Добірка наукової літератури з теми "Big Bang Nucleosynthesis (BBN)"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Big Bang Nucleosynthesis (BBN)".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Big Bang Nucleosynthesis (BBN)"

1

Schramm, D. N. "Big Bang Nucleosynthesis." Symposium - International Astronomical Union 187 (2002): 1–15. http://dx.doi.org/10.1017/s0074180900113695.

Повний текст джерела
Анотація:
Big Bang Nucleosynthesis (BBN) is on the verge of undergoing a transformation now that extragalactic deuterium is being measured. Previously, the emphasis was on demonstrating the concordance of the Big Bang Nucleosynthesis model with the abundances of the light isotopes extrapolated back to their primordial values using stellar and Galactic evolution theories. Once the primordial deuterium abundance is converged upon, the nature of the field will shift to using the much more precise primordial D/H to constrain the more flexible stellar and Galactic evolution models (although the question of potential systematic error in 4He abundance determinations remains open). The remarkable success of the theory to date in establishing the concordance has led to the very robust conclusion of BBN regarding the baryon density. The BBN constraints on the cosmological baryon density are reviewed and demonstrate that the bulk of the baryons are dark and also that the bulk of the matter in the universe is non-baryonic. Comparison of baryonic density arguments from Lyman-α clouds, x-ray gas in clusters, the Sunyaev-Zeldovich effect, and the microwave anisotropy are made and shown to be consistent with the BBN value.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Steigman, Gary. "Neutrinos and Big Bang Nucleosynthesis." Advances in High Energy Physics 2012 (2012): 1–24. http://dx.doi.org/10.1155/2012/268321.

Повний текст джерела
Анотація:
According to the standard models of particle physics and cosmology, there should be a background of cosmic neutrinos in the present Universe, similar to the cosmic microwave photon background. The weakness of the weak interactions renders this neutrino background undetectable with current technology. The cosmic neutrino background can, however, be probed indirectly through its cosmological effects on big bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) radiation. In this BBN review, focused on neutrinos and more generally on dark radiation, the BBN constraints on the number of “equivalent neutrinos” (dark radiation), on the baryon asymmetry (baryon density), and on a possible lepton asymmetry (neutrino degeneracy) are reviewed and updated. The BBN constraints on dark radiation and on the baryon density following from considerations of the primordial abundances of deuterium and helium-4 are in excellent agreement with the complementary results from the CMB, providing a suggestive, but currently inconclusive, hint of the presence of dark radiation, and they constrain any lepton asymmetry. For all the cases considered here there is a “lithium problem”: the BBN-predicted lithium abundance exceeds the observationally inferred primordial value by a factor of~3.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Foley, M., N. Sasankan, M. Kusakabe, and G. J. Mathews. "Revised uncertainties in Big Bang Nucleosynthesis." International Journal of Modern Physics E 26, no. 08 (August 2017): 1741008. http://dx.doi.org/10.1142/s0218301317410087.

Повний текст джерела
Анотація:
Big Bang Nucleosynthesis (BBN) explores the first few minutes of nuclei formation during the Big Bang. We present updated 2[Formula: see text] for the abundances of the four primary light nuclides — D, 3He, 4He, and 7Li — in BBN. A modified standard BBN code was used in a Monte Carlo analysis of the nucleosynthesis uncertainties as a function of the baryon-to-photon ratio. Reaction rates were updated to those of NACRE, REACLIB, and [Formula: see text]-Matrix calculations. The results were then used to derive a new constraint on the effective number of neutrinos.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pospelov, M. "Catalyzed Big-Bang nucleosynthesis." Canadian Journal of Physics 86, no. 4 (April 1, 2008): 611–16. http://dx.doi.org/10.1139/p07-206.

Повний текст джерела
Анотація:
We point out that the existence of metastable, τ >103 s, negatively charged electroweak-scale particles (X–) alters the predictions for lithium and other primordial elemental abundances for A > 4 via the formation of bound states with nuclei during Big-Bang nucleosynthesis (BBN). In particular, we show that the bound states of X– with helium, formed at temperatures of about T = 108 K, lead to the catalytic enhancement of 6Li production, which is eight orders of magnitude more efficient than the standard channel. In particle physics models, where subsequent decay of X– does not lead to large nonthermal BBN effects, this directly translates to the level of sensitivity to the number density of long-lived X– particles (τ > 105 s) relative to entropy of nX – / s [Formula: see text] 3 × 10–17, which is one of the most stringent probes of electroweak scale remnants known to date. It is also argued that unstable charged particles with lifetime of order ~2000 s may naturally lead to the depletion of 7Li by a factor of two, making it consistent with observationally determined abundances. PACS No.: 98.80.Ft
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Coc, Alain, and Elisabeth Vangioni. "Primordial nucleosynthesis." International Journal of Modern Physics E 26, no. 08 (August 2017): 1741002. http://dx.doi.org/10.1142/s0218301317410026.

Повний текст джерела
Анотація:
Primordial nucleosynthesis, or big bang nucleosynthesis (BBN), is one of the three evidences for the big bang model, together with the expansion of the universe and the cosmic microwave background. There is a good global agreement over a range of nine orders of magnitude between abundances of 4He, D, 3He and 7Li deduced from observations, and calculated in primordial nucleosynthesis. However, there remains a yet-unexplained discrepancy of a factor [Formula: see text], between the calculated and observed lithium primordial abundances, that has not been reduced, neither by recent nuclear physics experiments, nor by new observations. The precision in deuterium observations in cosmological clouds has recently improved dramatically, so that nuclear cross-sections involved in deuterium BBN needs to be known with similar precision. We will briefly discuss nuclear aspects related to the BBN of Li and D, BBN with nonstandard neutron sources, and finally, improved sensitivity studies using a Monte Carlo method that can be used in other sites of nucleosynthesis.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yeh, Tsung-Han, Keith A. Olive, and Brian D. Fields. "The Neutron Mean Life and Big Bang Nucleosynthesis." Universe 9, no. 4 (April 12, 2023): 183. http://dx.doi.org/10.3390/universe9040183.

Повний текст джерела
Анотація:
We explore the effect of neutron lifetime and its uncertainty on standard big bang nucleosynthesis (BBN). BBN describes the cosmic production of the light nuclides, 1H, D, 3H+3He, 4He, and 7Li+7Be, in the first minutes of cosmic time. The neutron mean life τn has two roles in modern BBN calculations: (1) it normalizes the matrix element for weak n↔p interconversions, and (2) it sets the rate of free neutron decay after the weak interactions freeze-out. We review the history of the interplay between τn measurements and BBN, and present a study of the sensitivity of the light element abundances to the modern neutron lifetime measurements. We find that τn uncertainties dominate the predicted 4He error budget, but these theory errors remain smaller than the uncertainties in 4He observations, even with the dispersion in recent neutron lifetime measurements. For the other light element predictions, τn contributes negligibly to their error budget. Turning the problem around, we combine present BBN and cosmic microwave background (CMB) determinations of the cosmic baryon density to predict a “cosmologically preferred” mean life of τn(BBN+CMB)=870±16s, which is consistent with experimental mean life determinations. We show that if future astronomical and cosmological helium observations can reach an uncertainty of σobs(Yp)=0.001 in the 4He mass fraction Yp, this could begin to discriminate between the mean life determinations.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hwang, Eunseok, Dukjae Jang, Kiwan Park, Motohiko Kusakabe, Toshitaka Kajino, A. Baha Balantekin, Tomoyuki Maruyama, Chang-Mo Ryu, and Myung-Ki Cheoun. "Dynamical screening effects on big bang nucleosynthesis." Journal of Cosmology and Astroparticle Physics 2021, no. 11 (November 1, 2021): 017. http://dx.doi.org/10.1088/1475-7516/2021/11/017.

Повний текст джерела
Анотація:
Abstract A moving ion in plasma creates a deformed electric potential depending on the ion velocity, which leads to the distinct screening effect compared to the standard static Salpeter formula. In this paper, adopting the test charge method, we explore the dynamical screening effects on big bang nucleosynthesis (BBN). We find that the high temperature in the early universe causes the ion velocity to be faster than the solar condition so that the electric potential is effectively polarized. However, the low density of background plasma components significantly suppresses the dynamical screening effects on thermonuclear reaction rates during the BBN epoch. We compare our results with several thermonuclear reaction rates for solar fusion considering the dynamical screening effects. Also, we discuss the additional plasma properties in other astrophysical sites for the possible expansion from the present calculation in the future.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

VILLANTE, F. L. "BBN AND NEUTRINO OSCILLATIONS IN THE EARLY UNIVERSE: A BRIEF REVIEW." International Journal of Modern Physics A 20, no. 11 (April 30, 2005): 2431–35. http://dx.doi.org/10.1142/s0217751x05024729.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

KAMIMURA, M., Y. KINO, and E. HIYAMA. "STAU-CATALYZED BIG-BANG NUCLEOSYNTHESIS AND NUCLEAR CLUSTER MODEL." International Journal of Modern Physics A 24, no. 11 (April 30, 2009): 2076–83. http://dx.doi.org/10.1142/s0217751x09045649.

Повний текст джерела
Анотація:
Three-body cluster-model calculations are performed for the new types of big-bang nucleosynthesis (BBN) reactions that are calalyzed by a supersymmetric (SUSY) particle stau, a scalar partner of the tau lepton. If a stau has a lifetime ≳ 103s, it would capture a light element previously synthesized in standard BBN and form a Coulombic bound state. The bound state, an exotic atom, is expected to induce various reactions, such as (αX-) + d → 6 Li + X-, in which a negatively charged stau (denoted as X-) works as a catalyzer. Recent literature papers have claimed that some of these stau-catalyzed reactions have significantly large cross sections so that inclusion of the reactions into the BBN network calculation can change drastically abundances of some elements, giving not only a solution to the 6 Li -7 Li problem (calculated underproduction of 6 Li by ~ 1000 times and overproduction of 7 Li +7 Be by ~ 3 times) but also a constraint on the lifetime and the primordial abundance of the elementary particle stau. However, most of these literature calculations of the reaction cross sections were made assuming too naive models or approximations that are unsuitable for those complicated low-energy nuclear reactions. We use a few-body calculational method developed by the authors, and provides precise cross sections and rates of the stau-catalyzed BBN reactions for the use in the BBN network calculation.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Makki, Tahani, and Mounib El Eid. "Big Bang Nucleosynthesis (BBN) and Non-Standard Physics." EPJ Web of Conferences 184 (2018): 02009. http://dx.doi.org/10.1051/epjconf/201818402009.

Повний текст джерела
Анотація:
A brief overview on standard big bang nucleosynthesis (shortly, SBBN) is presented. First, we describe the outcome of the SBBN concerning the abundances of the light elements up to 7Li. A comparison with observations reveals a Lithium overproduction, which is not understood yet and is termed as “Cosmological Lithium Problem”. Resolving that problem is not easy, since many aspects are involved whichnuclear, astrophysical and even a non-standard scenario may be invoked. These items are described in some details owing to the limited available space.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Big Bang Nucleosynthesis (BBN)"

1

Sparta', Roberta. "Indirect 2H(d,p)3H and 2H(d,n)3He fusion reactions measurement at energies relevant for Big Bang Nucleosynthesis." Doctoral thesis, Università di Catania, 2013. http://hdl.handle.net/10761/1429.

Повний текст джерела
Анотація:
The work presented in this thesis is focused on the experimental study of the two deuterium burning channels 2H(d,p)3H and 2H(d,n)3He in the Big Bang Nucleosynthesis (BBN) astrophysical scenario. In the beginning is presented this phase of the early universe and why the BBN model is still fine tuned with new results coming from observations and laboratory measurements. This model (if BBN is considered standard) can be adjusted such to have only a free parameter, the baryon to photon ratio of the universe eta at a certain time. Also the WMAP satellite results have been of great help to fix eta (and then all the others BBN numbers), but still persist some discrepancies, as for the lithium primordial abundances, between what is theoretically predicted and what is observed. The deuterium (and the reactions in which is involved) plays a key role in the evaluation of eta, thus for all BBN, so that is called the best baryometer. Then is explained that the need of new cross sections (and reaction rates) measurements for astrophysics can not be satisfied. This is because of the problems given by their measurements in the laboratory, as the presence of Coulomb barrier (that makes cross sections exponentially decrease in the energy range of interest) and the electron screening effect. For all these reasons the present measurements have been performed through the Trojan Horse Method (THM), an indirect method that allow to have a bare-nucleus cross section of the two-body reaction of astrophysical interest that is free of the Coulomb suppression. This is accomplished via the selection of the quasi-free mechanism in an appropriate three-body reaction, whose center-of-mass energy is greater than the Coulomb barrier. Two experimental runs have been carried out at the Nuclear Physics Institute of the Academy of Science of Czech Republic, in Rez (Prague). In the first one, with a 17 MeV 3He beam (in which only 2H(d,p)3H has been measured) the presence of quasi-free mechanism events has been ascertained. The result obtained is fair but not good enough for the error reduction needed for astrophysics. Instead, to optimize the result in the region relecant for astrophysics, a the second run (where the 3He beam energy was 18 MeV) has been performed. In particular for the first time the technique of measuring one of the two-body reactions participant ejectile and the spectator particle, in this case a proton, instead of both the ejectiles. This has also allowed the measure of the 2H(d,n)3He reaction without the complexity of the neutron detection, so with a very good precision. All the off-line analysis done until the S-factor extraction is detailed explained, including the MPWBA analysis by Dr. S. Typel. Also the screening potential has been evaluated, obtaining a value of 13.2±1.8 eV for 2H(d,p)3H and 11.7±1.6 eV for 2H(d,n)3He, very close to the adiabatic limit, as expected. A pole invariance test has been provided comparing present results with previous TH data, where the 6Li was used as TH nucleus. Reaction rates from present TH data for the two d+d channels, and from TH cross section of 3He(d,p)4He and 7Li(p,a)4He have been calculated. The new rates have been also compared with previous direct data compilations and with a new updated one that exclude questionable data sets. Using these new TH rates as input for the BBN code developed by prof. Bertulani, with eta fixed at the WMAP value, the primordial abundances have been obtained. These results are coherent with the whole model and will be soon compared with the observational results: a further analysis will provide stronger constraints on the values and a reduction of the involved uncertainties. This result reasserts that THM is a powerful tool for nuclear astrophysics and gives further validation to the BBN model.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lara, Juan Felipe. "Neutrino heating and baryon inhomogeneity in big bang nucleosynthesis /." Full text (PDF) from UMI/Dissertation Abstracts International, 2000. http://wwwlib.umi.com/cr/utexas/fullcit?p3004313.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rehm, Jan Bernhard. "The Influence of Matter-Antimatter Domains on Big Bang Nucleosynthesis." Diss., lmu, 2000. http://nbn-resolving.de/urn:nbn:de:bvb:19-4206.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sihvola, Elina. "Big bang nucleosynthesis with inhomogeneous baryon density and antimatter regions." Helsinki : University of Helsinki, 2001. http://ethesis.helsinki.fi/julkaisut/mat/fysii/vk/sihvola/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

GNECH, ALEX. "Theoretical calculation of nuclear reactions of interest for Big Bang Nucleosynthesis." Doctoral thesis, Gran Sasso Science Institute, 2020. http://hdl.handle.net/20.500.12571/14971.

Повний текст джерела
Анотація:
Standard Big Bang Nucleosynthesis (BBN) predicts the abundances of the light elements in the early universe. Even if the overall agreement with the experimental data is good, still some discrepancies exist on the relic abundances of ${}^7$Li and ${}^6$Li. In order to exclude or confirm these scenarios, the BBN model needs precise input parameters, in particular the cross-sections of the BBN nuclear reaction network. However, the suppression of the cross-sections due to the Coulomb barrier makes the measurement very difficult and so affected by large systematic errors. Therefore, reliable theoretical calculations result fundamental in order to reduce the uncertainties. In this work we present a theoretical study of two nuclear reactions connected to ${}^6$Li abundance and recently the $alpha$+d$ ightarrow$ ${}^6$Li + $gamma$ and the p+${}^6$Li$ ightarrow$${}^7$Be+$gamma$ radiative captures. For the first reaction we use a so-called ab-initio approach in which we solve the full six-body problem by using realistic nuclear potentials to describe the nucleon interactions. In particular we concentrate on the calculation and characterization of the final state of the reaction, the ${}^6$Li ground state, focusing on the electromagnetic static structure and the quantities relevant from the astrophysical point of view such as the asymptotic normalization coefficient. For doing this we use the Hyperspherical Harmonic approach developed by the Pisa group providing for the first time the possibility of using this approach beyond A = 4 nuclear systems. The second reaction is instead studied by using a two-body cluster approach where the proton and ${}^6$Li are considered as structureless particles. The angular distribution of the emitted photon obtained in this work were used by the LUNA Collaboration to determine the efficiency of the detector used in the measurement of the reaction.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hannaske, Roland. "Measurement of the photodissociation of the deuteron at energies relevant to Big Bang nucleosynthesis." Helmholtz-Zentrum Dresden - Rossendorf, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-201284.

Повний текст джерела
Анотація:
Zwischen 10 und 1000 s nach dem Urknall bildeten sich während der Big Bang Nukleosynthese (BBN) die ersten leichten Elemente aus Protonen und Neutronen. Die primordialen Häufigkeiten dieser Elemente hingen von denWirkungsquerschnitten der beteiligten Kernreaktionen ab. Vergleiche zwischen den Ergebnissen nuklearer Netzwerkrechnungen mit astronomischen Beobachtungen bieten eine einzigartige Möglichkeit, etwas über das Universum zu dieser Zeit zu erfahren. Da es für die p(n,g)d-Reaktion, die eine Schlüsselreaktion der BBN ist, kaum Messungen im relevanten Energiebereich gibt, beruht deren Reaktionsrate in Netzwerkrechnungen auf theoretischen Berechnungen. Darin fließen auch experimentelle Daten der Nukleon-Nukleon-Streuung, des Einfangquerschnitts für thermische Neutronen sowie (nach Anwendung des Prinzips des detaillierten Gleichgewichts) der d(g,n)p-Reaktion mit ein. Diese Reaktion, die Photodissoziation des Deuterons, ist bei BBN-Energien (Tcm = 20–200 keV) ebenfalls kaum vermessen. Die großen experimentelle Unsicherheiten machen Vergleiche mit den präzisen theoretischen Berechnungen schwierig. In den letzten Jahren wurde die d(g,n)p-Reaktion und insbesondere der M1-Anteil des Wirkungsquerschnitts mit quasi-monoenergetischen g-Strahlen aus Laser-Compton-Streuung oder durch Elektrodesintegration untersucht. Üblicherweise verwendete man für Messungen des d(g,n)p-Wirkungsquerschnitts entweder die auf wenige diskrete Energien beschränkte Strahlung des g-Zerfalls oder Bremsstrahlung, für die aber eine genaue Photonenflussbestimmung sowie der Nachweis von einem der Reaktionsprodukte und dessen Energie nötig ist. Da diese Energie im Bereich der BBN relativ gering ist, gab es bisher noch keine absoluten Messung des d(g,n)p-Wirkungsquerschnitts bei Tcm < 5 MeV mit Bremsstrahlung. Das Ziel dieser Dissertation ist eine solche Messung mit einer Unsicherheit von 5 % im für die BBN relevanten Energiebereich und darüber hinaus bis Tcm ~ 2,5 MeV unter Verwendung gepulster Bremsstrahlung an der Strahlungsquelle ELBE. Dieser supraleitende Elektronenbeschleuniger befindet sich am Helmholtz-Zentrum Dresden-Rossendorf und stellte einen Elektronenstrahl hoher Intensität bereit. Die kinetische Elektronenenergie von 5 MeV wurde mit einem Browne-Buechner-Spektrometer präzise gemessen. Die Energieverteilung der in einer Niob-Folie erzeugten Bremsstrahlungsphotonen wurde berechnet. Die Photonenflussbestimmung nutzte die Kernresonanzstreuung an 27Al, das sich mit deuteriertem Polyethylen in einem mehrschichtigen Target befand. Die 27Al-Abregungen wurden mit abgeschirmten, hochreinen Germanium-Detektoren nachgewiesen, deren Effektivität mit GEANT4 simuliert und durch Quellmessungen normiert wurde. Die Messung der Energie der Neutronen aus der d(g,n)p-Reaktion erfolgte mittels deren Flugzeit in Plastikszintillatoren, die an zwei Seiten von Photoelektronenvervielfachern mit hoher Verstärkung ausgelesen wurden. Die Nachweiseffektivität dieser Detektoren wurde in einem eigenen Experiment in den Referenz-Neutronenfeldern der PTB Braunschweig kalibriert. Die Nachweisschwelle lag bei etwa 10 keV kinetischer Neutronenenergie.Wegen der guten Zeitauflösung der Neutronendetektoren und des ELBE-Beschleunigers genügte eine Flugstrecke von nur 1 m. Die Energieauflösung betrug im d(g,n)p-Experiment 1–2 %. Leider gingen viele Neutronen bereits durch Streuung in dem großen Target verloren oder sie wurden erst durch Teile des kompakten Experimentaufbaus in die Detektoren gestreut. Beide Effekte wurden mit Hilfe von FLUKA simuliert um einen Korrekturfaktor zu bestimmen, der aber bei niedrigen Energien relativ groß war. Der d(g,n)p-Wirkungsquerschnitts wurde daher nur im Bereich 0.7 MeV < Tcm < 2.5 MeV bestimmt. Die Ergebnisse stimmen mit anderen Messungen, Daten-Evaluierungen sowie theoretischen Rechnungen überein. Die Gesamtunsicherheit beträgt circa 6.5 % und kommt zu fast gleichen Teilen von den statistischen und systematischen Unsicherheiten. Die statistische Unsicherheit könnte durch eine längere FLUKA Simulation noch von 3–5 % auf 1 % verringert werden. Die systematische Unsicherheit von 4.5 % ist vorrangig auf die Photonenflussbestimmung, die Neutronen-Nachweiseffektivität und die Target-Zusammensetzung zurückzuführen.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cardall, Christian Y. "Towards limits on neutrino mixing parameters from nucleosynthesis in the big bang and supernovae /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC IP addresses, 1997. http://wwwlib.umi.com/cr/ucsd/fullcit?p9732712.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Anders, Michael. "S-factor measurement of the 2H(α,γ)6Li reaction at energies relevant for Big-Bang nucleosynthesis". Forschungszentrum Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-141091.

Повний текст джерела
Анотація:
For about 20 years now, observations of 6Li in several old metal-poor stars inside the halo of our galaxy have been reported, which are largely independent of the stars’ metallicity, and which point to a possible primordial origin. The observations exceed the predictions of the Standard Big-Bang Nucleosynthesis model by a factor of 500. In the relevant energy range, no directly measured S-factors were available yet for the main production reaction 2H(α,γ)6Li, while different theoretical estimations have an uncertainty of up to two orders of magnitude. The very small cross section in the picobarn range has been measured with a deuterium gas target at the LUNA acceler- ator (Laboratory for Underground Nuclear Astrophysics), located deep underground inside Laboratori Nazionali del Gran Sasso in Italy. A beam-induced, neutron-caused background in the γ-detector occurred which had to be analyzed carefully and sub- tracted in an appropriate way, to finally infer the weak signal of the reaction. For this purpose, a method to parameterize the Compton background has been developed. The results are a contribution to the discussion about the accuracy of the recent 6Li observations, and to the question if it is necessary to include new physics into the Standard Big-Bang Nucleosynthesis model.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Anders, Michael. "S-factor measurement of the 2H(α,γ)6Li reaction at energies relevant for Big-Bang nucleosynthesis". Helmholtz-Zentrum Dresden-Rossendorf, 2013. https://hzdr.qucosa.de/id/qucosa%3A22184.

Повний текст джерела
Анотація:
For about 20 years now, observations of 6Li in several old metal-poor stars inside the halo of our galaxy have been reported, which are largely independent of the stars’ metallicity, and which point to a possible primordial origin. The observations exceed the predictions of the Standard Big-Bang Nucleosynthesis model by a factor of 500. In the relevant energy range, no directly measured S-factors were available yet for the main production reaction 2H(α,γ)6Li, while different theoretical estimations have an uncertainty of up to two orders of magnitude. The very small cross section in the picobarn range has been measured with a deuterium gas target at the LUNA acceler- ator (Laboratory for Underground Nuclear Astrophysics), located deep underground inside Laboratori Nazionali del Gran Sasso in Italy. A beam-induced, neutron-caused background in the γ-detector occurred which had to be analyzed carefully and sub- tracted in an appropriate way, to finally infer the weak signal of the reaction. For this purpose, a method to parameterize the Compton background has been developed. The results are a contribution to the discussion about the accuracy of the recent 6Li observations, and to the question if it is necessary to include new physics into the Standard Big-Bang Nucleosynthesis model.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Güray, Recep Taygun. "A study on ¹?C(d,p)¹?C reaction and the role of neutron capture by ¹?C in big bang nucleosynthesis /." The Ohio State University, 2000. http://rave.ohiolink.edu/etdc/view?acc_num=osu1488203552777589.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Big Bang Nucleosynthesis (BBN)"

1

Hashimoto, Masa-aki, Riou Nakamura, E. P. Berni Ann Thushari, and Kenzo Arai. Big-Bang Nucleosynthesis. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2935-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

A, Olive Keith, Fermi National Accelerator Laboratory, and United States. National Aeronautics and Space Administration., eds. Big-bang nucleosynthesis revisited. [Batavia, Ill.]: Fermi National Accelerator Laboratory, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

A, Olive Keith, Fermi National Accelerator Laboratory, and United States. National Aeronautics and Space Administration., eds. Big-bang nucleosynthesis revisited. [Batavia, Ill.]: Fermi National Accelerator Laboratory, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Supernovae and nucleosynthesis: An investigation of the history of matter, from the big bang to the present. Princeton, N.J: Princeton University Press, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

1939-, Thompson William J., Carney Bruce W, and Karwowski Hugon J, eds. Workshop on Primordial Nucleosynthesis, October 6-8, 1989, Aqueduct Conference Center, Chapel Hill, North Carolina, USA. Singapore: World Scientific, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

(Angela), Bracco A., Nappi Eugenio, and Società italiana di fisica, eds. From the Big Bang to the nucleosynthesis: Proceedings of the International School of Physics "Enrico Fermi" Course CLXXVIII, Varenna on Lake Como, Villa Monastero, 19-24 July 2010. Amsterdam: IOS Press, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Big-bang nucleosynthesis revisited. [Batavia, Ill.]: Fermi National Accelerator Laboratory, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Big bang nucleosynthesis and the quark-hadron transition. [Batavia, Ill.]: Fermi National Accelerator Laboratory, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hashimoto, Masa-aki, Riou Nakamura, and E. P. Berni Ann Thushari. Big-Bang Nucleosynthesis: Thermonuclear History in the Early Universe. Springer, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hashimoto, Masa-aki, Riou Nakamura, E. P. Berni Ann Thushari, and Kenzo Arai. Big-Bang Nucleosynthesis: Thermonuclear History in the Early Universe. Springer, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Big Bang Nucleosynthesis (BBN)"

1

Coc, Alain. "Big Bang Nucleosynthesis." In Encyclopedia of Astrobiology, 156–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_160.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Coc, Alain. "Big Bang Nucleosynthesis." In Encyclopedia of Astrobiology, 257–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_160.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Manoukian, E. B. "Big Bang Nucleosynthesis." In 100 Years of Fundamental Theoretical Physics in the Palm of Your Hand, 503–6. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51081-7_85.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Schramm, D. N. "Big Bang Nucleosynthesis." In Cosmic Chemical Evolution, 1–15. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0452-7_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Grupen, Claus. "Big Bang Nucleosynthesis." In Astroparticle Physics, 339–55. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-27339-2_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Coc, Alain. "Big Bang Nucleosynthesis." In Encyclopedia of Astrobiology, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-642-27833-4_160-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Coc, Alain. "Big Bang Nucleosynthesis." In Encyclopedia of Astrobiology, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-642-27833-4_160-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Coc, Alain. "Big Bang Nucleosynthesis." In Encyclopedia of Astrobiology, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-642-27833-4_160-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Coc, Alain. "Big Bang Nucleosynthesis." In Encyclopedia of Astrobiology, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_160-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bari, Pasquale Di. "Big Bang nucleosynthesis." In Cosmology and the Early Universe, 183–93. Boca Raton : CRC Press, [2018] | Series: Series in astronomy and astrophysics: CRC Press, 2018. http://dx.doi.org/10.1201/9781138496903-14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Big Bang Nucleosynthesis (BBN)"

1

Kubono, S., T. Kawabata, S. Q. Hou, and J. J. He. "Experimental challenge to the big-bang nucleosynthesis - Cosmological 7Li problem in BBN." In 14TH INTERNATIONAL SYMPOSIUM ON ORIGIN OF MATTER AND EVOLUTION OF GALAXIES (OMEG 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5030814.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Coc, Alain. "Big-bang nucleosynthesis." In International Symposium on Nuclear Astrophysics - Nuclei in the Cosmos - IX. Trieste, Italy: Sissa Medialab, 2010. http://dx.doi.org/10.22323/1.028.0011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Coc, Alain, and Elisabeth Vangioni. "Big bang nucleosynthesis." In XIII Nuclei in the Cosmos. Trieste, Italy: Sissa Medialab, 2015. http://dx.doi.org/10.22323/1.204.0022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Olive, Keith A. "Big bang nucleosynthesis: An update." In IX MEXICAN SCHOOL ON GRAVITATION AND MATHEMATICAL PHYSICS: COSMOLOGY FOR THE XXIST CENTURY: Gravitation and Mathematical Physics Division of the Mexican Physical Society (DGFM-SMF). AIP, 2013. http://dx.doi.org/10.1063/1.4817033.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Steigman, Gary. "Neutrinos and Big Bang Nucleosynthesis." In Proceedings of Nobel Symposium 129. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812773906_0021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mathews, Grant J. "Big Bang Nucleosynthesis and the Key Questions in Big Bang Cosmology." In 10th Symposium on Nuclei in the Cosmos. Trieste, Italy: Sissa Medialab, 2009. http://dx.doi.org/10.22323/1.053.0231.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gustavino, Carlo. "Probing Big Bang Nucleosynthesis Deep Underground." In The 26th International Nuclear Physics Conference. Trieste, Italy: Sissa Medialab, 2017. http://dx.doi.org/10.22323/1.281.0159.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Olive, Keith A. "Big bang nucleosynthesis: A status report." In 11TH CONFERENCE ON THE INTERSECTIONS OF PARTICLE AND NUCLEAR PHYSICS: (CIPANP 2012). AIP, 2013. http://dx.doi.org/10.1063/1.4826782.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Steigman, Gary. "Big Bang nucleosynthesis: The standard model." In Cosmic abundances of matter. AIP, 1989. http://dx.doi.org/10.1063/1.37993.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kamimura, Masayasu, Yasushi Kino, Emiko Hiyama, Hajime Susa, Marcel Arnould, Sydney Gales, Tohru Motobayashi, Christoph Scheidenberger, and Hiroaki Utsunomiya. "Stau-catalyzed big-bang nucleosynthesis reactions." In TOURS SYMPOSIUM ON NUCLEAR PHYSICS AND ASTROPHYSICS—VII. AIP, 2010. http://dx.doi.org/10.1063/1.3455917.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Big Bang Nucleosynthesis (BBN)"

1

Holtmann, Erich Nielsen. Big-bang nucleosynthesis with high-energy photon injection. Office of Scientific and Technical Information (OSTI), May 1999. http://dx.doi.org/10.2172/753050.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Paris, Mark W., Evan Bradley Grohs, George M. Fuller, and Chad Kishimoto. Toward a unitary and self-consistent treatment of Big Bang Nucleosynthesis. Office of Scientific and Technical Information (OSTI), June 2015. http://dx.doi.org/10.2172/1188182.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Paris, Mark W. Institutional Computing: Final Report Quantum Effects on Cosmology: Probing Physics Beyond the Standard Model with Big Bang Nucleosynthesis. Office of Scientific and Technical Information (OSTI), February 2018. http://dx.doi.org/10.2172/1422935.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії