Добірка наукової літератури з теми "Biochemical markers"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Biochemical markers".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Biochemical markers"

1

Ahmed, Mohamed H. "Biochemical Markers." American Journal of Clinical Pathology 127, no. 1 (January 2007): 20–22. http://dx.doi.org/10.1309/jxwum661t8vt1etx.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rothstein, Jeffrey. "Biochemical markers: Pro." Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders 3, sup1 (September 2002): S81. http://dx.doi.org/10.1080/146608202320374381.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mitsumoto, Hiroshi. "Biochemical markers: Con." Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders 3, sup1 (September 2002): S83. http://dx.doi.org/10.1080/146608202320374390.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Strong, Michael J. "Biochemical markers: Summary." Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders 3, sup1 (September 2002): S85—S90. http://dx.doi.org/10.1080/146608202320374408.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sandberg, Dr K. "3. Biochemical markers." Animal Genetics 20, no. 1 (April 24, 2009): 56–83. http://dx.doi.org/10.1111/j.1365-2052.1989.tb01910.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Seishima, Mitsuru, Makiko Suzuki, and Satoshi Maeda. "Atherosclerosis and biochemical markers." SEIBUTSU BUTSURI KAGAKU 48, no. 4 (2004): 143–46. http://dx.doi.org/10.2198/sbk.48.143.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Selroos, Olof B. N. "Biochemical Markers in Sarcoidosis." CRC Critical Reviews in Clinical Laboratory Sciences 24, no. 3 (January 1986): 185–216. http://dx.doi.org/10.3109/10408368609110273.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Đerić, Mirjana, Sunčica Kojić-Damjanov, Velibor Čabarkapa, and Nevena Eremić. "Biochemical Markers of Atherosclerosis." Journal of Medical Biochemistry 27, no. 2 (January 1, 2008): 148–53. http://dx.doi.org/10.2478/v10011-008-0008-1.

Повний текст джерела
Анотація:
Biochemical Markers of AtherosclerosisThis paper is a brief review of some lipid parameters and serum markers of inflammation in a view of their predictive relevance for the atherosclerotic disease. A discourse on the importance of measuring different lipids and lipoproteins, concentration of LDL particles and apolipoprotein levels is still underway. Also, the recommendations for apolipoprotein (a), phenotypization and other lipid markers have not yet been established. In recent years the recommendations imply simultaneous measuring of multiple markers and calculating the lipid index values such as lipid tetrad index (LTI), lipid pentad index (LPI) and atherogenic index of plasma (AIP). Several circulating markers of inflammation such as C-reactive protein, serum fibrinogen and elevated leukocyte number, are consistently associated with atherosclerosis. In spite of a lack of evidence on measuring the C-reactive protein in a wide population, the guidelines for its application in diagnostics and therapy of coronary heart disease were developed. Some proinflammatory cytokines, adhesion molecules and markers of leukocyte activation are promising markers, requiring, however, more detailed prospective evaluation. The question to be elucidated is if these inflammatory markers are directly involved in the pathogenic process.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kanis, John. "Biochemical markers in osteoporosis." Scandinavian Journal of Clinical and Laboratory Investigation 57 (1997): 6–11. http://dx.doi.org/10.3109/00365519709168303.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ratcliffe, Anthony, and Markus J. Seibel. "Biochemical markers of osteoarthritis." Current Opinion in Rheumatology 2, no. 5 (October 1990): 770–76. http://dx.doi.org/10.1097/00002281-199002050-00014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Biochemical markers"

1

Allen, Marcus Christopher. "Biochemical markers of pulmonary oxygen toxicity." Thesis, University of Aberdeen, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.277226.

Повний текст джерела
Анотація:
This study has investigated potential biochemical markers of pulmonary oxygen toxicity (POT). Toxicity was investigated in male Sprague Dawley rats exposed to oxygen partial pressures ranging from 0.21-2.5 bars. It is known that prolonged exposure to 1 bar of oxygen damages pulmonary endothelial cells and so the biochemical functions of these cells have been studied. Control isolated perfused rat lungs were able to clear and/or metabolise a wide range of substances including 5-HT, PGE2, bradykinin, and angiotensin 1, all endothelial cell functions. As expected 5-HT clearance was compromised in isolated perfused rat lung obtained from rats exposed to 1 bar of oxygen, confirming endothelial cell damage. However the clearance of 5-HT by lungs obtained from rats exposed to 2.5 bars was normal, implying that the site of toxicity is different at these partial pressures. In addition enhancement of toxicity by vitamin E deficiency was not associated with endothelial cell damage at 2.5 bar. At the molecular level oxygen free radicals are thought to be the causative agents of POT. The radicals are reputed to damage lipids, but a process of peroxidation. One of the lipid fragment products of ω6 polyunsaturated fatty acids is n-pentane, a compound which is excreted on the breath. Monitoring of this compound during exposure to 0.21, 1.0, 2.5 bars of oxygen even in vitamin E deficient rats did not show a rise in pentane expiration in response to oxygen exposure. This implies that peroxidation of ω6 polyunsaturated fatty acids did not take place, although other lipids may have been peroxidised. In conclusion the site of POT may depend on the partial pressure of oxygen. Endothelial cell damage is probably absent during exposure to 2.5 bars of oxygen. In addition n-pentane monitoring, a reputed marker of POT, failed to reveal lipid perodixation during exposure to hyperoxia.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Israngkun, na Ayudthaya Porn Paul. "Potential biochemical markers for infantile autism /." The Ohio State University, 1986. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487322984315317.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Maissa, Cecile A. "Biochemical markers and contact lens wear." Thesis, Aston University, 1999. http://publications.aston.ac.uk/9627/.

Повний текст джерела
Анотація:
The project objective was to develop a reliable selection procedure to match contact lens materials with individual wearers by the identification of a biochemical marker for assessment of in-eye performance of contact lenses. There is a need for such a procedure as one of the main reasons for contact lens wearers ceasing wearing contact lenses is poor end of day comfort i.e. the lenses become intolerable to the wearer as the day progresses. The selection of an optimal material for individual wearers has the potential benefit to reduce drop Qut, hence increasing the overall contact lens population, and to improve contact lens comfort for established wearers. Using novel analytical methods and statistical techniques, we were able to investigate the interactions between the composition of the tear film and of the biofilm deposited on the contact lenses and contact lens performance. The investigations were limited to studying the lipid components of the tear film; the lipid layer, which plays a key role in preventing evaporation and stabilising the tear film, has been reported to be significantly thinner and of different mixing characteristics during contact lens wear. Different lipid families were found to influence symptomatology, in vivo tear film structure and stability as well as ocular integrity. Whereas the symptomatology was affected by both the tear film lipid composition and the nature of the lipid deposition, the structure of the tear film and its stability were mainly influenced by the tear film lipid composition. The ocular integrity also appeared to be influenced by the nature of the lipid deposition. Potential markers within the lipid species have been identified and could be applied as follows: When required in order to identify a problematic wearer or to match the contact lens material to the contact lens wearer, tear samples collected by the clinician could be dispatched to an analytical laboratory where lipid analysis could be carried out by HPLC. A colorimetric kit based on the lipid markers could also be developed and used by clinician directly in the practice; such a kit would involve tear sampling and classification according to the colour into "Problem", "Border line" and "Good" contact lens wearers groups. A test kit would also have wider scope for marketing in other areas such as general dry-eye pathology.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Branca, Francesco. "Biochemical markers of skeletal growth in children." Thesis, University of Aberdeen, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282683.

Повний текст джерела
Анотація:
This work focused on the application to growth studies of the assay for pyridinium crosslinks in urine. The study showed the existence of a nyctohermeral rhythm of crosslink excretion in children, with a peak during the night or early in the morning, and pointed out between-day fluctuations of excretion (17% for Pyd and 19% for Dpd). The study also showed that urinary crosslinks were significantly related to anthropometric estimates of skeletal mass and that such estimates should be used to account for size differences between individuals. Cross-sectional observations on 272 children (3-18 years) showed a parallelism between the height velocity curve and the age profile of crosslink excretion. In 3-5 year old children, the study pointed out a positive relationship with monthly height velocity (R = 0.20); 5-month integrated values of excretion were also correlated to 5-month height velocity (R = 0.78 for Pyd; R = 0.73 for Dpd). Urinary crosslinks were normal in 53 children (124±34 months) affected by miscellaneous conditions leading to growth defects, in 14 children (117±47 months) affected by coeliac disease, nor in 20 children affected by GH deficiency or short stature (aged 117±20 months); they were in the high range in 7 girls with Turner's syndrome, in 58 malnourished boys (14±14 months), urinary crosslinks were proportional to the degree of wasting and were positively correlated to the rate of height gain during hospitalisation. In children treated with Growth Hormone, except those affected by Turner's syndrome, crosslinks could predict 6-month growth after the first month of therapy.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Åkesson, Kristina. "Fracture and biochemical markers of bone metabolism." Lund : University of Lund, Dept. of Orthopaedics, Malmö General Hospital, Sweden, 1995. http://books.google.com/books?id=Ib9qAAAAMAAJ.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

McCoy, Paula K. "Psychological Hardiness and Biochemical Markers of Acute Stress." Thesis, University of North Texas, 2001. https://digital.library.unt.edu/ark:/67531/metadc2884/.

Повний текст джерела
Анотація:
The establishment of physiological norms for psychologically hardy vs. non-hardy individuals was attempted by examination of levels of salivary cortisol and urinary norepinephrine before and after a mid-term examination stressor. Normative data was collected on the reported frequency of stressors and their severity one week prior to the examination, and self-reported ratings of stress immediately prior to the examination. Performance on the examination as a function of hardiness was explored. Associations between demographic variables and psychological hardiness were also studied. Results from this study were inconclusive in establishing physiological norms for psychologically hardy individuals. Associations were found between: 1) hardiness and frequency of stressors; 2) hardiness and age; and 3) self-reported ratings of stress and anxiety as measured by the State-Trait Anxiety Inventory (STAI).
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lovercamp, Kyle W. "Arachidonate 15-lipoxygenase and ubiquitin as potential fertility markers in boars." Diss., Columbia, Mo. : University of Missouri-Columbia, 2004. http://hdl.handle.net/10355/5811.

Повний текст джерела
Анотація:
Thesis (M.A.)--University of Missouri-Columbia, 2004.
The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (June 30, 2006) Vita. Includes bibliographical references.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Morgan, Tanya G. "Biochemical and mobility markers in osteoarthritis of the knee." Thesis, University of Sunderland, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.269194.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Glassbrook, Norman J. "Biochemical markers for the detection and classification of Aspergillus." Thesis, Cardiff University, 2008. http://orca.cf.ac.uk/54802/.

Повний текст джерела
Анотація:
The genus Aspergillus includes a diverse group of filamentous fungi that are widely distributed in nature, commonly found in soil. The Aspergilli include species that can be beneficial or detrimental to humans, so detection and accurate identification of these organisms can be very important. Morphology and genetic sequence analysis are well established methods for classifying and identifying fungi, but morphology remains a widely used technique that generally works well for Aspergilli. However, some organisms may be misidentified due to atypical morphology and some hidden (cryptic) species may not be recognized as different from named species based on readily observable traits. In this study, reference strains of different Aspergillus species, Penicillium chrysogenum, Candida albicans, and Cryptococcus neoformans were characterized using LC/MS and GC/MS biochemical profiling techniques in order to find specific small molecules, peptides or biochemical profiles that can be used in addition to established methods to detect and classify Aspergilli to the species level. Subsequently, analytical methods developed for characterizing the reference strains were applied, along with morphology and PCR, to characterize and identify several laboratory and field isolates. Some unique compounds and biochemical patterns did emerge from small molecule profiling that could be used for classifying Aspergilli, but protein profiling by LC/MS/MS was a much more effective approach. Tandem mass spectra from LC/MS/MS of tryptic peptides from fungal proteins were searched against protein databases and matched to theoretical spectra derived from those databases. Many of the amino acid sequences detected were taxonomically diagnostic for classifying Aspergillus species. Protein profiling also provided a great deal of additional biochemical information on the test organisms by identifying the predominant enzymes and structural proteins present under different experimental conditions and may find broader application for identifying and studying other organisms.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Stangland, Jenna Emily. "Biochemical Markers of Iron Status in Recreational Female Runners." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1374168831.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Biochemical markers"

1

R, Eastell, and Bone Markers: Biochemical and Clinical Perspectives Workshop (2000 : Geneva, Switzerland), eds. Bone markers: Biochemical and clinical perspectives. London: Martin Dunitz, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kagaku Gijutsu Shinkō Kikō. Kenkyū Kaihatsu Senryaku Sentā. Sentā Rinshō Igaku Yunitto. Chōkōrei shakai ni okeru sensei iryō no suishin =: Promoting preemptive medicine in a hyper-aged society. Tōkyō: Kagaku Gijutsu Shinkō Kikō Kenkyū Kaihatsu Senryaku Sentā Rinshō Igaku Yunitto, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kim, Sang-gyŏm. Saenghwahakchŏk pʻyojija mit taeri kyŏlgwa pyŏnsu ŭi PK/PD modelling chŏgyong e kwanhan yŏnʼgu =: The study for evaluation of PK/PD modeling using biomarker and surrogate endpoint. [Seoul]: Sikpʻum Ŭiyakpʻum Anjŏnchʻŏng, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Practices, LLC Best. Incorporating biomarker research for R&D success: Access and intelligence for achieving world-class excellence. Chapel Hill, NC: Best Practices, LLC, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Carlos, Kaski Juan, and Holt David W, eds. Myocardial damage: Early detection by novel biochemical markers. Dordrecht: Kluwer Academic, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

S, Hulka Barbara, Wilcosky Timothy C, and Griffith Jack D, eds. Biological markers in epidemiology. New York: Oxford University Press, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sensei, Iryō Wākushoppu (2010 Tokyo Japan). Sensei iryō: Wākushoppu hōkokusho. Tōkyō: Kagaku Gijutsu Shinkō Kikō Kenkyū Kaihatsu Senryaku Sentā, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Roine, Risto. Urinary dolichols as biological markers of alcoholism. Helsinki: [s.n.], 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

1942-, Huggett R. J., and Biomarkers Workshop (1989 : Keystone, Colo.), eds. Biomarkers: Biochemical, physiological, and histological markers of anthropogenic stress. Boca Raton: Lewis Publishers, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Nela, Pivac, ed. Peripheral biological markers in alcoholism. New York: Nova Science Publishers, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Biochemical markers"

1

Lee, Bun-Hee, and Yong-Ku Kim. "Biochemical Markers." In Understanding Suicide, 155–76. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26282-6_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Baak, Marleen A., Bernard Gutin, Kim A. Krawczewski Carhuatanta, Stephen C. Woods, Heinz W. Harbach, Megan M. Wenner, Nina S. Stachenfeld, et al. "Overtraining-Biochemical Markers." In Encyclopedia of Exercise Medicine in Health and Disease, 676–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-29807-6_156.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jensen, J. E. B., H. A. Sørensen, and O. H. Sørensen. "Biochemical Markers and Bone." In Management of Fractures in Severely Osteoporotic Bone, 72–84. London: Springer London, 2000. http://dx.doi.org/10.1007/978-1-4471-3825-9_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wu, Alan H. B., and Robert G. McCord. "New Biochemical Markers for Heart Diseases." In Cardiac Markers, 281–94. Totowa, NJ: Humana Press, 1998. http://dx.doi.org/10.1007/978-1-4612-1806-7_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hampson, Geeta. "Biochemical Markers in Bone Diseases." In Radionuclide and Hybrid Bone Imaging, 109–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-02400-9_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chu, T. M. "Biochemical Markers for Human Cancer." In Current Topics in Pathology, 19–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71356-9_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Blackwell, Penny, Ian Godber, and Nigel Lawson. "Biochemical Markers of Bone Turnover." In Clinical Trials in Osteoporosis, 221–40. London: Springer London, 2002. http://dx.doi.org/10.1007/978-1-4471-3710-8_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ramlawi, Basel, and Frank W. Sellke. "Biochemical Markers of Brain Injury." In Brain Protection in Cardiac Surgery, 45–55. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84996-293-3_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Greenblatt, Matthew B., Joy N. Tsai, and Marc N. Wein. "Biochemical Markers of Bone Turnover." In Osteoporosis, 169–84. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-69287-6_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Rosen, Clifford J. "Biochemical Markers of Bone Turnover." In Osteoporosis, 129–41. Totowa, NJ: Humana Press, 1996. http://dx.doi.org/10.1007/978-1-4612-0221-9_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Biochemical markers"

1

Greifová, H., E. Tvrdá, P. Červeňanská, E. Tušimová, A. Kováčik, K. Zbyňovská, and N. Lukáč. "BIOCHEMICAL MARKERS OF INFLAMMATION IN DAIRY CATTLE." In XVIII INTERNATIONAL SCIENTIFIC CONFERENCE RISK FACTORS OF FOOD CHAIN 2017. Uniwersytet Pedagogiczny w Krakowie, 2017. http://dx.doi.org/10.24917/9788380840973.6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Maciel Campos Da Silva, Ana Sofia, Rita Enriquez, Joana Duarte, Andreia Daniel, Inês Claro, Margarida Barata, Maria Alvarenga Santos, Teresa Martín, Nídia Caires, and Filipa Todo Bom. "Biochemical markers as predictors of outcomes in COPD exacerbations." In ERS International Congress 2023 abstracts. European Respiratory Society, 2023. http://dx.doi.org/10.1183/13993003.congress-2023.pa3638.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zolotavina, M. L., and E. A. Gaidabura. "CORRELATION ANALYSIS OF THE MAIN BIOCHEMICAL MARKERS OF IN-FLAMMATION IN COVID-19." In NOVEL TECHNOLOGIES IN MEDICINE, BIOLOGY, PHARMACOLOGY AND ECOLOGY. Institute of information technology, 2022. http://dx.doi.org/10.47501/978-5-6044060-2-1.137-142.

Повний текст джерела
Анотація:
The article is devoted to determining the correlation between the biochemical parameters of the blood serum of patients with COVID-19. Concentrations of the main biochemical markers of inflammation at different stages of lung tissue damage by a new coronavirus infection with further correlation analysis of blood parameters were determined. The experiment of the study showed that there is a high correlation between the biochemical parameters of blood. Its sig-nificance helps to determine the sequence of the manifestation of biochemical markers of in-flammation and proves the mechanism of changes in the biochemical picture of blood in COVID-19, which we assume.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gomez Punter, Rosa Mar, Rosa Maria Giron, Emma Vazquez, Gilda Fernandes, Olga Rajas, Carolina Cisneros, Claudia Valenzuela, and Julio Ancochea. "Biochemical Markers Of Bone Turnover In Adults With Cystic Fibrosis." In American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a2810.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Du, Shuyan, Xiangling Mao, Dikoma Shungu, and Paul Sajda. "Blind recovery of biochemical markers of brain cancer in MRSI." In Medical Imaging 2004, edited by J. Michael Fitzpatrick and Milan Sonka. SPIE, 2004. http://dx.doi.org/10.1117/12.534652.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

"Catalytically active bispecific antibodies – new biochemical markers of HIV/AIDS." In Bioinformatics of Genome Regulation and Structure/ Systems Biology. institute of cytology and genetics siberian branch of the russian academy of science, Novosibirsk State University, 2020. http://dx.doi.org/10.18699/bgrs/sb-2020-258.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Singh, S. P., and C. Murali Krishna. "Raman spectroscopy of oral tissues: correlation of spectral and biochemical markers." In SPIE BiOS, edited by Bernard Choi, Nikiforos Kollias, Haishan Zeng, Hyun Wook Kang, Brian J. F. Wong, Justus F. Ilgner, Guillermo J. Tearney, et al. SPIE, 2014. http://dx.doi.org/10.1117/12.2052797.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zemlyanukhina, O. A., E. N. Vasilchenko, N. N. Cherkasova, and N. A. Karpechenko. "Physiological and biochemical markers in the study of sugar beet plants." In CURRENT STATE, PROBLEMS AND PROSPECTS OF THE DEVELOPMENT OF AGRARIAN SCIENCE. Federal State Budget Scientific Institution “Research Institute of Agriculture of Crimea”, 2019. http://dx.doi.org/10.33952/09.09.2019.108.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Varma, Vishal K., Samuel Ohlander, Peter Nguyen, Christopher Vendryes, Sujeeth Parthiban, Blake Hamilton, M. Chad Wallis, et al. "Fourier transform infrared spectroscopic imaging identifies early biochemical markers of tissue damage." In SPIE BiOS, edited by Anita Mahadevan-Jansen and Wolfgang Petrich. SPIE, 2014. http://dx.doi.org/10.1117/12.2040282.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Abdulilah ABDULMAWJOOD, Sana, Eman Salem MAHMOUD, and Mohammed I. MAJEED. "INFLAMMATORY MARKERS AND SOME BIOCHEMICAL PARAMETERS IN FEMALE RATS TREATED WITH QUERCETIN." In VI.International Scientific Congress of Pure,Applied and Technological Sciences. Rimar Academy, 2022. http://dx.doi.org/10.47832/minarcongress6-29.

Повний текст джерела
Анотація:
The objective of this study was to determine whether quercetin, a polyphenol, could protect rats from nitrite's harmful effects. Methodologies: During the course of this investigation, twenty-one albino female rats have been used. The animals were placed in one of the three groups, which each had a total of seven rats. The groups were selected at random. Group, I received water throughout the duration of the experiment and was regarded as the healthy control group. The animals in Group II were given a solution containing 50 milligrams of sodium nitrite per kilogram of body weight via a gavage needle For the whole period of the study while those in Group III were given a solution containing both 50 milligrams of sodium nitrite per kilogram of body weight and 100 milligrams of quercetin per kilogram of rat weight. Blood samples were analyzed inflammatory markers including interleukin-1, interleukin-6, and tumor necrosis factor-alpha, as well as biochemical markers including liver enzymes , urea, and serum creatinine.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Biochemical markers"

1

Nicholson, Ralph, Reuven Reuveni, and Moshe Shimoni. Biochemical Markers for Disease Resistance in Corn. United States Department of Agriculture, May 1996. http://dx.doi.org/10.32747/1996.7613037.bard.

Повний текст джерела
Анотація:
The objective was to screen maize lines for their ability to express resistance based on biochemical traits. Cultivars were screened for retention of the hydroxamic acid DIMBOA and the synthesis of phenols (based on anthocyanin production) as markers for resistance. Lines were selected and inoculated with fungal pathogens (Exserohilum turcicum, Puccinia sorghi, Cochliobolus heterostraphus, Colletotricum graminicola.), and the Maize Dwarf Mosaic and Johnson Grass Mosaic viruses. Lines were screened in the field and greenhouse. Results showed that lines selected for augmented phenol synthesis do exhibit heightened levels of resistance to fungal pathogens. Isolation of mRNA followed by northern analyses for expression of A1 (dihydroflavanol reductase) and peroxidase confirmed that genes for these enzymes were turned on in response to inoculation of lines predicted to exhibit resistance. Peroxidase and b-1,3-glucanase were assayed in breeding lines having or lacking the se gene. A specific ionically-bound peroxidase isozyme and a b-1,3-glucanase isozyme were revealed in lines having the se gene. Data suggest that peroxidase and b-1,3-glucanase isozymes, may be considered as markers to identify resistance to E. turcicum in maize genotypes with the se gene.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hayes, Ronald L. Biochemical Markers of Brain Injury: An Integrated Proteomics-Based Approach. Fort Belvoir, VA: Defense Technical Information Center, February 2005. http://dx.doi.org/10.21236/ada437666.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lockridge, Oksana. Biochemical Markers for Exposure to Low Doses of Organophosphorus Insecticides. Fort Belvoir, VA: Defense Technical Information Center, August 2002. http://dx.doi.org/10.21236/ada408118.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lockridge, Oksana. Biochemical Markers for Exposure to Low Doses of Organophosphorus Insecticides. Fort Belvoir, VA: Defense Technical Information Center, August 2003. http://dx.doi.org/10.21236/ada419631.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hayes, Ronald L. Biochemical Markers of Brain Injury: An Integrated Proteomics Based Approach. Fort Belvoir, VA: Defense Technical Information Center, February 2004. http://dx.doi.org/10.21236/ada425658.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Akhverdyan, Y., L. Seewordova, Y. Polyakova, B. Zavodovsky, E. Papichev, and V. Pavlovskaya. BIOCHEMICAL MARKERS OF BONE REMODELING IN PATIENTS WITH RHEUMATOID ARTHRITIS. "PLANET", 2019. http://dx.doi.org/10.18411/978-5-907192-54-6-2019-xxxvi-19-23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hayes, Ronald L. Biochemical Markers of Brain Injury: An Integrated Proteomics-Based Approach. Fort Belvoir, VA: Defense Technical Information Center, December 2011. http://dx.doi.org/10.21236/ada561092.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hayes, Ronald L. Biochemical Markers of Brain Injury: An Integrated Proteomics-Based Approach. Fort Belvoir, VA: Defense Technical Information Center, February 2007. http://dx.doi.org/10.21236/ada474912.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wiles, Connor. Frozen, Old, or New? Comparing Biochemical Markers and Tissue Oxygenation in Transfused Blood. Portland State University Library, January 2014. http://dx.doi.org/10.15760/honors.34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Paran, Ilan, and Molly Jahn. Genetics and comparative molecular mapping of biochemical and morphological fruit characters in Capsicum. United States Department of Agriculture, March 2005. http://dx.doi.org/10.32747/2005.7586545.bard.

Повний текст джерела
Анотація:
Original objectives: The overall goal of our work was to gain information regarding the genetic and molecular control of pathways leading to the production of secondary metabolites determining major fruit quality traits in pepper and to develop tools based on this information to assist in crop improvement. The specific objectives were to: (1) Generate a molecular map of pepper based on simple sequence repeat (SSR) markers. (2) Map QTL for capsaicinoid (pungency) content (3) Determine possible association between capsaicinoid and carotenoid content and structural genes for capsaicinoid and carotenoid biosynthesis. (4) Map QTL for quantitative traits controlling additional fruit traits. (5) Map fruit-specific ESTs and determine possible association with fruit QTL (6) Map the C locus that determines the presence and absence of capsaicinoid in pepper fruit and identify candidate genes for C.locus. Background: Pungency, color, fruit shape and fruit size are among the most important fruit quality characteristics of pepper. Despite the importance of the pepper crop both in the USA and Israel, the genetic basis of these traits was poorly understood prior to the studies conducted in the present proposal. In addition, molecular tools for use in pepper improvement were lacking. Major conclusions and achievements: Our studies enabled the development of a saturated genetic map of pepper that includes numerous SSR markers. This map has been integrated with a number of other independent maps resulting in the publication of a single resource map consisting of more than 2000 markers. Unlike previous maps based primarily on tomato-originated RFLP markers, the new maps are based on PCR markers that originate in Capsicum providing a comprehensive and versatile resource for marker-assisted selection in pepper. We determined the genetic and molecular bases of qualitative and quantitative variation of pungency, a character unique to pepper fruit. We mapped and subsequently cloned the Pun1 gene that serves as a master regulatoar for capsaicinoid accumulation and showed that it is an acyltransferase. By sequencing the Pun1 gene in pungent and non-pungent cultivars we identified a deletion that abolishes the expression of the gene in the latter cultivars. We also identified QTL that control capsaicinoid content and therefore pungency level. These genes will allow pepper breeders to manipulate the level of pungency for specific agricultural and industrial purposes. In addition to pungency we identified genes and QTL that control other key developmental processes of fruit development such as color, texture and fruit shape. The A gene controlling anthocyanin accumulation in the immature fruit was found as the ortholog of the petunia transcription factor Anthocyanin2. The S gene required for the soft flesh and deciduous fruit nature typical of wild peppers was identified as the ortholog of tomato polygalacturonase. We identified two major QTL controlling fruit shape, fs3.1 and fs10.1, that differentiate elongated and blocky and round fruit shapes, respectively. Scientific and agricultural implications: Our studies allowed significant advances in our understanding of important processes of pepper fruit development including the isolation and characterization of several well known genes. These results also provided the basis for the development of molecular tools that can be implemented for pepper improvement. A total of eleven refereed publications have resulted from this work, and several more are in preparation.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії