Добірка наукової літератури з теми "Bio-medical Applications"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Bio-medical Applications".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Bio-medical Applications"

1

Gisbert-Garzarán, Miguel, and María Vallet-Regí. "Nanoparticles for Bio-Medical Applications." Nanomaterials 12, no. 7 (April 2, 2022): 1189. http://dx.doi.org/10.3390/nano12071189.

Повний текст джерела
Анотація:
The Special Issue of Nanomaterials “Nanoparticles for Biomedical Applications” highlights the use of different types of nanoparticles for biomedical applications, including magnetic nanoparticles, mesoporous carbon nanoparticles, mesoporous bioactive glass nanoparticles, and mesoporous silica nanoparticles [...]
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sehgal, Jyoti, and Manoj Kumar. "12-Bit Clock Gated SAR-ADC for Bio-Medical Applications." Indian Journal Of Science And Technology 15, no. 34 (September 13, 2022): 1648–54. http://dx.doi.org/10.17485/ijst/v15i34.1033.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yokota, Tomoyuki. "Bio Medical Applications of Organic Devices." Materia Japan 61, no. 11 (November 1, 2022): 769–73. http://dx.doi.org/10.2320/materia.61.769.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sathyan, Anoop, Abraham Itzhak Weinberg, and Kelly Cohen. "Interpretable AI for bio-medical applications." Complex Engineering Systems 2, no. 4 (2022): 18. http://dx.doi.org/10.20517/ces.2022.41.

Повний текст джерела
Анотація:
This paper presents the use of two popular explainability tools called Local Interpretable Model-Agnostic Explanations (LIME) and Shapley Additive exPlanations (SHAP) to explain the predictions made by a trained deep neural network. The deep neural network used in this work is trained on the UCI Breast Cancer Wisconsin dataset. The neural network is used to classify the masses found in patients as benign or malignant based on 30 features that describe the mass. LIME and SHAP are then used to explain the individual predictions made by the trained neural network model. The explanations provide further insights into the relationship between the input features and the predictions. SHAP methodology additionally provides a more holistic view of the effect of the inputs on the output predictions. The results also present the commonalities between the insights gained using LIME and SHAP. Although this paper focuses on the use of deep neural networks trained on UCI Breast Cancer Wisconsin dataset, the methodology can be applied to other neural networks and architectures trained on other applications. The deep neural network trained in this work provides a high level of accuracy. Analyzing the model using LIME and SHAP adds the much desired benefit of providing explanations for the recommendations made by the trained model.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yap, Yee Ling, Yong Sheng Edgar Tan, Heang Kuan Joel Tan, Zhen Kai Peh, Xue Yi Low, Wai Yee Yeong, Colin Siang Hui Tan, and Augustinus Laude. "3D printed bio-models for medical applications." Rapid Prototyping Journal 23, no. 2 (March 20, 2017): 227–35. http://dx.doi.org/10.1108/rpj-08-2015-0102.

Повний текст джерела
Анотація:
Purpose The design process of a bio-model involves multiple factors including data acquisition technique, material requirement, resolution of the printing technique, cost-effectiveness of the printing process and end-use requirements. This paper aims to compare and highlight the effects of these design factors on the printing outcome of bio-models. Design/methodology/approach Different data sources including engineering drawing, computed tomography (CT), and optical coherence tomography (OCT) were converted to a printable data format. Three different bio-models, namely, an ophthalmic model, a retina model and a distal tibia model, were printed using two different techniques, namely, PolyJet and fused deposition modelling. The process flow and 3D printed models were analysed. Findings The data acquisition and 3D printing process affect the overall printing resolution. The design process flows using different data sources were established and the bio-models were printed successfully. Research limitations/implications Data acquisition techniques contained inherent noise data and resulted in inaccuracies during data conversion. Originality/value This work showed that the data acquisition and conversion technique had a significant effect on the quality of the bio-model blueprint and subsequently the printing outcome. In addition, important design factors of bio-models were highlighted such as material requirement and the cost-effectiveness of the printing technique. This paper provides a systematic discussion for future development of an engineering design process in three-dimensional (3D) printed bio-models.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pan, Min, K. Annamalai, and Yousheng Tao. "Applications of Nanocarbons in Bio-Medical Devices." Recent Innovations in Chemical Engineering (Formerly Recent Patents on Chemical Engineering 08, no. 999 (May 9, 2016): 1. http://dx.doi.org/10.2174/2405520408666160509165356.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Luprano, Jean. "Bio-Sensing Textile for Medical Monitoring Applications." Advances in Science and Technology 57 (September 2008): 257–65. http://dx.doi.org/10.4028/www.scientific.net/ast.57.257.

Повний текст джерела
Анотація:
The commercial systems using intelligent textiles that start to appear on the market perform physiological measurements such as body temperature, electrocardiogram, respiration rate, etc. and target sport and healthcare applications. Biochemical measurements of body fluids combined with available health monitoring technology will extend these systems by addressing important health and safety issues. BIOTEX, standing for Bio-sensing Textile for Health Management, is a European project, which aims at developing dedicated biochemical sensing techniques that can be integrated into textiles. Such a system would be a major breakthrough for personalized healthcare and would allow for the first time the monitoring of body fluids with sensors distributed in a textile substrate. The potential applications include isolated people, convalescents and patients with chronic diseases, sports performance assessment and training. The project is addressing several challenges, among which: sweat collection and delivery to the sensors, high sensitivity with a wearable system, wearability issues, sensor calibration and lack of research in sweat analysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ul-Islam, Mazhar, and Sher Bahadar Khan. "Bio-nanocomposite for Medical and Environmental Applications." Current Nanoscience 17, no. 3 (June 15, 2021): 349–50. http://dx.doi.org/10.2174/157341371703210531152120.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ma, Xin, Mathilde Lepoitevin, and Christian Serre. "Metal–organic frameworks towards bio-medical applications." Materials Chemistry Frontiers 5, no. 15 (2021): 5573–94. http://dx.doi.org/10.1039/d1qm00784j.

Повний текст джерела
Анотація:
This mini review summarises the progress in the field of MOFs and their use in biomedical applications, from their early discovery and conception, to more recent achievements including promising in vivo applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Brinksmeier, Ekkard, Oltmann Riemer, Lars Schönemann, H. Zheng, and Florian Böhmermann. "Microstructuring of Surfaces for Bio-Medical Applications." Advanced Materials Research 907 (April 2014): 213–24. http://dx.doi.org/10.4028/www.scientific.net/amr.907.213.

Повний текст джерела
Анотація:
In recent years microfluidic devices became of great interest, as they offer a wide range of bio-analytical and fluid processing applications through the utilization of size effects. Especially a mass manufacturing of disposable polymeric microfluidic devices by hot embossing or injection molding is expected to have high economic potential. It is known, that channels and areas showing a localized change in wettability can considerably improve fluid processing tasks like mixing or droplet generation. Chemical approaches, like the polymerization of lauryl acrylate, were successfully shown to achieve hydrophobic coatings for micro channels but are not suitable for a mass manufacturing. Since microstructures are known to provide water repellent properties of surfaces, this paper focuses on the applicability of diamond grooving and Diamond Micro Chiseling (DMC) processes for the manufacture of microstructured areas in brass molds inserts, in order to achieve hydrophobic properties of their replica. Major design features of structures, like a height range of 6 to 16μm or aspect ratios in between 0.5 and 3.2 are derived from the natural example of the lotus leaf. Molding is carried out by using a two component silicone filler. The performance of the replicated hydrophobic surfaces is evaluated by droplet contact angle measurements. After presenting methodology and results, the paper will conclude on how to transfer the investigated microstructuring methods to the manufacture of mold inserts for the replication of polymeric microfluidic chips with localized hydrophobic areas and channels.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Bio-medical Applications"

1

Puybareau, Elodie. "Motion analysis for Medical and Bio-medical applications." Thesis, Paris Est, 2016. http://www.theses.fr/2016PESC1063/document.

Повний текст джерела
Анотація:
L’analyse du mouvement, ou l’analyse d’une séquence d’images, est l’extension naturelle de l’analyse d’images à l’analyse de séries temporelles d’images. De nombreuses méthodes d’analyse de mouvement ont été développées dans le contexte de la vision par ordinateur, incluant le suivi de caractéristiques, le flot optique, l’analyse de points-clef, le recalage d’image, etc. Dans ce manuscrit, nous proposons une boite a outils de techniques d’analyse de mouvement adaptées à l’analyse de séquences biomédicales. Nous avons en particulier travaillé sur les cellules ciliées qui sont couvertes de cils qui battent. Elles sont présentes chez l’homme dans les zones nécessitant des mouvements de fluide. Dans les poumons et les voies respiratoires supérieures, les cils sont responsables de l’épuration muco-ciliaire, qui permet d’évacuer des poumons la poussière et autres impuretés inhalées. Les altérations de l’épuration mucociliaire peuvent être liées à des maladies touchant les cils, pouvant être génétiques ou acquises et peuvent être handicapantes. Ces maladies peuvent être caractérisées par l’analyse du mouvement des cils sous un microscope avec une résolution temporelle importante. Nous avons développé plusieurs outils et techniques pour réaliser ces analyses de manière automatiques et avec une haute précision, à la fois sur des biopsies et in-vivo. Nous avons aussi illustré nos techniques dans le contexte d’éco-toxicité en analysant le rythme cardiaque d’embryons de poissons
Motion analysis, or the analysis of image sequences, is a natural extension of image analysis to time series of images. Many methods for motion analysis have been developed in the context of computer vision, including feature tracking, optical flow, keypoint analysis, image registration, and so on. In this work, we propose a toolbox of motion analysis techniques suitable for biomedical image sequence analysis. We particularly study ciliated cells. These cells are covered with beating cilia. They are present in humans in areas where fluid motion is necessary. In the lungs and the upper respiratory tract, Cilia perform the clearance task, which means cleaning the lungs of dust and other airborne contaminants. Ciliated cells are subject to genetic or acquired diseases that can compromise clearance, and in turn cause problems in their hosts. These diseases can be characterized by studying the motion of cilia under a microscope and at high temporal resolution. We propose a number of novel tools and techniques to perform such analyses automatically and with high precision, both ex-vivo on biopsies, and in-vivo. We also illustrate our techniques in the context of eco-toxicity by analysing the beating pattern of the heart of fish embryo
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wu, Hao. "Efficient Algorithms for Applications in Bio-medical Data Processing." Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/23411.

Повний текст джерела
Анотація:
In this thesis, new high-performance algorithms and machine learning models are developed to solve challenging problems in the bio-medical field. We first focus on developing high performance parallel algorithms for all pairwise computation in bio-informatics applications such as construction of transcription factor interaction networks. We then develop an automatic optic disc detection algorithm using sparse dictionary learning in retinal images for the medical field. All pairwise computation is defined as performing computation between each and every pair of the elements in a given data set. Many of such applications require multiple terabytes of main memory and take multiple peta floating point operations to complete. Thus, large HPC clusters and highly efficient parallel algorithms are vital. Traditional methods for large scale distributed computing usually suffer from scalability issues. This thesis introduces some new effective and efficient parallel algorithm designs. We first design an efficient one-dimensional (1D) ring algorithm which doubles the block size compared to traditional ring algorithms and reduces the total communication cost by half. Based on the 1D ring we further develop a two-dimensional (2D) ring algorithm. When increasing the compute nodes, instead of reducing the block size, we make multiple copies of the original data blocks in the 1D ring and distribute them across the added compute nodes in the other dimension. By properly organizing the compute nodes the communication overhead can be reduced to a minimum. Experiments on supercomputer show that our new algorithms perform better in efficiency and scalability compared to conventional methods for large scale all pairwise computation in bio-informatics applications. The optic disc is one of the most important fundus structures in the retinal image of the human eye. Effective and accurate detection of the optic disc in a colour retinal image is a challenging topic. Inspired by the fact that humans can locate optic disc in a retinal image by observing local features, a local feature spectrum analysis (LFSA) method is proposed in this thesis. A local feature dictionary is defined for the reconstruction process of optic disc candidate images. The frequency of each atom, or spectrum in the dictionary is utilized along with sparse dictionary selection method for classification. Our innovative approach can effectively detect optic disc in a retinal image and the influence caused by the variable spatial positions of local features can be effectively reduced. Unlike most conventional approaches, segmentation of blood vessels is not required in our method. Our LFSA method is simple and robust, making it one of the best options for automated screening systems in medical image processing. Performance evaluation of our approach is conducted with the largest publicly available data set and comparisons against conventional approaches are made. Results indicate that the LFSA method achieves more accurate and reliable optic disc detection results.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Alhazime, Ali. "Development of novel compact laser sources for bio-medical applications." Thesis, University of Dundee, 2014. https://discovery.dundee.ac.uk/en/studentTheses/ec837854-dd0c-44bb-9b1c-dd4a1fa181d3.

Повний текст джерела
Анотація:
The focus of this thesis relates to the development and characterisation of novel semiconductor based lasers sources tunable in the broad spectral ranges that are unattainable by conventional lasers due to a lack of suitable laser gain materials. Within the first part, the broad gain spectrum from quantum dot (QD) materials is seen to be an appealing feature for the development of broadly tunable lasers, broadband amplifiers and ultra short pulse generation. As has been previously shown quantum-dot external-cavity passively mode-locked lasers (QD-ECMLLs) are excellent candidates for versatile ultra short pulse generation. This is due to the flexibility that anexternal-cavity mode-locking configuration can offer in terme of a broad tunability for both repetition rate and wavelength which could be achieved. Similarly quantum-dot semiconductor optical amplifiers (QD-SOA) are suitable for the broadband pulse power amplification. Furthermore, master oscillator power amplifier (MOPA) picosecond optical pulse sources using all chirped QD structures were investigated using the MOPA system consisting of two parts, firstly QD-ECMLL and secondly a tilted taper QD-SOA. A further investigation involved a comparison between 1st-order diffraction grating and 2nd-order diffraction grating for this tunable QD-MOPA. The result found was the maximum fundamental mode-locking (FML) wavelength tuning range. Nearly 100 nm (from 1187nm to 1283nm) wavelength tuning range was achieved under a 900 mA current applied to the gain chip with a 2nd-order grating diffraction. Furthermore it was also demonstrated that the peak power spectral density achieved with the 2nd-order diffraction (max; 31.4dBm/nm) is much higher (2-4dB) than that from the 1st-order diffraction under similar conditions. The narrowest optical spectrum width was achieved from the 2nd-order diffraction and the narrowest pulse of 13 ps was found for the setup with the 1st-order diffraction grating. The wavelength tuning range from both orders can be amplified by increasing the injection current of the gain chip without deteriorating the stability of FML. The second part of this thesis focussed on experimental testing of EP-VECSELs, also known as electrically-pumped semiconductor disc lasers (SDLs), which produce high multi watt output power with diffraction limited output beam profile. EP-VECSELs have great potential within the applications where the watt level CW output power and mode-locked light with picosecond pulses sources are required.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hasan, Saad Ahmed. "Design of low power electronic circuits for bio-medical applications." Thesis, University of Liverpool, 2011. http://livrepository.liverpool.ac.uk/3024667/.

Повний текст джерела
Анотація:
The operational transconductance amplifier, OTA is one of the basic building blocks in many analogue circuit applications. The low power consumption is an essential parameter in modem electronic designs for many areas particularly for portable devices and biomedical applications. For biomedical applications, the low- power low-voltage OTA-C filters operating at low-frequency ranges are desired. The low-power, low-voltage operation of electronic devices is very important for applications such as hearing aids, pacemakers, and EEG. The importance of such operation is due to the need to implant these electronic circuits inside the body of the patient for long times before re-charging or replacing the batteries as for pacemakers and future hearing aids. The small size lightweight wearable EEG systems are preferable for applications ranging from epilepsy diagnosis to brain-computer interfaces. The low power consumption is achieved by operation at very small levels of current. So, in such applications the operation in the nano-ampere current range is essential to ensure power consumption of nW or few uW. Such very small currents are obtained through the operation of MOS transistors in their sub-threshold regime. The design space in such applications is restricted by their specifications which in turn based on the nature of the application. In this work, the design and implementation of OTA-C filter topologies for two bio-medical applications are made and discussed. Those applications are represented by hearing aids and EEG applications. In hearing aids, the work focused on cochlear implant and specifically on its most important stage represented by the filter. Four OTA-C filter topologies are proposed and two of them are tested experimentally. For the filter in a hearing aid system, besides its low power operation, it is required to operate with a relatively high dynamic range of 60dB and above. The dynamic range is the operation space of the filter that specified by the range of signals which can process properly. It is bounded by the maximum power signal less than its distortion overhead level to the minimum power signal more than its noise floor. The maximum signal level the filter can perform properly represents its input linear range. The challenge in CMOS OTA sub-threshold operation is the very small input linear range which makes it extremely difficult to build low-power consumed OTA-C filters with a wide dynamic range, DR. In this work, an OTA with an input linear range of ±900mV for total harmonic distortion, THD<5% is proposed using MOSFET bumping and capacitor attenuation techniques, combined for the first time. The minimum signal level the filter can distinguish from noise is still relatively small with the use of appropriate OTA architecture and using the gm/ID methodology for MOSFET sizing. So, programmable CMOS OTA-C band-pass filter topologies operating in sub-threshold region with a dynamic range of 65dB for use in bionic ears were proposed. The power consumption for the proposed filters is in nano- Watt range for their frequency range of (lOO-I Ok) Hz. Also, a 4-channel OTA-C filter bank is designed and tested. The EEG signals have small amplitudes and frequency bands ranges of uV'S and (l-40) Hz respectively. The important issue is to design filters with small noise floor with white dominant. This is achieved with the proposed OTA which is of relatively simple architecture and with operation in the deep weak-inversion region using ±1.5V supply rails. The OTA-C filter has power consumption in the pico-Watt range for 0, e, and a signals and less than 3nW for B signals. Another topology is suggested for future work.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hartleb, Carina. "Creation and Evaluation of Solid Optical Tissue Phantoms for Bio-Medical Optics Applications." Thesis, Linköping University, Department of Biomedical Engineering, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-3607.

Повний текст джерела
Анотація:

Because of their compatibility and precise results bio-optical methods based on measurements of the optical tissue properties gain importance in non-invasive medical therapy and diagnostic. For development and standardization of medical devices optical phantoms are suitable. The present report handles the creation and evaluation of solid tissue phantoms, made up of Agar, Vasolipid and ink utilizing different mixture ratios. After cutting the models in slices of 0.2 to 1.1 mm thickness the absorption- and scattering coefficient were measured using a collimated laser beam setup. As result of the study a formula for the preparation of solid optical tissue phantoms with desired optical properties was found, that is valid for models containing 1.12 % Agar.

Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ramosoeu, Makhabo Khabiso Ellen. "Characterisation and static behaviour of the DMLS Ti-6AI-4V for Bio-medical applications." Thesis, Bloemfontein: Central University of Technology, Free State, 2015. http://hdl.handle.net/11462/275.

Повний текст джерела
Анотація:
Thesis (M. Tech. (Engineering: Mechanical)) -- Central University of Technology, Free State,
The Centre for Rapid Prototyping and Manufacturing (CRPM) at the Central University of Technology, Free State (CUT) manufactures implants using Electro Optical Systems (EOS) titanium Ti-6Al-4V alloy powder (further referred to as EOS Ti64 powder) by means of Direct Metal Laser Sintering (DMLS) process on the EOSINT M 270 machine. For this reason, there is a need to characterise and acquire knowledge of the basic properties of direct metal laser sintered EOS titanium Ti-6Al-4V alloy samples (further referred to as DMLS Ti64 samples) under static tensile loading in order to provide the CRPM with engineering design data. The first objective of this Master’s study is to acquire the characteristics of EOS Ti64 powder in order to ascertain its suitability in the DMLS process. Secondly, the study aims to assess tensile properties and elastic constants of DMLS Ti64 samples produced from the set process parameters of EOSINT M 270 machine. Thirdly, it is to investigate microstructures of DMLS Ti64 samples subjected to different heat treatment techniques which will eventually assist in the determination of a suitable heat treatment technique that will yield higher ductility. Finally, the study aims to validate the static behaviour of DMLS Ti64 samples subjected to the static tensile loading up to a yield point in order to determine failure due to yielding. The samples were manufactured at CRPM Bloemfontein. The metallographic examinations, heat treatment and the determination of mechanical properties were done at the CSIR in Pretoria. Optical Microscope (OM) and Scanning Electron Microscope (SEM) were used to determine microstructures of DMLS Ti64 samples while Energy Dispersive X-Ray (EDX) analyses were performed using SEM. The samples were heat treated at temperatures of 700, 1000 and 1100°C respectively, and subsequently either cooled with the furnace, air or were water quenched. The mechanical property tests included tensile, hardness and determination of elastic constants. The static behaviour of DMLS Ti64 samples under static tensile load up to a yield point was predicted and verified using ABAQUSTM Finite Element Analysis (FEA). The stress-strain curves from ABAQUSTM were interpreted using MDSolid program. The point of interest was Von Mises yield stress at 0.2% offset, in order to determine failure due to yielding. EOS Ti64 powder particles were spherical in shape and the alpha and alpha+beta phases were identified. As-laser sintered samples possess a very fine and uniform alpha case with islands of martensitic plates; samples were brittle and showed low levels of ductility with an average elongation of 2.6% and an area reduction of 3.51%. Ultrasonic test results showed that DMLS Ti64 samples have Young’s modulus of 115 GPa, Shear modulus of 43 GP, a bulk modulus of 109 GPa and Poisson’s ratio of 0,323 while the density was 4.4 g/cm3. Slow cooling of DMLS Ti64 samples from 1000 and 1100oC resulted in a microstructure constituted more by the alpha phase of lower hardness than those from 700oC and as-laser sintered samples. High hardness was obtained by water quenching. The water quenched samples showed martensitic transformation and high hardness when compared to furnace cooled samples. Beta annealing tailored a microstructure of as-laser sintered samples into a lamellar structure with different lath sizes as per cooling rate. Beta annealing improved ductility levels up to 12.67% elongation for samples furnace cooled for 4 hours and even higher to 18.11% for samples furnace cooled for 34 hours, while area reduction increased to 25.94% and 33.39%, respectively. Beta annealing conversely reduced yield strength by 19.89% and ultimate tensile strength was reduced by 23.66%. The calculated maximum Von Mises stresses found were similar to the FEA interpreted results. The average percentage error, without the stress concentration factor, was approximately 8.29%; with the stress concentration factor included, it was 0.07%. The small reaction forces induced in both x-axis and z-axis contributed to this error of 0.07% between the calculations and ABAQUSTM FEA results. Samples that were not heat treated fell outside the Von Mises criterion and failed due to yielding. This justified the brittleness found in the tensile test results where elongation and area reduction were 2.6% and 3.51% respectively. However, all samples that were heat treated fell within the Von Mises criterion. The objectives of this study were achieved; the mechanical properties were similar to those of standard specification for wrought annealed Ti-6Al-4V alloy for surgical implant applications and EOS GmbH manufacturer’s material data sheet. DMLS Ti64 samples must be beta annealed in order to attain higher levels of ductility. A recommendation was made to further investigate the effect of heat treatment on the other mechanical properties. Furthermore, detailed results of basic properties of DMLS Ti64 samples are provided in the appendices in chart format and were written on a CD disc.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

John, Sween. "A Study of the Synthesis and Surface Modification of UV Emitting Zinc Oxide for Bio-Medical Applications." Thesis, University of North Texas, 2009. https://digital.library.unt.edu/ark:/67531/metadc10990/.

Повний текст джерела
Анотація:
This thesis presents a novel ZnO-hydrogel based fluorescent colloidal semiconductor nanomaterial system for potential bio-medical applications such as bio-imaging, cancer detection and therapy. The preparation of ZnO nanoparticles and their surface modification to make a biocompatible material with enhanced optical properties is discussed. High quality ZnO nanoparticles with UV band edge emission are prepared using gas evaporation method. Semiconductor materials including ZnO are insoluble in water. Since biological applications require water soluble nanomaterials, ZnO nanoparticles are first dispersed in water by ball milling method, and their aqueous stability and fluorescence properties are enhanced by incorporating them in bio-compatible poly N-isopropylacrylamide (PNIPAM) based hydrogel polymer matrix. The optical properties of ZnO-hydrogel colloidal dispersion versus ZnO-Water dispersion were analyzed. The optical characterization using photoluminescence spectroscopy indicates approximately 10 times enhancement of fluorescence in ZnO-hydrogel colloidal system compared to ZnO-water system. Ultrafast time resolved measurement demonstrates dominant exciton recombination process in ZnO-hydrogel system compared to ZnO-water system, confirming the surface modification of ZnO nanoparticles by hydrogel polymer matrix. The surface modification of ZnO nanoparticles by hydrogel induce more scattering centers per unit area of cross-section, and hence increase the luminescence from the ZnO-gel samples due to multiple path excitations. Furthermore, surface modification of ZnO by hydrogel increases the radiative efficiency of this hybrid colloidal material system thereby contributing to enhanced emission.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

John, Sween Vaidyanathan Vijay Varadarajan. "A study of the synthesis and surface modification of UV emitting zinc oxide for bio-medical applications." [Denton, Tex.] : University of North Texas, 2009. http://digital.library.unt.edu/permalink/meta-dc-10990.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dobbelaar, Martinus. "Conception et réalisation de systèmes d’exposition plasma nanoseconde pour des applications biomédicales." Thesis, Pau, 2017. http://www.theses.fr/2017PAUU3040/document.

Повний текст джерела
Анотація:
Les plasmas froids dans l’air à pression atmosphérique ont trouvé de nombreuses applications ces dernières années. Grâce à une chimie très réactive, les plasmas froids offrent une solution prometteuse pour le traitement bio-médical. Dans ce contexte, deux dispositifs d’exposition au plasma sont présentés :• le premier dispositif permet de générer des DBD (Décharges à Barrière Diélectrique) sur une échelle de temps nanoseconde (ns-DBD). L’échantillon biologique joue le rôle d’une électrode. La décharge se développe dans l’intervalle d’air entre la surface du diélectrique et l’échantillon biologique.• le.second dispositif d’exposition permet de générer des DBD de surface sur une échelle de temps nanoseconde (ns-SDBD). La décharge se forme le long de la surface du diélectrique, à proximité de l’électrode active. Pendant l’exposition au plasma, l’échantillon est placé face à l’applicateur. Contrairement à l’applicateur DBD, la décharge n’est pas directement en contact avec la solution biologique.Les deux systèmes d’exposition au plasma sont conçus de façon similaire, leurs dimensions autorisent l’exposition d’un échantillon biologique placé dans une boite de Petri classique. La cible biologique est un ensemble de cellules cancéreuses placées dans une solution de culture. Le travail présenté est essentiellement expérimental. Il se concentre sur la caractérisation électrique des décharges. Le plasma est créé avec des impulsions haute tension (de 4 kV à 11 kV), sur des temps très courts (de 10 ns à 14 ns de largeur) et avec des temps de montée brefs (2,5 ns, en fonction du générateur utilisé). Dans la configuration ns-DBD, l’énergie déposée par le plasma par impulsion est de l’ordre du mJ. En configuration ns-SDBD, l’énergie déposée est calculée, elle est de l’ordre de quelques dizaines de μJ. Une étude préliminaire sur le traitement d’échantillons biologiques est réalisée dans la configuration ns-SDBD. La viabilité de cellules de glioblastome est présentée en fonction de l’énergie déposée dans le plasma par impulsion. Selon les résultats de cette première étude, le plasma ns-SDBD a un effet sur la viabilité des cellules exposées dans les conditions décrites
Cold plasmas in atmospheric pressure air have been used in many different applications in the past few years. Because of its high chemical reactivity, cold plasma treatment appears to be a promising solution for biomedical applications. In this context the study and realization of nanosecond plasma exposure devices for biomedical applications are presented :• the first exposure device generates DBD (Dielectric Barrier Discharge) on a nanosecond time scale (ns-DBD). The biological sample acts as an electrode. The discharges develops in the air gap be- tween the dielectric layer and the biological sample.• The second exposure device generates surface DBD on a nanosecond time scale (ns- SDBD). The discharge develops along the dielectric layer surface close to an active electrode. During plasma exposure, the biological sample faces the discharge device. By contrast to the DBD configuration, the discharge is not in direct contact with the surface of the solution.Both exposure devices are designed in a same way,. the dimensions allow plasma treatment of biological sample contained in a standard Petri dish. The biological targets are cancer cells in a liquid culture medium. The work is mainly experimental. It focuses on the electrical characterization of discharges. The plasma is created using short (10-14 ns of FWHM) high-voltage (up to 4 or 11 kV) pulses of fast rise times (2-5 ns depending on the pulse generator). In the ns-DBD configuration the energy deposited into plasma per pulse is in the order of millijoule. In the ns-SDBD configuration, we calculated the energy deposited into plasma per pulse in a range of tens of μJ. A preliminary study on treatment of biological samples by ns-SDBD plasma is performed. The glioblastoma cells viability was presented as a function of the energy deposited into plasma per pulse. According to this preliminary result the ns-SDBD plasma has an influence on the viability of the cells in the given conditions
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Moothoo, Julien. "Analyse de la faisabilité d’éco-conception de pièces composites à base de ressources renouvelables pour applications médicales." Thesis, Orléans, 2013. http://www.theses.fr/2013ORLE2052/document.

Повний текст джерела
Анотація:
La présente étude traite de l’éco-conception d’une pièce structurale, de type poutre tubulaire, en stratifié bio-composite à base de fibres de lin. A cette pièce à concevoir est associé un cas de charge mécanique combinant flexion et torsion et une tenue face aux produits détergents-décontaminant utilisés en environnement médical. Cette étude a pour objectif de montrer la faisabilité d’employer comme architecture de renfort, une mèche de lin pour la réalisation de la pièce. Ce renfort a la particularité d’être constitué de fibres alignées dont la cohésion est assurée par la présence d’un liant par opposition aux fils constituées de fibres retordues. Tout d’abord, pour établir un cahier des charges de fabrication à partir de ceux déjà en vigueur, le comportement mécanique du bio-composite à l’échelle du pli, puis à celui du stratifié et enfin à l’échelle de la poutre stratifié a été modélisé et des critères de conception et de dimensionnement portant sur la rigidité en flexion et en torsion ont été développés de façon analytique. Associée à cette approche et au choix du renfort, le procédé d’enroulement filamentaire a été retenu pour la mise en oeuvre de la pièce. Afin de montrer la compatibilité de la mèche en entrée et le procédé sélectionné, une étude du comportement en traction de la mèche visant à étudier l’effet des paramètres du procédé sur les propriétés mécaniques de la mèche a été réalisée. Cette deuxième phase a été poursuivie par la réalisation de prototypes, suivant le cahier des charges de fabrication établit, qui ont ensuite été analysés en termes de qualité et de performances mécaniques. La corrélation entre ces résultats et ceux obtenus par l’étape de dimensionnement a permis de valider l’approche. Enfin, dans le but d’intégrer l’interaction avec l’environnement opératoire dans le dimensionnement de la pièce, une étude de la durabilité a été réalisée. Celle-ci permet d’établir des stratégies de dimensionnement pour répondre à l’application
This study aims at eco-designing a structural part, of a hollow beam type, using a laminated flax fibre based bio-composite. The part needs to satisfy a given bending and torsion load case and show compatibility with the cleaning products used in the medical environment. The objective of the study is to investigate the potential of using a flax tow as the reinforcement input for the manufacturing of the beam. The particularity of the reinforcement is that it consists of an assembly of aligned flax fibres held together by a binder as opposed to spun yarns. First, in order to establish the required manufacturing specifications, the mechanical behaviour of the bio-composite at the ply scale, at the laminated and finally at the laminated beam scale was modelled. From this modelling, design and dimensioning criteria based on bending and torsional stiffness were developed analytically. Combining this approach with the choice of the reinforcement, the wet-filament winding process was chosen to manufacture the part. Thus, the tensile behaviour of the flax tow was studied in relation to the process parameters to demonstrate their compatibility. This second phase was followed by the manufacturing of prototypes according the established specifications which were then analysed in terms of quality and mechanical performance. The correlation between experimental results and the model predictions was used to validate the dimensioning approach. Finally and in order to incorporate the interaction of the part with the environment, a durability study was conducted. The latter allows to put forward different dimensioning strategies to meet the required specification
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Bio-medical Applications"

1

Bidanda, Bopaya, and Paulo Bártolo, eds. Virtual Prototyping & Bio Manufacturing in Medical Applications. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-68831-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bidanda, Bopaya, and Paulo Jorge Bártolo, eds. Virtual Prototyping & Bio Manufacturing in Medical Applications. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-35880-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sebastian, Bauer, ed. Introduction to bio-ontologies. Boca Raton: Taylor & Francis, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sāmī, Khūrī, Lhotská Lenka, Renda M. Elena, and SpringerLink (Online service), eds. Information Technology in Bio- and Medical Informatics: Third International Conference, ITBAM 2012, Vienna, Austria, September 4-5, 2012. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lenka, Lhotská, Pisanti Nadia, and SpringerLink (Online service), eds. Information Technology in Bio- and Medical Informatics, ITBAM 2010: First International Conference, Bilbao, Spain, September 1-2, 2010. Proceedings. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Feminist approaches to bioethics: Theoretical reflections and practical applications. Boulder, Colo: Westview Press, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nanocomposite particles for bio-applications: Materials and bio-interfaces. Singapore: Pan Stanford, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tiwari, Ashutosh. Recent developments in bio-nanocomposites for biomedical applications. Hauppauge, N.Y: Nova Science Publishers, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bopaya, Bidanda, and SpringerLink (Online service), eds. Bio-Materials and Prototyping Applications in Medicine. Boston, MA: Springer Science+Business Media, LLC, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sarpeshkar, Rahul. Ultra low power bioelectronics: Fundamentals, biomedical applications, and bio-inspired systems. New York: Cambridge University Press, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Bio-medical Applications"

1

Craninckx, J., and G. Van der Plas. "Low-Power ADCs for Bio-Medical Applications." In Bio-Medical CMOS ICs, 157–90. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-6597-4_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Koch, Martin. "Bio-medical Applications of THz Imaging." In Springer Series in Optical Sciences, 295–316. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45601-8_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lin, Yi-Hsin. "Liquid Crystals for Bio-medical Applications." In Topics in Applied Physics, 337–54. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9392-6_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Merkwirth, Christian, Jörg Wichard, and Maciej J. Ogorzałek. "Ensemble Modeling for Bio-medical Applications." In Modelling Dynamics in Processes and Systems, 119–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-92203-2_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shaban-Nejad, Arash, and Volker Haarslev. "Bio-medical Ontologies Maintenance and Change Management." In Biomedical Data and Applications, 143–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02193-0_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhang, X. C., and Jingzhou Xu. "THz Technology in Bio and Medical Applications." In Introduction to THz Wave Photonics, 221–36. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0978-7_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kanyanta, Valentine, Alojz Ivankovic, and Neal Murphy. "Bio-Medical Applications of Elastomeric Blends, Composites." In Advanced Structured Materials, 227–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-20928-4_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Antil, Reena, Ritu Hooda, Minakshi Sharm, and Pushpa Dahiya. "Alginate-Based Biomaterials for Bio-Medical Applications." In Alginates, 179–204. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119487999.ch10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Arshad, Sadia, Dumitru Baleanu, and Yifa Tang. "Fractional differential equations with bio-medical applications." In Applications in Engineering, Life and Social Sciences, Part A, edited by Dumitru Bǎleanu and António Mendes Lopes, 1–20. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110571905-001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Shome, Subhankar, Mithun Chakraborty, Biswajit Dara, Rabindranath Bera, and Bansibadan Maji. "Modern Radar Topology for Bio-medical Applications." In Lecture Notes in Electrical Engineering, 89–97. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6393-9_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Bio-medical Applications"

1

Joo-Hiuk Son. "Terahertz bio-imaging for medical applications." In 2013 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR). IEEE, 2013. http://dx.doi.org/10.1109/cleopr.2013.6600101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

"Microstructures for Bio&Medical Applications." In 2006 International Semiconductor Conference. IEEE, 2006. http://dx.doi.org/10.1109/smicnd.2006.283969.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jackson, M. "Bio-medical imaging applications of FTS." In Fourier Transform Spectroscopy. Washington, D.C.: OSA, 2003. http://dx.doi.org/10.1364/fts.2003.fthb1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sekitani, T. "Stretchable Sensors for Bio-medical Applications." In 2016 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2016. http://dx.doi.org/10.7567/ssdm.2016.h-3-01.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bhavani, S., and T. Shanmuganantham. "Wearable Antenna for Bio Medical Applications." In 2022 IEEE Delhi Section Conference (DELCON). IEEE, 2022. http://dx.doi.org/10.1109/delcon54057.2022.9753038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kaza, Srilakshmi, Venkata N. Tilak Alapati, and Srinivasa Rao Kunupalli. "Energy Efficient Adder for Bio-Medical Applications." In 2018 IEEE 6th Region 10 Humanitarian Technology Conference (R10-HTC). IEEE, 2018. http://dx.doi.org/10.1109/r10-htc.2018.8629810.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mendez, Alexis. "Optical Fiber Sensors for Bio-Medical Applications." In Optical Sensors. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/sensors.2013.sm2d.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Owen, Cathy H., Maile Giffin, Ray K. Alley, Michael D. Chang, and Len K. Higashi. "High Content Screening for Bio-Medical Applications." In ASME 2006 Multifunctional Nanocomposites International Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/mn2006-17035.

Повний текст джерела
Анотація:
Near-field optics (NFO) overcomes the diffraction limit of light microscopes and permits single molecules to be imaged. Current NFO systems are designed to scan over the object being imaged and has found many applications in the physical sciences. However, there is a lack of tools that allow one to view intracellular processes, which would have many applications in the neurosciences, cancer studies and drug delivery fields. In this work, the authors have developed near-field optical probes, with nanometer apertures, that achieve much higher light throughput than conventional near-field fiber probes. The probes are designed to penetrate a living cell without destroying it. In parallel to this work, a microfluidic device has been designed and fabricated which is part of a high resolution imaging system the authors are developing. The microfluidic device or “CellTray” contains over 7000 individual wells that contain multiple cells. Together the optical probe and CellTray bring us a step closer to a lab-on-a-chip device for biomedical research.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ishida, M., K. Sawada, T. Kawano, D. Akai, and I. Akita. "Bio-Medical Applications of smart sensing devices." In 2012 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2012. http://dx.doi.org/10.7567/ssdm.2012.i-6-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Jie Chen. "Probabilistic-based Circuit Design for Bio-Medical Applications." In 2005 Microwave Electronics: Measurements, Identification, Applications. IEEE, 2005. http://dx.doi.org/10.1109/ssp.2005.1628817.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Bio-medical Applications"

1

Shestakova, Daria, Nataliya Sankova, and Ekaterina Parkhomchuk. Synthesis of magnetic polymer microspheres for bio-medical applications. Peeref, July 2023. http://dx.doi.org/10.54985/peeref.2307p8366482.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії