIE, 1994. http://dx.doi.org/10.1117/12.167437.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Vastarouchas, Costas, and Costas Psychalinos. "Biomedical and biological applications of fractional-order circuits." In 2017 Panhellenic Conference on Electronics and Telecommunications (PACET). IEEE, 2017. http://dx.doi.org/10.1109/pacet.2017.8259963.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tréguer-Delapierre, M., F. Rocco, T. Cardinal, S. Mornet, S. Vasseur, and E. Duguet. "Tailor-made nanomaterials for biological and medical applications." In Biomedical Optics 2006, edited by Marek Osinski, Kenji Yamamoto, and Thomas M. Jovin. SPIE, 2006. http://dx.doi.org/10.1117/12.660517.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Read, Ian A., and Victor David. "New developments in ultrafast lasers for biological applications." In Biomedical Optics 2006, edited by Ammasi Periasamy and Peter T. C. So. SPIE, 2006. http://dx.doi.org/10.1117/12.640978.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ermilov, Sergey A., and Bahman Anvari. "Trapping-force calibration in biological applications of optical tweezers." In Biomedical Optics 2003, edited by Dan V. Nicolau, Joerg Enderlein, Robert C. Leif, and Daniel L. Farkas. SPIE, 2003. http://dx.doi.org/10.1117/12.477849.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cao, J., I. Samad, and T. A. Coombs. "Magnetically actuated micro-manipulators for biological and biomedical applications." In 2008 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems. IEEE, 2008. http://dx.doi.org/10.1109/nems.2008.4484427.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gendreau, Michael. "Biological And Biomedical Applications Of Fourier Transform Infrared Spectroscopy." In 1985 International Conference on Fourier and Computerized Infrared Spectroscopy, edited by David G. Cameron and Jeannette G. Grasselli. SPIE, 1985. http://dx.doi.org/10.1117/12.970709.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Miskov-Zivnov, Natasa. "Session details: CMOS sensors for biomedical and biological applications." In DAC '11: The 48th Annual Design Automation Conference 2011. New York, NY, USA: ACM, 2011. http://dx.doi.org/10.1145/3256177.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kim, Taeyang, Zheng Cui, Yong Zhu, and Xiaoning Jiang. "Flexible piezo-composite ultrasound transducers for biomedical applications (Conference Presentation)." In Health Monitoring of Structural and Biological Systems XII, edited by Tribikram Kundu. SPIE, 2018. http://dx.doi.org/10.1117/12.2295939.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Biological and Biomedical Applications"

1

Gao, Jun. Biomedical Applications of Microfluidic Technology. Office of Scientific and Technical Information (OSTI), March 2014. http://dx.doi.org/10.2172/1126675.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zimmerman, J. BMDO Technologies for Biomedical Applications. Fort Belvoir, VA: Defense Technical Information Center, December 1997. http://dx.doi.org/10.21236/ada338549.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kuehl, Michael, Susan Marie Brozik, David Michael Rogers, Susan L. Rempe, Vinay V. Abhyankar, Anson V. Hatch, Shawn M. Dirk, et al. Biotechnology development for biomedical applications. Office of Scientific and Technical Information (OSTI), November 2010. http://dx.doi.org/10.2172/1011213.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Stepanyuk, Alla V., Liudmyla P. Mironets, Tetiana M. Olendr, Ivan M. Tsidylo, and Oksana B. Stoliar. Methodology of using mobile Internet devices in the process of biology school course studying. [б. в.], July 2020. http://dx.doi.org/10.31812/123456789/3887.

Повний текст джерела
Анотація:
This paper considers the problem of using mobile Internet devices in the process of biology studying in secondary schools. It has been examined how well the scientific problem is developed in pedagogical theory and educational practice. The methodology of using mobile Internet devices in the process of biology studying in a basic school, which involves the use of the Play Market server applications, Smart technologies and a website, has been created. After the analyses of the Play Market server content, there have been found several free of charge applications, which can be used while studying biology in a basic school. Among them are the following: Anatomy 4D, Animal 4D+, Augmented Reality Dinosaurs – my ARgalaxy, BioInc – Biomedical Plague, Plan+Net. Their choice is caused by the specifics of the object of biological cognition (life in all its manifestations) and the concept of bio(eco)centrism, which recognizes the life of any living system as the highest value. The paper suggests the original approach for homework checking, which involves besides computer control of students’ learning outcomes, the use of Miracast wireless technology. This demands the owning of a smartphone, a multimedia projector, and a Google Chromecast type adapter. The methodology of conducting a mobile front-line survey at the lesson on the learned or current material in biology in the test form, with the help of the free Plickers application, has been presented. The expediency of using the website builder Ucoz.ua for creation of a training website in biology has been substantiated. The methodology of organizing the educational process in biology in a basic school using the training website has been developed. Recommendations for using a biology training website have been summarized. According to the results of the forming experiment, the effectiveness of the proposed methodology of using mobile Internet devices in the process of biology studying in a basic school has been substantiated.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chait, Richard, and Julius Chang. Roundtable on Biomedical Engineering Materials and Applications. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada396606.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Felberg, Lisa E. Computational simulations and methods for biomedical applications. Office of Scientific and Technical Information (OSTI), July 2017. http://dx.doi.org/10.2172/1488415.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chait, Richard, Teri Thorowgood, and Toni Marechaux. Roundtable on Biomedical Engineering Materials and Applications. Fort Belvoir, VA: Defense Technical Information Center, September 2002. http://dx.doi.org/10.21236/ada407761.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Radparvar, M. Imaging systems for biomedical applications. Final report. Office of Scientific and Technical Information (OSTI), June 1995. http://dx.doi.org/10.2172/192410.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chait, Richard. Roundtable on Biomedical Engineering Materials and Applications. Fort Belvoir, VA: Defense Technical Information Center, September 2000. http://dx.doi.org/10.21236/ada391253.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Peer, Akshit. Periodically patterned structures for nanoplasmonic and biomedical applications. Office of Scientific and Technical Information (OSTI), August 2017. http://dx.doi.org/10.2172/1505186.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії