Добірка наукової літератури з теми "Biobased chemicals"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Biobased chemicals".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Biobased chemicals"

1

TULLO, ALEXANDER H. "CATALYZING BIOBASED CHEMICALS." Chemical & Engineering News 88, no. 38 (September 20, 2010): 15–17. http://dx.doi.org/10.1021/cen-v088n038.p015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

de Regil, Rubén, and Georgina Sandoval. "Biocatalysis for Biobased Chemicals." Biomolecules 3, no. 4 (October 17, 2013): 812–47. http://dx.doi.org/10.3390/biom3040812.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

MCCOY, MICHAEL. "COMPANIES ADVANCE BIOBASED CHEMICALS." Chemical & Engineering News Archive 89, no. 17 (April 25, 2011): 8. http://dx.doi.org/10.1021/cen-v089n017.p008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Michael McCoy. "Cargill, Virent eye biobased chemicals." C&EN Global Enterprise 98, no. 39 (October 12, 2020): 15. http://dx.doi.org/10.1021/cen-09839-buscon13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Abbas, Charles, and Paul Roessler. "Session 5 Biobased Industrial Chemicals." Applied Biochemistry and Biotechnology 123, no. 1-3 (2005): 0781–82. http://dx.doi.org/10.1385/abab:123:1-3:0781.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Verduyckt, Jasper, and Dirk E. De Vos. "Controlled defunctionalisation of biobased organic acids." Chemical Communications 53, no. 42 (2017): 5682–93. http://dx.doi.org/10.1039/c7cc01380a.

Повний текст джерела
Анотація:
Considerable progress has been made in the field of hydrogenation, decarboxylation and deamination of both citric and amino acids to valuable chemicals, which is why they should be (re)considered as valid biobased platform chemicals.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Diamond, Gary, Alfred Hagemeyer, Vince Murphy, and Valery Sokolovskii. "Catalytic Conversion of Biorenewable Sugar Feedstocks into Market Chemicals." Combinatorial Chemistry & High Throughput Screening 21, no. 9 (January 21, 2019): 616–30. http://dx.doi.org/10.2174/1386207322666181219155050.

Повний текст джерела
Анотація:
The transformation of low cost sugar feedstocks into market chemicals and monomers for existing or novel high performance polymers by chemical catalysis is reviewed. Emphasis is given to industrially relevant, continuous flow, trickle bed processes. Since long-term catalyst stability under hydrothermal conditions is an important issue to be addressed in liquid phase catalysis using carbohydrate feedstocks, we will primarily discuss the results of catalytic performance for prolonged times on stream. In particular, the selective aerobic oxidation of glucose to glucaric acid and the subsequent selective hydrogenation to adipic acid is reviewed. Hydroxymethylfurfural (HMF), which is readily available from fructose, can be upgraded by oxidation to furan dicarboxylic acid (FDCA) or by consecutive reduction and hydrogenolysis to hexanetriol (HTO) followed by hydrogenolysis to biobased hexanediol (HDO). Direct amination of HDO yields biobased hexamethylene diamine (HMDA). Aerobic oxidation of HDO represents an alternative route to biobased adipic acid. HMDA and adipic acid are the monomers required for the production of nylon- 6,6, a major polymer for engineering and fibre applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mourao Vilela, Carlos, Evert Boymans, and Berend Vreugdenhil. "Co-Production of Aromatics in Biomass and Waste Gasification." Processes 9, no. 3 (March 4, 2021): 463. http://dx.doi.org/10.3390/pr9030463.

Повний текст джерела
Анотація:
Climate changes will have a huge impact on society, one that cannot be truly predicted. However, what is known is that our dependence on fossil feedstock for energy, fuel and chemical production will need to shift towards more biobased and circular feedstock. This paper describes part of an important technology development that uses biogenic and plastic-containing waste streams for the co-production of aromatics with fuels and/or chemicals. This paper captures the first decade of this technology development from idea towards a large Process Demonstration Unit operated and validated within a large gasification R&D infrastructure. The scale-up was successful, with supporting tools to optimize and identify the limits of the technology. Benzene and toluene are directly removed from the product gas with 97% and 99% efficiency, respectively. The next steps will be to include this development in larger piloting and demonstrations for the co-production of aromatics from biomass gasification (biobased chemicals) or aromatics from plastic-containing waste gasification (circular chemicals).
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sag, Jacob, Daniela Goedderz, Philipp Kukla, Lara Greiner, Frank Schönberger, and Manfred Döring. "Phosphorus-Containing Flame Retardants from Biobased Chemicals and Their Application in Polyesters and Epoxy Resins." Molecules 24, no. 20 (October 17, 2019): 3746. http://dx.doi.org/10.3390/molecules24203746.

Повний текст джерела
Анотація:
Phosphorus-containing flame retardants synthesized from renewable resources have had a lot of impact in recent years. This article outlines the synthesis, characterization and evaluation of these compounds in polyesters and epoxy resins. The different approaches used in producing biobased flame retardant polyesters and epoxy resins are reported. While for the polyesters biomass derived compounds usually are phosphorylated and melt blended with the polymer, biobased flame retardants for epoxy resins are directly incorporated into the polymer structure by a using a phosphorylated biobased monomer or curing agent. Evaluating the efficiency of the flame retardant composites is done by discussing results obtained from UL94 vertical burning, limiting oxygen index (LOI) and cone calorimetry tests. The review ends with an outlook on future development trends of biobased flame retardant systems for polyesters and epoxy resins.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Meuwese, Anne M., Niels J. Schenk, Henri C. Moll, and Anton J. M. Schoot Uiterkamp. "Biobased Chemicals in a Carbon-Restricted World." Environmental Science & Technology 47, no. 22 (October 30, 2013): 12623–24. http://dx.doi.org/10.1021/es4039566.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Biobased chemicals"

1

Zhang, Lu. "Development of Non-isocyanate Polyurethanes from Biobased Furanic Chemicals." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1574777307668391.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Longanesi, Luca <1986&gt. "Bioconversion of Agro-Food Wastes into Biofuels and Biobased Chemicals." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amsdottorato.unibo.it/7388/1/Longanesi_Luca_tesi.pdf.

Повний текст джерела
Анотація:
In this work, different biorefineries strategies were used in order to produce different fuels and chemicals from agro – industrial by product, focusing in particularly on microbial fermentation processes. Mixed consortia and pure culture of Thermotoga neapolitana were used to produce biomethane (through anaerobic digestion) and biohydrogen, respectively from grape pomace and milk whey. Due to the lignocellulosic nature of this by products, white and red grape pomaces in the anaerobic digestion process were tested alone, or in co – digestion, in batch, fed – batch and continuous tests in a 29 L CSTR bioreactor. Furthermore, inhibition experiments were performed in order to better characterize the biochemical process and to evaluate the effect of, oxygen, acetic acid and lignocellulosic derived compounds to the biomethanization process. Besides that, the possibility to enrich this biorefinery to produce propanol from the mixture of VFAs originated in the first steps of AD was evaluated. Bio – H2 tests were performed with milk whey alone or in co – digestion with molasses both in a 116 ml microcosms – scale, both in a 19 L SPCSTR reactor, coupled to a membrane module separation system, to enrich the hydrogen purity. Milk whey was also investigated as only carbon source for the production of succinic acid, one of the Top 12 building block according to the U.S.A Department of Energy, using Actinobacillus succinogenes pure culture in a collaborative project between or department and the Flemish Institute For Technological Research. Besides batch and continuous fermentations, different aspects were studied, as an innovative procedure for a biofilm fermentation in 1 L PFR – type reactor, and the possibility to couple the fermenter to an innovative electrodialysis plant, used as ISPR (In Situ Product Recovery) technique without cell retention steps in between.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Longanesi, Luca <1986&gt. "Bioconversion of Agro-Food Wastes into Biofuels and Biobased Chemicals." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amsdottorato.unibo.it/7388/.

Повний текст джерела
Анотація:
In this work, different biorefineries strategies were used in order to produce different fuels and chemicals from agro – industrial by product, focusing in particularly on microbial fermentation processes. Mixed consortia and pure culture of Thermotoga neapolitana were used to produce biomethane (through anaerobic digestion) and biohydrogen, respectively from grape pomace and milk whey. Due to the lignocellulosic nature of this by products, white and red grape pomaces in the anaerobic digestion process were tested alone, or in co – digestion, in batch, fed – batch and continuous tests in a 29 L CSTR bioreactor. Furthermore, inhibition experiments were performed in order to better characterize the biochemical process and to evaluate the effect of, oxygen, acetic acid and lignocellulosic derived compounds to the biomethanization process. Besides that, the possibility to enrich this biorefinery to produce propanol from the mixture of VFAs originated in the first steps of AD was evaluated. Bio – H2 tests were performed with milk whey alone or in co – digestion with molasses both in a 116 ml microcosms – scale, both in a 19 L SPCSTR reactor, coupled to a membrane module separation system, to enrich the hydrogen purity. Milk whey was also investigated as only carbon source for the production of succinic acid, one of the Top 12 building block according to the U.S.A Department of Energy, using Actinobacillus succinogenes pure culture in a collaborative project between or department and the Flemish Institute For Technological Research. Besides batch and continuous fermentations, different aspects were studied, as an innovative procedure for a biofilm fermentation in 1 L PFR – type reactor, and the possibility to couple the fermenter to an innovative electrodialysis plant, used as ISPR (In Situ Product Recovery) technique without cell retention steps in between.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wang, Lianjie. "New biobased chemicals from HMF and GMF : Applications of Morita-Baylis-Hillman reaction and nitrone 1,3-dipolar cycloaddition." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI026.

Повний текст джерела
Анотація:
Ces dernières années, la conception de nouveaux produits de chimie fine à partir de biomasse et de molécules plateformes est devenue un domaine de recherche très actif. Le 5-hydroxyméthylfurfural (HMF) s’est révélé une des briques les plus prometteuses parmi les dérivés des hydrates de carbone, en raison de la richesse de sa chimie liée à son haut niveau de fonctionalisation. Son analogue glucosylé, bien que moins disponible, le glucosyloxyméthylfurfural (GMF), est également un aldéhyde biosourcé furanique intéressant et capable d’être transformé en une multitude de produits chimiques nouveaux conservant un motif glucidique complet. Cette thèse est une contribution à l’utilisation de ces deux briques moléculaires dans la conception de nouveaux produits destinés à la chimie fine, par le biais de deux réactions, la réaction de Morita-Baylis-Hillman (MBH) et la cycloaddition de nitrones. L’application de cette stratégie dans la conception de nouveaux tensioactifs a aussi été étudiée. Premièrement, nous avons étudié le cas de la réaction de MBH du HMF et GMF avec les cycloalcenones dans l’eau pure. De nouvelles stuctures hautement fonctionnalisées ont pu être ainsi obtenues pour la première fois dans des conditions douces et sures, et dans un fort niveau d’économie d’atomes. Deuxièmement, nous avons étudié la possibilité de conduire la réaction de MBH du HMF et du GMF avec des acrylates et autres alcènes déficients en électrons en absence totale de solvant. Les réactions de cycloaddition 1,3-dipolaire des nitrones du HMF et du GMF offrent de nouvelles voies synthétiques vers les isoxazolidines biosourcées. La séquence de reactions « formation de la nitrone-cycloadditiopn dipolaire » peut être effectuée soit dans une approche à plusieurs composants (réaction multicomposants), soit en deux étapes successives. Dans une dernière partie, nous avons étudié la possibilité d’utiliser ces deux routes pour la conception de nouveaux tensioactifs dans le cadre d’une collaboration avec la Prof Véronique RATAJ et le Dr Fermin ONTIVEROS de l’équipe CISCO de l’unité de recherche UCCS à Lille. Les résultats préliminaires de l’évaluation physicochimique ont montré un réel intérêt de ces composés dont les propriétés sont facilement ajustables par des modifications structurales simples et qui obtenus par une séquence directe et originale
The design of new fine chemicals from biomass and platform molecules has recently become a very active field of research. 5-Hydroxymethylfurfural (HMF) is considered as one of the most promising renewable building blocks derived from carbohydrates, due to the rich chemistry offered by its high level of functionality. Its glucosylated analogue glucosyloxymethylfurfural (GMF), though much less available, is also an interesting biobased furanic aldehyde able to provide a range of novel architectures which include a remaining full carbohydrate moiety. The present thesis is a contribution to the use of these two building blocks for the design of novel fine chemicals, using notably two reactions, namely the Morita-Baylis-Hillman reaction, and the cycloaddition of nitrones. The application of these strategies for designing novel surfactants was also investigated. First, we investigated the MBH reaction of HMF and GMF with cycloalkenones using pure water as solvent. New functionalized scaffolds have been prepared in mild and safe conditions with remarkable atom-economy by this route for the first time. Then we investigated the possibility to run MBH reactions of HMF and GMF with acrylates or other alkenes in absence of any solvent. The 1,3-dipolar cycloaddition reactions of nitrones obtained from HMF and GMF offer novel synthetic routes towards biobased isoxazolidines. The sequence “nitrone formation-cycloaddition reaction” can be performed either in a multicomponent approach or in a stepwise one. In the last part, we addressed the possibility to use these two routes for the design of novels biobased surfactants, in the frame of a collaboration with Prof Véronique RATAJ and Dr Fermin ONTIVEROS of the CISCO team of the UCCS research unit in Lille. Preliminary results on their surfactants properties have been obtained, and indicate a real interest of these compounds which exhibit easily adjustable properties based on simple structural variations, and which are obtained in an easy straightforward and original synthetic sequence
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Buono, Pietro. "Chemical modification of lignin for the elaboration of novel biobased aromatic polymers and additives." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAE015/document.

Повний текст джерела
Анотація:
Parmi les composants de la biomasse, la lignine est considérée comme l'un des plus prometteurs polymères naturels qui convient à la conversion de la biomasse en valable produits chimiques et matériaux. Malgré une grande quantité de lignine est générée dans l'industrie papetière, seule 2% est exploitée dans l'industrie chimique. La présence de soufre et la grande diversité moléculaire sont les principaux obstacles pour l'utilisation de la lignine. La modification chimique a été reconnue comme un outil pour contourner ces limites. Dans cette thèse, différentes stratégies de synthèse ont été appliquées pour introduire de nouveaux groupes chimiques sur une soude lignine que présents une haute fonctionnalisation de groups hydroxyles. Les dérivés correspondants de lignine ont été utilisés soit pour l’élaboration des matériaux par click polymérisations, soit pour augmenter l’hydrophobicité de la lignine à la fine de faciliter son traitement avec des matrices polymériques
Among biomass components, lignin is considered one of the most promising natural polymers suitable for the conversion of biomass into renewable added-value chemicals and materials. However, large amount of lignin generated from wood pulping industry is burn as low cost energy source, and only 2% is exploited in the chemical industry. The presence of sulphur moieties and the large molecular diversity are the most reasons impeding the use of lignin as building blocks for the production of chemicals and materials. Chemical modifications have been acknowledged to be an important tool to circumvent these limitations. In the current work, taking advantage of the high hydroxyl groups content of a sulphur free soda lignin (SL), different synthetic strategies have been applied to introduce new chemical groups and used either to produce lignin derivatives suitable for “click” polymerization either to increase lignin hydrophobicity, facilitating its processing in polymeric matrices
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hendeberg, Matilda. "Hydrothermally carbonized wood as a component in biobased material for 3D-printing." Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-278843.

Повний текст джерела
Анотація:
Consumers put higher demands on low environmental impact from the products they use, and the materials they consist of. As a result, more research is being made on finding environmentally friendly production techniques and materials. Hydrothermal carbonization (HTC) is a relatively environmentally friendly method that has been used in this study. Cellulose and pine, the latter, one sample with and one without bark, were carbonized at 220 °C and 240 °C for two hours. This generated solid carbon products that could be used in composites with the biopolymer Polylactide (PLA). The composites were thereafter extruded as filaments and used for 3D printing. X-ray powder diffraction (XRD), Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) showed that HTC of all precursors generated an amorphous carbon material, with carbon microspheres and increased aromaticity. Three different composites were produced from PLA and 0.1 wt% of the solid carbon products from all three precursors carbonized at 240 °C. Composites were also made from PLA and 1 wt% non-carbonized pine with bark, and 1 wt% of pine with bark carbonized at 240 °C. Filaments were extruded from neat PLA, as well as the composites of 0.1 wt% carbonized cellulose and 0.1 wt% carbonized pine with bark mentioned above. The filaments were used to 3D print six dog bones per filament according to the ISO standard ISO 527-2 1BA. There was one instance of clogging for each filament from the composite materials, but it was easily solved. No mechanical tests could be performed, although the 3D printed models’ physical properties were visually observed, and no deficiencies were found. Both extrusion and 3D printing were successful.
Konsumenter ställer högre krav på att material och produkter de använder har liten påverkan på miljön. Till följd av detta lägger forskningen mer resurser på att hitta miljövänliga tillverkningsmetoder och material. Hydrotermisk karbonisering (HTC) är en relativt miljövänlig process som har använts i denna studie. Tall (ett prov med och ett utan bark) samt cellulosa karboniserades vid 220 °C och 240 °C i två timmar, för att på detta vis producera en fast kolprodukt som kunde användas i en komposit med biopolymeren Polylaktid (PLA). Kompositen extruderades sedan till filament som användes vid 3D printing. Röntgenpulverdiffraktion (XRD), Svepelektronmikroskopi (SEM) och Fourier-transform infraröd spektroskopi (FTIR) visade på att HTC hade genererat amorfa kolmaterial, med mikrosfärer och ökad aromaticitet från både cellulosa och båda tallproverna. Samtliga produkter från karbonisering vid 240 °C användes för att göra tre olika kompositer med vardera 0,1 vikt% kolmaterial. Kompositer tillverkades även från PLA och 1 vikt% tall med bark, samt 1 vikt% tall med bark karboniserad vid 240 °C. Filament extruderades av ren PLA samt ovan nämnda kompositer med 0.1 vikt% karboniserad cellulosa och 0.1 vikt% karboniserad tall med bark. Dessa användes vid 3D printing för att skriva ut sex hundben per filament, enligt ISO standarden ISO 527-2 1BA. Vid ett tillfälle för vardera av de två kompositerna täpptes mynningen till 3D skrivaren igen av partiklar i filamenten. Detta löstes dock enkelt. Mekaniska tester kunde tyvärr inte utföras på hundbenen, men inga fysiska brister beskådades på dem. Både extrudering och 3D printing var lyckade.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Clénet, Jocelyn. "A contribution to the understanding of chemical phenomena occuring during the formation of a biobased resin at high-temperature." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEI114.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Alhwaige, Almahdi A. "NOVEL BIOBASED CHITOSAN/POLYBENZOXAZINE CROSS-LINKED POLYMERS AND ADVANCED CARBON AEROGELS FOR CO2 ADSORPTION." Case Western Reserve University School of Graduate Studies / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=case1396437860.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chumeka, Wannapa. "Improvement of compatibility of poly(lactic acid) blended with natural rubber by modified natural rubber." Phd thesis, Université du Maine, 2013. http://tel.archives-ouvertes.fr/tel-01018026.

Повний текст джерела
Анотація:
The aim of this research work was to improve the compatibility of polymer blends made from poly(lactic acid) and natural rubber (PLA/NR blends) by using modified natural rubber as a compatibilizer. Natural rubber was chemically modified into two categories: natural rubber grafted poly(vinyl acetate) copolymer (NR-g-PVAc) and block copolymers (PLA-NR diblock copolymer and PLA-NR-PLA triblock copolymer). PLA/NR blends were prepared by melting blending in a twin screw extruder and compression molded to obtain a 2-mm thick sheet. The blends contained 10-20 wt% of NR and modified NR, and the impact strength and tensile properties were investigated. The compatibilization effect was determined by DMTA, DSC and SEM. NR-g-PVAc was synthesized by emulsion polymerization to obtain different PVAc graft contents (1%, 5% and 12%). Characterization by DMTA showed an enhancement in miscibility of the PLA/NR-g-PVAc blends. NR-g-PVAc could be used as a toughening agent of PLA and as a compatibilizer of the PLA/NR blend. The block copolymers were synthesized following two routes: (1) hydroxyl telechelic natural rubber (HTNR) and lactide and (2) HTNR and PLA prepolymer. In the former route, lactide was in situ polymerized via a ring opening polymerization to be a PLA block segment during block copolymerization. In the latter route PLA prepolymer was synthesized by a condensation polymerization of L-lactic acid prior to block copolymerization. Both block copolymers acted as good compatibilizers for the PLA/NR blend by increasing the impact strength and decreasing the NR particle size. Triblock copolymers provided higher impact strength than diblock copolymers, and they were a less effective compatibilizer than NR-g-PVAc. In contrast to NR and NR-g-PVAc, the block copolymer was not a good toughening agent for PLA.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Panwiriyarat, Wannarat. "Synthèse et étude des propriétés d'un polyuréthane biosourcé obtenu du caoutchouc naturel et du poly(ε-caprolactone)". Phd thesis, Université du Maine, 2012. http://tel.archives-ouvertes.fr/tel-00795875.

Повний текст джерела
Анотація:
L'objectif de ce travail de thèse était la synthèse d'un nouveau matériau polyuréthane biorsourcé composé par du caoutchouc naturel modifié chimiquement et par du poly(ε-caprolactone), (PCL), en présence ou absence d'isocyanates. Des oligoisoprènes téléchéliques hydroxylés (HTNR) ont été obtenus après époxidation du caoutchouc naturel et réduction des oligomères carbonyles. Plusieurs paramètres ont été étudiés comme la nature et la quantité relative de diisocyanate, le rapport molaire entre diisocyanate et diol (NCO:OH), l'influence de la masse molaire des diols HTNR et PCL, le pourcentage de 1,4-butane diol (BDO, extenseur de chaîne), et le rapport molaire entre les diols HTNR:PCL. Trois types de diisocyanate ont été employés : isophorone diisocyanate (IPDI), toluène-2,4-diisocyanate (TDI) et hexaméthylène diisocyanate (HDI). Masses molaires différentes ont été utilisées pour les diols HTNR et PCL: 1700, 2800 et 2900 g/mol pour HTNR et 530 et 2000 g/mol pour PCL. Le rapport molaire entre NCO:OH était entre 0,75:1,00 - 2,85:1,00. Les PU ont été préparés par la méthode " one shot " et les structures chimiques des HTNR et PU ont été identifiées par 1H-NMR et FTIR. La résistance à la traction et à la rupture ont été étudiées. La caractérisation a été conduite par DSC, DMTA, ATG et spectroscopie Raman. Une étude préliminaire a montré que la masse molaire du PU augmentait avec le rapport NCO:OH et le temps de réaction, et que le chloroforme n'était pas un bon solvant pour obtenir des films. Le tetrahydrofurane était le solvant le plus approprié et il a été utilisé par la suite pour toutes les polymérisations. Le rapport NCO:OH = 1,25:1,00 s'est révélé optimal pour obtenir des films. L'analyse FTIR a permis de vérifier la présence de liaisons uréthane, de points de réticulation et de branchements. Le polyuréthane a montré des propriétés mécaniques excellentes dépendantes de la composition chimique. Si on exclue l'utilisation de PCL2000 et de HDI, le comportement à la traction était caractéristique des élastomères. Les PU étaient amorphes sauf lorsque le HDI a été employé. Duos ce cos été obtenais un PU semi cristallin. Cette cristallinité augmente le module de Young, la résistance à la rupture, la dureté et la stabilité thermique du PU. Pour ce PU ont observé une séparation de phase entre les segments du PCL et du HTNR. Les chaînes plus longues et plus flexibles du HTNR et leur non polarité sont responsables de la diminution des propriétés mécaniques et des températures de transition. Le materiae pane d'un comportement élastomère a un comportement plastique pour un rapport NCO:OH élevé (2,85 :1,00). Le dégréé de réticulation élevé a été retenu comme la cause pour laquelle il n'y avait pas de séparation de phase entre les segments souples et durs. La liaison hydrogène entre le diol PCL et le segment hard a généré des Tg élevées. Les spectres Raman ont montré la formation de la liaison uréthane du PU contenant différents diisocyanates. La synthèse de PU sans diisocyanate a été obtenue grâce à une réaction de polyaddition entre des carbonates cycliques téléchéliques dérivés du PCL et du caoutchouc naturel, et la 1,4-butylène diamine. Les structures contenant des carbonates cycliques ont été obtenues grâce à la modification des groupes OH sur le HTNR et le PCL à groupes carboxyle, utilisant l'anhydride succinique, et a la réaction successive avec le glycérol carbonate.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Biobased chemicals"

1

L, Chum Helena, ed. Polymers from biobased materials. Park Ridge, N.J., U.S.A: Noyes Data Corp., 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

The biobased economy: Biofuels, materials, and chemicals in the post-oil era. Abingdon, Oxon: Routledge, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hans, Langeveld, Meeusen Marieke, and Sanders Johan, eds. The biobased economy: Biofuels, materials and chemicals in the post-oil era. London: Earthscan, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Biomass Research & Development Technical Advisory Committee. Vision: For bioenergy & biobased products in the United States. Wash. D.C: Biomass Research & Development Technical Advisory Committee, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Allan, Eaglesham, and National Agricultural Biotechnology Council (U.S.), eds. The biobased economy of the twenty-first century: Agriculture expanding into health, energy, chemicals, and materials. Ithaca, N.Y: National Agricultural Biotechnology Council, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tracewell, Cara. Biobased Chemicals. de Gruyter GmbH, Walter, 2023.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tracewell, Cara. Biobased Chemicals. de Gruyter GmbH, Walter, 2023.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tracewell, Cara. Biobased Chemicals. de Gruyter GmbH, Walter, 2023.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chum, Helena L. Polymers from Biobased Materials. Elsevier Science & Technology Books, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Advanced Bioprocessing for Alternative Fuels, Biobased Chemicals, and Bioproducts. Elsevier, 2019. http://dx.doi.org/10.1016/c2018-0-02436-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Biobased chemicals"

1

Cameron, Douglas C., and Jeff Lievense. "Biobased Industrial Chemicals." In Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4–7, 2003, in Breckenridge, CO, 805–6. Totowa, NJ: Humana Press, 2004. http://dx.doi.org/10.1007/978-1-59259-837-3_65.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Powell, Randall W., Clare Elton, Ross Prestidge, and Helene Belanger. "Biobased Chemicals and Polymers." In Plant Biomass Conversion, 275–309. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470959138.ch12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ryan, Chris, and Robert Dorsch. "Commercialization of Biobased Products." In Biotechnology for Fuels and Chemicals, 1207–9. Totowa, NJ: Humana Press, 2002. http://dx.doi.org/10.1007/978-1-4612-0119-9_97.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dodds, David, and Bob Humphreys. "Production of Aromatic Chemicals from Biobased Feedstock." In Catalytic Process Development for Renewable Materials, 183–237. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527656639.ch8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cecchi, Teresa. "Biocascading: Platform Molecules, Value Added Chemicals, and Bioactives." In Biobased Products from Food Sector Waste, 169–229. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63436-0_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pontes, R., A. Romaní, M. Michelin, L. Domingues, J. Nunes, and J. Teixeira. "Biobased Fuel and Chemicals from Lignocellulosic Biomass—Prospects and Challenges." In Emerging Trends in Environmental Biotechnology, 117–30. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003186304-10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Carole, Tracy M., Joan Pellegrino, and Mark D. Paster. "Opportunities in the Industrial Biobased Products Industry." In Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4–7, 2003, in Breckenridge, CO, 871–85. Totowa, NJ: Humana Press, 2004. http://dx.doi.org/10.1007/978-1-59259-837-3_71.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Becker, Judith, Stefanie Kind, and Christoph Wittmann. "Systems Metabolic Engineering of Corynebacterium glutamicum for Biobased Production of Chemicals, Materials and Fuels." In Systems Metabolic Engineering, 151–91. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4534-6_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Cosío-Cuadros, R., Gema Núñez-López, Martha F. Martín del Campo, Jorge A. Rodríguez, Juan C. Mateos-Díaz, and Georgina Sandoval. "Agro-Industrial Wastes to Sustainable Bio-Oil Fuels, Enzymes and Biobased Chemicals in Yeast-Biorefineries." In Microbiology of Green Fuels, 44–64. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003171157-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sridevi, Veluru, Dadi V. Suriapparao, Hemanth Kumar Tanneru, and K. S. N. V. Prasad. "An Overview on Organosolv Production of Bio-refinery Process Streams for the Production of Biobased Chemicals." In Clean Energy Production Technologies, 345–74. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4312-6_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Biobased chemicals"

1

Erhan, Sevim Z., and Brajendra K. Sharma. "Development and Tribochemical Evaluation of Biobased Antiwear Additive." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81444.

Повний текст джерела
Анотація:
Seed oils are renewable resources, environmentally friendly non toxic fluids, pose no work place health hazards and are readily biodegradable. The amphiphilic character of these oils makes them an excellent candidate as lubricants and as specialty chemicals. Industrial application of seed oils is limited due to poor thermo-oxidative stability, poor low temperature fluidity, and other tribochemical degrading processes that occur under severe conditions of temperature, pressure, shear stress, metal surface and environment. This work describes the development and tribochemical evaluation of seed oil based antiwear additive through chemical modification. The current process retains the seed oil structure, eliminates poly-unsaturation in the molecule, and adds polar functional groups that significantly improve adsorption on metal surfaces. These compounds also contribute to the formation of protective films through chemical reaction during the tribochemical process. Comparative tests with commercial products demonstrate its effectiveness.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Marmur, Breanna L., and Theodore J. Heindel. "Effect of Biomass Inlet Concentration on Mixing in a Double Screw Pyrolyzer." In ASME/JSME/KSME 2015 Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ajkfluids2015-34422.

Повний текст джерела
Анотація:
The renewable energy industry relies on double screw pyrolyzers to convert cellulosic biomass into bio-oil. Bio-oil can then be converted into synthetic gasoline, diesel, and other transportation fuels, or can be converted into biobased chemicals for a wide range of applications. One of the processes by which bio-oil is produced in industry today is through fast pyrolysis, the fast thermal decomposition of organic material in the absence of oxygen. One type of pyrolyzer, a double screw pyrolyzer, features two intermeshing screws encased in a reactor which mechanically conveys and mixes the biomass and heat carrier media. The mixing effectiveness of the two materials in the pyrolyzer is directly correlated to the bio-oil yield — the better the mixing, the higher the yields. This study investigates the effects of varying biomass inlet concentrations on mixing effectiveness. Using 300–500 μm glass beads as simulated heat carrier media and 500–6350 μm red oak particles as biomass, a cold-flow double screw mixer with 360° of optical access and full sampling capabilities was used to collect mixing data. Advanced optical visualization and composition analysis paired with statistical analysis was used to evaluate the effects of varying the biomass inlet concentrations. Biomass inlet concentrations in terms of glass beads to red oak mass flow rate ratios (GB:RO) of 10:1, 20:1, 30:1, 40:1, and 50:1 were investigated, and correspond to biomass mass fractions of 9%, 4.7%, 3.2%, 2.4% and 1.9%. Both qualitative and quantitative analysis indicates that a counter rotating down pumping particle flow is best, and smaller biomass inlet concentrations noticeably reduce mixing effectiveness.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Beyler Çiğil, Aslı. "Biobased intelligent packaging application." In 10th International Symposium on Graphic Engineering and Design. University of Novi Sad, Faculty of technical sciences, Department of graphic engineering and design,, 2020. http://dx.doi.org/10.24867/grid-2020-p40.

Повний текст джерела
Анотація:
Changes in consumer preferences in order to reach safe food have led to innovations in packaging technologies. Intelligent and active packaging is a constantly developed packaging technology that plans to offer safer and higher quality products. Active packaging refers to the inclusion of additives in the package in order to maintain and / or extend shelf life and product quality. Intelligent systems, on the other hand, are systems that monitor the status of packaged food during this entire period to provide information about the quality of the packaged during storage and transportation. The aim of this study is to produce a completely natural intelligent packaging material using rosehip extract and biopolymer, which is a substance that naturally changes color with pH. In this study, cellulose acetate butyrate biobased films containing different rates (1, 2.5, 5, 10 wt%) of rosehip extract were produced by solvent casting method. The chemical structure the rosehip containing biobased film and blank biobased film were characterized by ATR-FTIR. The transparency of prepared five different films were determined by UV spectroscopy. The color characteristic of blank and rosehip containing films measured with spectrophotometer. Surface energy of all films and contact angles were determined with goniometer. Biobased films were printed and printability parameters such as color, gloss, contact angle, surface tension were examined. It is concluded that blank biobased film is colorless, transparent and all biobased films have good printability. It was determined that the amount of rosehip extract increased the color change visibly. The biobased films obtained are pink in acidic medium and yellow-green in alkaline medium. The results prove that biobased film produced with rosehip extract and cellulose acetate butyrate can be used in intelligent packaging applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sharma, Brajendra, and Derek Vardon. "Biobased emulsions for lubrication applications." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/vyab9723.

Повний текст джерела
Анотація:
Vegetable oil-based oil-in-water emulsions have been evaluated for their potential application as metalworking fluids. A variety of vegetable oils, including chemically modified vegetable oils, are used in this study. Additionally, several surfactants including both commercial and lab synthesized were tested. They had HLB values ranging from 9-13.1 and were evaluated for their ability to obtain emulsions suitable enough for lubrication applications. The epoxidized oils were found to form stable oil-in-water emulsions using several different surfactant systems. It was found that surfactants with an HLB value slightly over 9 work well with vegetable oils to form stable emulsions. The lubricant performance of these emulsions, studied using the 4-ball test method, showed that even 1% emulsions of the vegetable oils are effective lubricants.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pagliaro, Mario. "Biobased Glycerol: The Profitable Platform Biochemical of the Chemical Industry." In Virtual 2021 AOCS Annual Meeting & Expo. American Oil Chemists’ Society (AOCS), 2021. http://dx.doi.org/10.21748/am21.362.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Biresaw, Girma, Terry A. Isbell, and Steven C. Cermak. "Film-Forming Properties of Estolides." In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-64089.

Повний текст джерела
Анотація:
Estolides are biobased materials obtained from synthesis of ingredients derived from agricultural products. They are oligoesters obtained by the reaction of fatty acids and/or methyl esters with a double bond. By varying the chemistries of the starting materials and the reaction conditions, estolides of varying chemical structures, and physical properties are obtained. Estolides have been found to have suitable properties for some lubrication applications. However, the effect of estolide chemical/physical characterstics on its tribological properties have yet to be understood. In this work, the effect of estolide physical/chemical variability on its film-forming properties is examined.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lang, Qian, He Yu Chen, and Jun Wen Pu. "The research of chemical modification on fast-growing wood." In 2012 International Conference on Biobase Material Science and Engineering (BMSE). IEEE, 2012. http://dx.doi.org/10.1109/bmse.2012.6466229.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chen, Heyu, Qian Lang, Zifeng Feng, Yilin Xu, and Junwen Pu. "Characterization of hot-pressed poplar wood with chemical pretreatment." In 2012 International Conference on Biobase Material Science and Engineering (BMSE). IEEE, 2012. http://dx.doi.org/10.1109/bmse.2012.6466230.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wang, Ming-Chung, Pao-Chi Chen, and Ching-Yi Lee. "A Study on Vocational Knowledge and Skill Requirements for Technological and Vocational University Graduates in Bioenergy and Biobased Products Industries." In 14th Asia Pacific Confederation of Chemical Engineering Congress. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-1445-1_621.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Luo, Sha, Yiqiang Wu, and Jun Huang. "Thermal and chemical properties of benzene-alcohol extractives from two species of redwood." In 2012 International Conference on Biobase Material Science and Engineering (BMSE). IEEE, 2012. http://dx.doi.org/10.1109/bmse.2012.6466202.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Biobased chemicals"

1

Gustafson, Richard. Development of the University of Washington Biofuels and Biobased Chemicals Process Laboratory. Office of Scientific and Technical Information (OSTI), February 2014. http://dx.doi.org/10.2172/1117862.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

McNeary, Wilson. Enhanced Catalyst Durability for the Oxidative Production of Biobased Chemicals: Cooperative Research and Development Final Report, CRADA Number CRD-19-00827. Office of Scientific and Technical Information (OSTI), December 2022. http://dx.doi.org/10.2172/1903770.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Fatigati, M. A., N. Sumait, and M. Carver. The creation of greenhouse gas benefits via biobased fuel and chemical production within the country of Guyana. Office of Scientific and Technical Information (OSTI), March 1998. http://dx.doi.org/10.2172/764177.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії