Добірка наукової літератури з теми "Bentonite"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Bentonite".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Bentonite"

1

Pan, Yi, Xinyue Zhang, Chengcheng Ji, Qianru Zhan, Zhaoxuan Li, Jian Guan, and Jian Huang. "Modification Method of High-Efficiency Organic Bentonite for Drilling Fluids: A Review." Molecules 28, no. 23 (November 30, 2023): 7866. http://dx.doi.org/10.3390/molecules28237866.

Повний текст джерела
Анотація:
The requirements for drilling bentonites are tightening due to ever-increasing demands for petroleum resources, coupled with cost and reaction technology constraints. In addition to raising the risk of drilling, bentonite’s poor performance also raises the possibility of safety incidents and significant financial losses. Organically modified bentonites effectively reduce the consumption of drilling fluids, conserve resources, and lessen environmental effects. This paper aims to provide an overview of the several organic modification methods of bentonite for drilling fluids. It also evaluates the characteristics and application impacts of bentonite. We primarily describe the three popular modification methods represented by intercalation, coupling, and grafting. Also, this review provides the effect of molecular simulation on the investigation of structure in microconfined conditions. Through microlearning, organically modified bentonite with exceptional performance is to be further developed.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Aji, Navela Rahma, Emas Agus Prastyo Wibowo, Resti Ujiningtyas, Hestin Wirasti, and Nuni Widiarti. "Sintesis Komposit TiO2-Bentonit dan Aplikasinya untuk Penurunan BOD dan COD Air Embung UNNES." Jurnal Kimia VALENSI 2, no. 2 (November 30, 2016): 114–19. http://dx.doi.org/10.15408/jkv.v2i2.3620.

Повний текст джерела
Анотація:
Abstrak Telah disintesis komposit TiO2-bentonit untuk penurunan BOD dan COD. Penelitian ini bertujuan untuk mengetahui proses pembentukan komposit TiO2-Bentonit serta mengetahui katalis terbaik dalam proses fotodegradasi air embung. Penelitian diawali dengan preparasi TiO2-Bentonit. Hasil pembentukan komposit dikarakterisasi dengan menggunakan X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) dan Scanning Electron Microscope (SEM). Katalis yang diuji adalah TiO2, bentonit, TiO2-bentonit yang diaplikasikan ke air embung dengan waktu penyinaran selama 30 menit.Terbentuknya komposit TiO2-Bentonit ditunjukkan dengan refleksi TiO2 pada 2 25. Hasil analisis menggunakan FTIR yakni Ti-O antara range 400-700 cm -1 dalam hal ini ditunjukkan dalam peak 478.35 dan 594.08. Puncak serapan-serapan utama pada bentonit beradi di bilangan gelombang 3626.17 cm-1, 3448.72 cm-1 dan 1635.64 cm-1. Spektra TiO2-Bentonit tidak menunjukkan adanya pergeseran serapan pada bilangan gelombang 3448.72 cm-1 yang belum menunjukkan ikatan O-H yang semakin lemah karena adanya TiO2 di dalam antar lapis bentonit.Penurunan nilai BOD dan COD terbesar diperoleh dengan menggunakan TiO2-Bentonit yakni untuk BOD 18.40 ppm dan COD 10.05ppm. Kemampuan komposit TiO2-Bentonit lebih besar dibandingkan katalis TiO2 dan bentonit. Kata kunci: air embung, fotodegradasi, TiO2-bentonit Abstract Have done synthesized composite TiO2-bentonite to decrease BOD and COD. This study aims to determine the process of form he composite TiO2-bentonite and determine the best catalyst in the process of photodegradation water reservoir. The study begins with the preparation of TiO2-bentonite. Results composite formation characterized using X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) and Scanning Electron Microscopy (SEM). The catalyst is tested TiO2, bentonite, TiO2-bentonite which is applied to the water reservoir with the exposure time for 30 menit.Terbentuknya composite TiO2-bentonite indicated by TiO2 reflection on the 2θ ≥ 25. FTIR analysis results using the Ti-O between the range 400-700 cm-1 in this case is shown in peak 478.35 and 594.08. The main absorption peak-absorption on bentonite beradi at wavenumber 3626.17 cm-1, 3448.72 and 1635.64 cm-1. TiO2-bentonite spectra did not indicate any shift in absorption at wavenumber 3448.72 cm-1 which has not shown the OH bond is weakened by the existence of TiO2 in between layers of bentonite. Impairment The BOD and COD obtained using the TiO2-bentonite for BOD 18.40 ppm and 10.05 ppm COD. TiO2-bentonite composite capability greater than TiO2 catalyst and bentonite. Keyword: air embung, photodegradation, TiO2-bentonite DOI: http://dx.doi.org/10.15408/jkv.v0i0.3620
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Brezovska, Snezana, Biljana Marina, Donco Burevski, Biljana Angjuseva, Vasa Bosevska, and Lepa Stojanovska. "Adsorption properties and porous structure of sulfuric acid treated bentonites determined by the adsorption isotherms of benzene vapor." Journal of the Serbian Chemical Society 70, no. 1 (2005): 33–40. http://dx.doi.org/10.2298/jsc0501033b.

Повний текст джерела
Анотація:
In a previous paper, adsorption isotherms of benzene vapor on natural bentonite from Ginovci, Macedonia, and forms acid activated with 10% and 15% solutions of hydrochloric were interpreted by means of the Dubinin-Radushkevich-Stoeckli and Dubinin-Astakhov equations; the investigation has been continued with bentonites acid activated with 10% and 15% solutions of sulfuric acid where X-ray analysis indicates smaller structural changes. Using the above equations, the heterogeneity of the micropores and the energetic heterogeneity of the bentonites were determined from the differential distribution of the micropore volume with respect to the structural parameter of the equations characterizing the microporous structure and to the molar free energy of adsorption. Activated bentonites obtain bigger pores but also a certain quantity of new small pores appear during acid activation with the higher concentration of acid. The micropore volumes, determined from the adsorption of benzene vapor, of bentonites activated with 10 % and 15 % solution of hydrochloric acid (144.60 cm3 kg-1 and 110.06 cm3 kg-1, respectively), decrease in comparison with that of natural bentonite (162.55 cm3 kg-1). In contrast, the values of the micropore volume for bentonities treated with 10 % and 15 % solutions of sulfuric acids increase (169.19 cm3 kg-1 and 227.74 cm3 kg-1). That is due to the difference in the structural changes occurring during activation with hydrochloric and sulfuric acids. The values of the free energy of adsorption of benzene vapor for natural bentonite are higher than those of the acid activated bentonities, what is in accordance with the structural and porosity changes.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lathifah, Tiva, Nia Yuliani, and Gladys Ayu Paramita Kusumah Wardhani. "BENTONIT TERAKTIVASI ASAM SULFAT SEBAGAI ADSORBEN DALAM PEMURNIAN PELUMAS BEKAS." Jurnal Sains Natural 9, no. 1 (March 28, 2019): 1. http://dx.doi.org/10.31938/jsn.v9i1.170.

Повний текст джерела
Анотація:
Activated Bentonits of Sulfatic Acid as Adsorben in Purchase of Used Lubricants Recycling of used lubricating oil is one of the alternatives in the framework of efficiency, saving oil consumption, and reducing pollution. One effort to purify used lubricating oil is to separate impurities through the adsorption method. The adsorbent that can be used is bentonite. Activation of bentonite using acid will produce adsorbent with an active side and greater surface acidity so that the adsorption ability is higher than before activated. Characteristics of lubricating oil produced are: kinematic viscosity 40 °C and 100 °C at 109.94 cSt and 14.57 cSt recently; viscosity index is 136; specific gravity 15 °C is 0.8872; and the resulting color is L5.0. Activated sulfonic bentonite can be an optimum adsorbent in purifying used lubricating oil, with optimum bentonite concentration is 30% and optimum adsorption temperature is 70 °C resulting in a 49% increase in viscosity efficiency of 40 °C and 30.79% for temperatures of 100 °C.Keywords: Bentonite, Lubricants, Adsorption ABSTRAK Daur ulang minyak pelumas bekas merupakan salah satu alternatif dalam rangka efisiensi, penghematan konsumsi minyak bumi, serta mengurangi pencemaran. Salah satu upaya menjernihkan minyak pelumas bekas adalah dengan memisahkan zat-zat pengotor melalui metode adsorpsi. Adsorben yang dapat digunakan adalah bentonit. Aktivasi bentonit menggunakan asam akan menghasilkan adsorben dengan sisi aktif dan keasaman permukaan yang lebih besar sehingga kemampuan adsorpsinya lebih tinggi dibandingkan dengan sebelum diaktivasi. Karakteristik minyak pelumas yang dihasilkan yaitu: viskositas kinematik 40 °C dan 100 °C sebesar 109,94 cSt dan 14,57 cSt secara berturut-turut; indeks viskositas sebesar 136; specific gravity 15 °C sebesar 0,8872; serta warna yang dihasilkan adalah L5,0. Bentonit teraktivasi asam sulfat mampu menjadi adsorben yang optimum dalam pemurnian minyak pelumas bekas, dengan konsentrasi bentonit optimum adalah 30% dan suhu adsorpsi optimum adalah 70 °C menghasilkan % efisiensi kenaikan viskositas sebesar 49,15% untuk suhu 40 °C dan 30,79% untuk suhu 100 °C.Kata kunci : adsorpsi, bentonit, pelumas
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Liu, Hao, Bing Xie, and Yue-lin Qin. "Effect of Bentonite on the Pelleting Properties of Iron Concentrate." Journal of Chemistry 2017 (2017): 1–6. http://dx.doi.org/10.1155/2017/7639326.

Повний текст джерела
Анотація:
The physical and chemical properties such as particle size, montmorillonite content, swelling degree, water absorption, and blue absorption of A, B, and C bentonites were studied under laboratory conditions. The effects of adding different quality and different proportion of bentonite on falling strength, compression strength, and shock temperature of green pellet were investigated. The experimental results show that the montmorillonite content, water absorption, and methylene blue absorption of bentonite-B are the highest. And the quality of bentonite-B is the best, followed by bentonite-C and bentonite-A poor quality. When the amount of bentonite-B reduced from 1.5% to 1.0%, the strength of green pellets and the shock temperature both decrease. As the same proportion of A, B, and C bentonites, the green-ball strength and shock temperature are as follows: bentonite-A > bentonite-B > bentonite-C.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Buzetzky, D., E. M. Kovács, M. N. Nagy, and J. Kónya. "Sorption of pertechnetate anion by cation modified bentonites." Journal of Radioanalytical and Nuclear Chemistry 322, no. 3 (October 16, 2019): 1771–76. http://dx.doi.org/10.1007/s10967-019-06852-8.

Повний текст джерела
Анотація:
Abstract Pertechnetate anion sorption was investigated on modified bentonites. Mn-, Cr-, Sn-bentonites were prepared by ion exchange process to sorb radioactive pertechnetate ions. In the case of Mn-, Cr-bentonite the sorb amount of metal ion was 70–90% of the cation exchange capacity of the bentonite which is expected. Interestingly in the case of Sn-bentonite this amount was 1.42 times higher than the cation exchange capacity. On Mn-bentonite the sorption was 35% at pH 5. The removal of pertechnetate ions was 100% on Cr-, Sn-bentonites and the significant sorption was achieved below 650 mV/SHE.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wijayanto, Sofian, and Sunyoto Sunyoto. "Variasi Komposisi Bentonit pada Cetakan Pasir Blok Silinder Mesin Pemotong Rumput." Jurnal Dinamika Vokasional Teknik Mesin 4, no. 1 (April 1, 2019): 31–38. http://dx.doi.org/10.21831/dinamika.v4i1.24281.

Повний текст джерела
Анотація:
Purpose of this research is to find out how the influence of variation of bentonite composition on the sand mold to casting defect, hardness, and microstructure. Variations of bentonite composition used were 0%, 8%, and 16%. The data of the research were analyzed directly using graphs and micro photographs which were then drawn conclusions from the results of the study. Needle-hole defects are found in all variations of bentonite composition. The porosity defect was found only in the variation of 0% and 16% bentonite compositions. The highest hardness value was obtained from the 8% bentonite composition variation is 84.26 VHN and the lowest hardness value was obtained from 0% VHN bentonite composition variation is 68.02 VHN. The best microstructure is indicated by the variation of 8% bentonite composition as evidenced by the formation of Al and Si elements that are evenly distributed and closer to the grain.Tujuan penelitian ini adalah untuk mengetahui bagaimana pengaruh variasi komposisi bentonit pada cetakan pasir terhadap cacat coran, kekerasan dan struktur mikro. Variasi komposisi bentonit yang digunakan adalah 0%, 8% dan 16%. Data hasil penelitian dianalisis secara langsung menggunakan grafik dan foto mikro yang kemudian ditarik kesimpulan dari hasil penelitian tersebut. Cacat lubang jarum ditemukan di semua variasi komposisi bentonit. Sedangkan cacat porositas hanya ditemukan pada variasi komposisi bentonit 0% dan 16. nilai kekerasan tertinggi diperoleh dari variasi komposisi bentonit 8% sebesar 84.26 VHN dan nilai kekerasan terendah diperoleh dari variasi komposisi bentonit 0% sebesar 68.02 VHN. Struktur mikro terbaik ditunjukkan oleh variasi komposisi bentonit 8% dibuktikan dengan pembentukan unsur Al dan Si yang merata dan lebih merapat letak antar butirnya.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

LV, Yiyan, Haoqing XU, Pengming JIANG, and Tao WU. "Effect of Bentonite Admixture Content on Effective Porosity and Hydraulic Conductivity of Clay-based Barrier Backfill Materials." Materials Science 29, no. 3 (August 24, 2023): 340–46. http://dx.doi.org/10.5755/j02.ms.32075.

Повний текст джерела
Анотація:
Clay-based barrier wall has been diffusely employed as vertical barriers. Nevertheless, there were few project practices of these walls in China. And few research have been performed to study the impact on the permeability of the addition of domestic bentonites. To solve this problem, the influences of bentonite level on hydraulic conductivity, porosity and clay-bound water of soil-bentonite admixtures have been assessed employing a flexible-wall test and water centrifugal dewatering experiment with various bentonites. The outcomes revealed that as barrier walls are constructed by blending bentonite and Fujian standard sandy soil, there is a critical bentonite level of the smallest porosity. If the bentonite level is less than the critical bentonite content, hydraulic conductivity is reduced quickly, while if the bentonite level is greater than the critical bentonite content, hydraulic conductivity is reduced gently. Additionally, as the bentonite level grew, the clay-bound water centage of the admixtures continually improved. Supposing that the clay-bound water enclosed the clay grains, a near computation approach of the effective porosity is put forward and showed that the effective porosity decreased with bentonite content. Additionally, an exponential relationship was found between the effective porosity and the permeability.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gerasin, Viktor A., and Viktor V. Kurenkov. "JOINT TREATMENT OF BENTONITES WITH INORGANIC POLYELECTROLYTES AND CATIONIC SURFACTANTS IN ORDER TO PROMOTE ORGANOCLAY EXFOLIATION." IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 62, no. 5 (May 21, 2019): 71–77. http://dx.doi.org/10.6060/ivkkt.20196205.5746.

Повний текст джерела
Анотація:
A new approach to production of organomodified bentonites is offered. Bentonites are consecutively treated with inorganic polyelectrolyte (sodium silicate solution) and quaternary ammonium salts, as a result exfoliated organoclays are obtained. An ejector set up has been used for treatment of natural bentonites. Samples of activated bentonites treated in the ejector set up with sodium silicate solution (up to 21 g of sodium silicate per 100 g of bentonite) were prepared. Structure of the obtained bentonite and organoclay samples was established by X-ray diffraction analysis. It has been shown that treatment of the activated bentonite with sodium silicate does not influence the structure of the non-modified bentonite particles, but facilitates exfoliation of clay after organomodification. Polymer composites based on EVA containing 5% wt. of bentonites were prepared by extrusion mixing. In case of non-modified bentonites microcomposites are formed. In case of organomodified bentonites, not treated with sodium silicate, intercalated nanocomposites are formed. Treatment of bentonite with sodium silicate solution and subsequent organomodification ensures the production of exfoliated nanocomposite. Mechanical properties of obtained polymer composites were determined. Incorporation of 5% wt. clays or organoclays into the polymer material leads to increase in Young modulus (up to 50%), tensile strength (up to 20%); elongation at break decreases by 10% or less. In order to ensure the more significant reinforcing effect in EVA composites optimization of the organomodified bentonite composition (selection of surfactant and its content in the organoclay) has to be carried out with account for the polymer properties.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Al-Asheh, Sameer, Fawzi Banat, and Leena Abu-Aitah. "The Removal of Methylene Blue Dye from Aqueous Solutions Using Activated and Non-Activated Bentonites." Adsorption Science & Technology 21, no. 5 (June 2003): 451–62. http://dx.doi.org/10.1260/026361703769645780.

Повний текст джерела
Анотація:
An improvement in the adsorption capacity of naturally available bentonite towards water pollutants such as Methylene Blue dye (MBD) is certainly needed. For this purpose, sodium bentonite was activated by two methods: (1) treatment with sodium dodecyl sulphate (SDS) as an ionic surfactant and (2) thermal treatment in an oven operated at 850°C. Batch adsorption tests were carried out on removing MBD from aqueous solution using the above-mentioned bentonites. It was found that the effectiveness of bentonites towards MBD removal was in the following order: thermal-bentonite > SDS-bentonite > natural bentonite. X-Ray diffraction analysis showed that an increase in the microscopic bentonite platelets on treatment with SDS was the reason behind the higher uptake of MBD. An increase in sorbent concentration or initial pH value of the solutions resulted in a greater removal of MBD from the solution. An increase in temperature led to an increase in MBD uptake by the bentonites studied in this work. The Freundlich isotherm model was employed and found to represent the experimental data well.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Bentonite"

1

Ouyang, Shoung. "Sealing performance assessments of bentonite and bentonite/crushed rock plugs." Diss., The University of Arizona, 1990. http://hdl.handle.net/10150/185275.

Повний текст джерела
Анотація:
Bentonite and mixtures of bentonite and crushed rock are potential sealing materials for high level nuclear waste repositories. The materials have been used to form cap layers to reduce infiltration for mined waste tailings and can also be used to construct clay liners for municipal as well as industrial waste managements. This study includes a systematic investigation of the sealing performance of bentonite and bentonite/crushed rock plugs under diverse conditions. American Colloid C/S granular bentonite and Apache Leap tuff have been mixed to prepare samples for laboratory flow testing. Bentonite weight percent and crushed tuff gradation are the major variables studied. The sealing performance assessments include high injection pressure flow tests, polyaxial flow tests, high temperature flow tests, and piping tests. The results indicate that an appropriate composition would have at least 25% bentonite by weight mixed with well-graded crushed rock. Hydraulic properties of the mixture plugs may be highly anisotropic if significant particle segregation occurs during sample installation and compaction. Temperature has no negative effects on the sealing performance within the test range from room temperature to 60°C. The piping damage to the sealing performance is small if the maximum hydraulic gradient does not exceed 120 and 280 for 25 and 35% bentonite content, respectively. The hydraulic gradients above which flow of bentonite may take place are deemed critical. Analytical work includes the introduction of bentonite occupancy percentage and water content at saturation as two major parameters for the plug design. A permeability model developed is useful for the prediction of permeability in clays, especially in view of the difficulties in obtaining such a property experimentally. A piping model is derived based on the plastic flow theory. This piping model permits the estimation of critical hydraulic gradient allowed before the flow of bentonite takes place. It can also be used to define the maximum allowable pore diameter of a protective filter layer.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

ANDRADE, Daniela de Lourdes Anjos Coutinho Simões. "Influência das variáveis de processo na formação e propriedades de nanocompósitos polipropileno/bentonita." Universidade Federal de Campina Grande, 2009. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1691.

Повний текст джерела
Анотація:
Submitted by Maria Medeiros (maria.dilva1@ufcg.edu.br) on 2018-09-12T12:56:27Z No. of bitstreams: 1 DANIELA DE LOURDES ANJOS COUTINHO SIMÕES ANDRADE - TESE (PPGEP) 2009.pdf: 2248344 bytes, checksum: 28a93ae4236853f59fe35037c2ab6f28 (MD5)
Made available in DSpace on 2018-09-12T12:56:27Z (GMT). No. of bitstreams: 1 DANIELA DE LOURDES ANJOS COUTINHO SIMÕES ANDRADE - TESE (PPGEP) 2009.pdf: 2248344 bytes, checksum: 28a93ae4236853f59fe35037c2ab6f28 (MD5) Previous issue date: 2009
A proposta deste trabalho foi preparar nanocompósitos de polipropileno/compatibilizante/bentonita, pelo método de intercalação na fusão, utilizando como carga uma argila sódica comercial Argel, fornecida por uma indústria local, purificada e modificada organicamente com um sal quaternário de amônio empregando diferentes métodos de preparação. Ao longo do trabalho foram utilizadas duas matrizes e dois tipos de compatibilizantes: PP H103, PP H401, Polipropileno modificado com anidrido maleico (PP-g-MA) e Copolímero de etileno e álcool vinílico (EVOH), respectivamente. As argilas foram caracterizadas por difração de raios-X (DRX), espectroscopia de infravermelho (FTIR) e análise termogravimétrica (TG) visando determinar o método de preparação mais eficiente para obtenção das argilas organofílicas. Uma vez determinado o melhor procedimento para organofilização, na segunda parte deste estudo, avaliou-se o efeito do tipo e teor de argila organofílica, bem como o tipo e teor de compatibilizante nas propriedades de filmes de polipropileno. De acordo com os resultados preliminares deste estudo, há uma indicação de que os filmes de nanocompósitos PP/PP-g-MA/argila organofílica, contendo 1% de argila organofílica e 15% de polipropileno modificado com anidrido maléico (PP-g-MA) podem ser promissores para o mercado de embalagens e poderão em um futuro próximo serem usados como um novo produto por empresas nacionais.
The purpose of this work is to prepare nanocomposites of polypropylene/compatibilizer/bentonite, by melting intercalation, with a commercial sodium clay – Argel – as filler. This clay was organically purified and modified by different methods, with a quaternary ammonium salt. The clays were characterized by X-Ray diffraction (XRD), infrared spectroscopy (FTIR) and thermogravimetric analyses (TG) to determine the most efficient preparation method. Before that, in the second stage of this study, the influence of the type and contend of organoclay in the properties of the polypropylene films was measured; the same was done for the compatibilizer. The preliminary results indicate that the nanocomposites film with 1% of organoclay and 15% of polypropylene grafted with maleic anhydride show promise as packing materials and may be used, in the near future, as a new product by the national industry.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ju, Shuohui. "Electroosmotic dewatering of bentonite suspensions." Thesis, McGill University, 1990. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=59868.

Повний текст джерела
Анотація:
Electroosmotic dewatering of Bentonite suspensions under conditions of constant DC voltage and constant DC current was investigated experimentally in a column 5 cm in diameter. The suspensions were prepared with CaCl$ sb2$ in distilled water with concentrations up to 1 M. The initial solid content was between 9.1 wt% and 26 wt% and the initial bed height ranged from 1.0 cm to 5.2 cm. Constant voltages from 4.0 V to 8.0 V and constant currents from 90 mA to 110 mA were used.
Electroosmosis removed 20-60% of the water with energy expenditures well below the energy required to vaporize the water. Higher voltages or currents removed more water. Removal rates were increased by the addition of CaCl$ sb2$. The lowest bed height (1 cm) gave the lowest energy of dewatering, but the final water removal was low. For constant voltage experiments with an initial field strength of 2.8 V/cm, bed heights around 2 cm gave the highest water removal. The initial solid content had little effect on the final solid content. The Helmholtz/Smoluchowski theory did not predict correctly the effects of electrolyte concentration, solid content and bed height on the rate of electroosmotic dewatering.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Howarth, Leslie George. "Rheological studies of bentonite dispersions." Thesis, University of Bristol, 1986. http://hdl.handle.net/1983/8cd3b134-1a67-40b0-a779-70559df77948.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Magalhães, Vladmir Alvim Vieira. "Bentonita sódica com propriedade antibacteriana para inibição de biocorrosão em poços tubulares profundos /." Araraquara, 2016. http://hdl.handle.net/11449/141943.

Повний текст джерела
Анотація:
Orientador: Rodrigo Fernando Costa Marques
Banca: Miguel Jafelicci Junior
Banca: Wilton Rogério Lustri
Resumo: O presente trabalho consiste na funcionalização do fluido de perfuração conhecido como bentonita (BN) com grupos funcionais sulfidril (SH) provenientes do reagente 3- mercaptopropil-trimetoxissilano (MPTS) e nanopartículas de prata (NPs/Ag), visando a inibição da biocorrosão por oxidação de bactérias. Para tanto, a argila do tipo bentonita, constituída principalmente do argilomineral montmorilonita, foi modificada através de rota de inserção de organossilano e nanopartículas de prata (NPs/Ag) em sua estrutura, sendo um processo favorecido pelo efeito redutor do grupo tiol, proveniente do silano. As amostras funcionalizadas em concentrações distintas de Ag foram testadas contra a ação da ferrobactéria do tipo Thiobacillus ferrooxidans. Para testar o efeito antibacteriano do material híbrido, utilizou-se metodologia em meio de cultura T&K, onde foi possível medir a capacidade de inibição da oxidação de Fe2+ a Fe3+ por unidade de tempo. O processo de modificação proposto permitiu a manutenção da estrutura original da bentonita, bem como a criação de nanopartículas de prata, cujo efeito antibacteriano inibiu a biocorrosão de Fe2+ obtendo, desta forma, fluido de perfuração funcionalizado com grande potencial de aplicação em obras de perfuração de poços tubulares profundos.
Abstract: This work proposes the functionalization of the drilling fluid known as bentonite (BN) with sulfhydryl functional groups (SH) from the reagent 3-mercaptopropyltrimethoxysilane (MPTS) and silver nanoparticles (Ag/NPs), to inhibit corrosion by bacteria that oxidize metal. Therefore, the type clay bentonite, consisting mainly of montmorillonite clay mineral, was modified through organosilane insertion route and silver nanoparticles in its structure, because this is a process favored by the reducing effect of the thiol group from the silane. Samples functionalized in different concentrations of Ag were tested against the action of ferrobactéria type Thiobacillus ferrooxidans. To test the antibacterial effect of the hybrid material, was used T&K methodology, where it was possible to measure the capacity to inhibit the oxidation of Fe2+ to Fe3+ per unit time. The planned modification process, permitted the maintenance the original structure of the bentonite, as well as the creation of silver nanoparticles, that due to the antibacterial effect, has inhibited biocorrosion of Fe2+, obtained in this way, a drilling fluid functionalized with great potential for application in drilling works of deep wells.
Mestre
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hume, Harold B. "Gas breakthrough in compacted Avonlea bentonite." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ35063.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mollins, Lee Hamilton. "The design of bentonite-sand mixtures." Thesis, University of Leeds, 1996. http://etheses.whiterose.ac.uk/4122/.

Повний текст джерела
Анотація:
One-dimensional and isotropic swelling tests, hydraulic conductivity tests and triaxial compression tests have been performed at applied stresses up to 450kPa on sodium bentonite powder, sand and compacted sodium bentonite-sand mixtures (5, 10, and 20% bentonite by dry weight). This was done to investigate the use of bentonite improved soils for waste containment, and study the fundamental geotechnical properties of bentonite-sand mixtures using a classical soil mechanics approach. It was found that air dried bentonite powder swells to reach a state described by a single straight line on a plot of void ratio against the logarithm of vertical effective stress, regardless of preparation technique. The gradient of this line was intermediate between a normal consolidation and rebound line for the same material indicating a different sample fabric when allowed to reach equilibrium from an initially dry state rather than the conventional fully saturated state. Swelling of bentonite-sand mixtures expressed in terms of the clay void ratio show a deviation from bentonite behaviour above a threshold stress which depends on the bentonite content. From this behaviour, a modified principle of effective stress has been proposed. Similar swelling relationships were found for samples under an isotropic confining stress. Hydraulic conductivity data for bentonite and mixtures indicate an approximately linear relationship between the logarithm of hydraulic conductivity and the logarithm of void ratio. Observed differences in hydraulic conductivity between bentonite and mixtures, when represented in terms of the clay void ratio, are attributed to the sand porosity and tortuosity. From a stress-dilatancy analysis of triaxial data, the peak strength of mixtures has been shown to depend on the sand relative density. This parameter indicates how the material will behave during shear. A threshold sand relative density has been postulated, which is dependent on the axial strain. Below the threshold value, it is likely that the stress-strain behaviour will be characteristic of the bentonite alone. A design model based on the clay void ratio, sand porosity and tortuosity, and sand relative density is presented, enabling the hydraulic conductivity or strength of a mixture to be estimated.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Visudmedanukul, Punlop. "Solute Transport Through Cement-Bentonite Barriers." 京都大学 (Kyoto University), 2004. http://hdl.handle.net/2433/123466.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sherriff, Nicholas Kevin. "Radionuclide dissociation from bentonite colloid systems." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/radionuclide-dissociation-from-bentonite-colloid-systems(43918efc-26e4-4e41-a450-3e209c20340d).html.

Повний текст джерела
Анотація:
Deep geological disposal is a method of managing high level, long-­‐lived nuclear waste. It is a concept that many countries are exploring for the possibility of managing nuclear waste generated from power production. For deep geological disposal to be viable then areas where problems may surface have to be explored. Bentonite clay has been proposed as the material to be used for the backfill of the repositories. Its swelling properties ensure that it will expand to plug the bore holes that will be made for the waste, its impermeable nature restricts contact between groundwater and the waste package and its stability on a geological timescale all make it desirable as a backfill material. This project looks at the role that colloids formed from the bentonite clay could have in facilitating radionuclide transport away from a nuclear waste repository. Several radionuclides (Eu(III), U(VI), Th(IV) and Am(III)) have been considered in this research, and information from these studies will be used in the BELBaR project’s outputs, which will eventually support a disposal safety case. Ternary systems of 152Eu(III), bulk bentonite and EDTA ([Eu] = 7.9 x 10-­‐10 M; pH = 6.0 – 7.0) have been studied. Without EDTA, there was slow uptake in a two-­‐stage process, with initial rapid sorption of Eu(III) (96%), followed by slower uptake of a smaller fraction (3.0 % over a period of 1 month). The reversibility of Eu(III) binding was tested by allowing Eu(III) to sorb to bentonite for 1 – 322 days. EDTA was added to the pre-­‐equilibrated Eu bentonite systems at 0.01 M. A dissociation rate constant of approximately 4.3 x 10-­‐8 s-­‐1 (values in the range 2.2 x 10-­‐8 – 1.0 x 10-­‐7 s-­‐1) for pre-­‐equilibration times ≥ 7 days was measured. Eventually, the amount of Eu(III) remaining bound to the bentonite was within error of that when EDTA was also present prior to contact (4.5 % ± 0.6). Eu interactions with colloidal bentonite were studied, and the dissociation rate constant measured by a resin competition method. A dissociation rate of 8.8 x 10-­‐7 s-­‐1 and a range of 7.7 x 10-­‐7 – 9.5 x 10-­‐7 s-­‐1 were measured. For both bulk and colloidal bentonite slow dissociation was observed for Eu(III), but there was no evidence for ‘irreversible’ binding. The interactions of 232U(VI) with bentonite colloids ([U] = 5.43 x 10-­‐10 M; pH = 8.8 ± 0.2) have been studied using a resin ion exchange competition technique. The reversibility of the interaction was studied by allowing U(VI) to sorb to bentonite colloids for periods from 1 – 35 days. A fraction of the U(VI) was removed from the solution instantaneously (28-­‐50 %), and after 3 days, the amount of U(VI) remaining on the bentonite colloids was 17-­‐ 25%. With time, the amount of U(VI) retained by the bentonite colloid is reduced further, with a first order dissociation rate constant of 5.6 x 10-­‐7 s-­‐1. Whilst the dissociating fraction was small (24% (+34; -­‐12 %)), complete dissociation was not observed. Although slow dissociation was observed for U(VI), there was no convincing evidence for ‘irreversible binding’ of the radionuclide by the colloid. The interactions of 228Th(IV) ([Th] = 3.79 x 10-­‐12 M; pH = 8.8 ± 0.2) and 241Am(III) ([Am] = 3.27 x 10-­‐9 M; pH = 8.8 ± 0.2), with bentonite colloids have been studied using an ion exchange competition technique. Th(IV) was not fully associated with the bentonite colloids, and filtration showed that the uptake after 1 week was 78.3% (± 2.7%). Am(III) was weakly associated to the bentonite colloids, the uptake after 1 week was 20.1 % (± 5.2 %). Cellulose phosphate was added to the radionuclide/bentonite colloid systems (1 g for Th(IV), 0.2 g for Am(III)), an amount that was sufficient to retain the radionuclide when no bentonite colloids are present. A fraction of the Th(IV) is initially removed by the Cellphos (75-­‐93 %), and after 7 days the amount of Th(IV) remaining on the colloids is 1 -­‐ 3 %. Over the time of the experiment, the amount of Th(IV) retained by the bentonite colloid appears to remain level and the amount bound to the bentonite colloid at the end of the experiment is 2.1 % ± 0.88 % which is within experimental error of the steady state equilibrium of the system. A fraction (48-­‐94 %) of the Am(III) is also initially removed by the Cellphos, after 7 days the8amount of Am(III) remaining on the colloids is 1.2 – 9.3 %. However, after 35 days of contact time with the cellulose phosphate it appears that Am(III) is released back into the system, preventing dissociation rates from being calculated in this case. Studies of the association of Eu(III) to the clay colloids and its subsequent dissociation in this thesis follow similar trends to those described elsewhere in the literature (Missana et al. (2008), Bouby et al. (2011)). The Eu/bentonite colloid dissociation rate calculated here (8.8 x 10-­‐7 s-­‐1 (± 9.1 x 10-­‐7 s-­‐1)) is within error of the dissociation rates for trivalent ions estimated by Wold (2010) (Am(III) 5.6 x 10-­‐7 s-­‐1 Cm(III) 1.7 x 10-­‐6 s-­‐1). The U(VI) studies in this thesis show a dissociation rate of 5.6 x 10-­‐7 s-­‐1 (± 4.2 × 10-­‐7) which is within error of the U(VI) dissociation rate estimated by Wold (2010) (8.3 X 10-­‐7 s-­‐1). Reliable dissociation rates could not be obtained from the Am(III) and the Th(IV) studies in this thesis, other studies (e.g. Bouby et al. (2011) showed signs of irreversible binding of Th(IV) to bentonite colloids, however, no irreversible binding was observed in this thesis. Am(III) did not appear to be a close analogue of Eu(III) in these systems. All of the isotopes studied in this thesis showed no evidence of irreversible binding to bentonite or bentonite colloids. As such, the role that bentonite colloids will have in the facilitated transport of radioisotopes away from a repository is likely to have only a limited impact, at most, on the environmental safety case.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Schenning, Jessica A. "Hydraulic performance of polymer modified bentonite." [Tampa, Fla.] : University of South Florida, 2004. http://purl.fcla.edu/fcla/etd/SFE0000403.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Bentonite"

1

Praetorius, Steffen, and Britta Schößer. Bentonite Handbook. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783433606520.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

A, Dixon D., and Whiteshell Laboratories, eds. Water uptake and stress development in bentonites and bentonite-sand buffer materials. Pinawa, Man: Whiteshell Laboratories, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

K, Daemen J. J., U.S. Nuclear Regulatory Commission. Office of Nuclear Regulatory Research. Division of Regulatory Applications., and University of Arizona. Dept. of Mining and Geological Engineering., eds. Sealing performance of bentonite and bentonite/crushed rock borehole plugs. Washington, DC: Division of Regulatory Applications, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

K, Daemen J. J., U.S. Nuclear Regulatory Commission. Office of Nuclear Regulatory Research. Division of Regulatory Applications., and University of Arizona. Dept. of Mining and Geological Engineering., eds. Sealing performance of bentonite and bentonite/crushed rock borehole plugs. Washington, DC: Division of Regulatory Applications, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gray, Jerry J. Bentonite in Oregon: Occurrences, analyses, and economic potential / by Jerry J. Gray, Ronald P. Geitgey, and Gary L. Baxter. Portland, Or: Dept. of Geology and Mineral Industries, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gray, Jerry J. Bentonite in Oregon: Occurrences, analyses, and economic potential. Portland, Or: State of Oregon, Dept. of Geology and Mineral Industries, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Thorson, Thomas A. Black Hills Bentonite, LLC. New York, N.Y: The Newcomen Society of the United States, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hosterman, John W. Bentonite and fuller's earth resources of the United States. [Reston, Va.?]: U.S. Dept. of the Interior, U.S. Geological Survey, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hosterman, John W. Bentonite and fuller's earth resources of the United States: A compilation on the uses, geology, mineralogy, and distribution of bentonite and fuller's earth in the United States. Washington: U.S. G.P.O., 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kazuya, Idemitsu, and Dōryokuro Kakunenryō Kaihatsu Jigyōdan. Tōkai Jigyōsho., eds. Plutonium diffusivity in compacted bentonite. [Ibaraki-ken Naka-gun Tōkai-mura]: Tokai Works, Power Reactor and Nuclear Fuel Development Corporation, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Bentonite"

1

Bährle-Rapp, Marina. "Bentonite." In Springer Lexikon Kosmetik und Körperpflege, 62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_1072.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gooch, Jan W. "Bentonite." In Encyclopedic Dictionary of Polymers, 73. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_1203.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gooch, Jan W. "Bentonite Clay." In Encyclopedic Dictionary of Polymers, 73. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_1204.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bährle-Rapp, Marina. "Stearalkonium Bentonite." In Springer Lexikon Kosmetik und Körperpflege, 528. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_9976.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhang, Chun-Liang, Ju Wang, Stephan Kaufhold, Yuemiao Liu, Oliver Czaikowski, Janis Pingel, Thorsten Schäfer, et al. "Experimental Basis." In Thermo-Hydro-Mechanical-Chemical (THMC) Processes in Bentonite Barrier Systems, 41–90. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-53204-7_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bährle-Rapp, Marina. "Quaternium-18 Bentonite." In Springer Lexikon Kosmetik und Körperpflege, 465. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_8701.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tong, Shan, Kristin M. Sample-Lord, Gretchen L. Bohnhoff, and Andrew B. Balken. "Salt Diffusion Through Sodium Bentonite and Bentonite Polymer Composite." In Environmental Science and Engineering, 569–76. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2221-1_62.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ouyang, S., and J. J. K. Daemen. "Performance of Bentonite and Bentonite/Crushed Rock Borehole Seals." In Sealing of Boreholes and Underground Excavations in Rock, 65–95. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1505-3_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bährle-Rapp, Marina. "Quaternium-18/Benzalkonium Bentonite." In Springer Lexikon Kosmetik und Körperpflege, 465. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_8702.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Jain, Ankush Kumar, Ayush Kumar, and Arvind Kumar Jha. "Physical and Swell Behaviour of Sand–Bentonite and Marble Dust–Bentonite Mixes." In Lecture Notes in Civil Engineering, 95–106. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6370-0_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Bentonite"

1

Tanaka, Yukihisa, Takuma Hasegawa, and Kunihiko Nakamura. "Modeling Hydraulic Conductivity and Swelling Pressure of Several Kinds of Bentonites Affected by Salinity of Water." In ASME 2010 13th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2010. http://dx.doi.org/10.1115/icem2010-40013.

Повний текст джерела
Анотація:
In case of construction of repository for radioactive waste near the coastal area, the effect of salinity of water on hydraulic conductivity as well as swelling pressure of bentonite as an engineered barrier should be considered because it is known that the hydraulic conductivity of bentonite increases and swelling pressure decreases with increasing salinity of water. Though the effect of salinity of water on hydraulic conductivity and swelling pressure of bentonite has been investigated experimentally, it is necessary to elucidate and to model the mechanism of the phenomenon because various kinds of bentonites may possibly be placed in various salinities of ground water. Thus, in this study, a model for evaluating hydraulic conductivity as well as swelling pressure of compacted bentonite is proposed considering the effect of salinity of water as follows: a) Change in number of flakes of a stack of montmorillonite because of cohesion. b) Change in viscosity of water in interlayer between flakes of montmorillonite. Quantitative evaluation method for hydraulic conductivity and swelling characteristics of several kinds of bentonites under saline water is proposed based on the model mentioned above.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Towler, Brian Francis, Herman Victorov, Gabriel Zamfir, and Pompiliu Ignat. "Plugging Wells With Hydrated Bentonite, Part 2: Bentonite Bars." In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2008. http://dx.doi.org/10.2118/115524-ms.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Fujii, N., C. A. Arcilla, M. Yamakawa, C. Pascua, K. Namiki, T. Sato, N. Shikazono, and W. R. Alexander. "Natural Analogue Studies of Bentonite Reaction Under Hyperalkaline Conditions: Overview of Ongoing Work at the Zambales Ophiolite, Philippines." In ASME 2010 13th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2010. http://dx.doi.org/10.1115/icem2010-40022.

Повний текст джерела
Анотація:
Bentonite is one of the safety-critical components of the engineered barrier system for the disposal concepts developed for many types of radioactive waste. However, bentonite — especially the swelling clay component that contributes to its essential barrier functions — is unstable at high pH. To date, results from laboratory tests on bentonite degradation have been ambiguous as the reaction rates are so slow as to be difficult to observe. As such, a key goal in this project is to examine the reaction of natural bentonites in contact with natural hyperalkaline groundwaters to determine if any long-term alteration of the bentonite occurs. Ophiolites have been identified as sources of hyperalkaline groundwaters that can be considered natural analogues of the leachates produced by some cementitious materials in repositories for radioactive waste. At the Zambales ophiolite in the Philippines, widespread active serpentinisation results in hyperalkaline groundwaters with measured pH values of up to 11.7, falling into the range typical of low-alkali cement porewaters. These cements are presently being developed worldwide to minimise the geochemical perturbations which are expected to result from the use of OPC-based concretes (see Kamei et al., this conference, for details). In particular, it is hoped that the lower pH of the low-alkali cement leachates will reduce, or even avoid entirely, the potential degradation of the bentonite buffer which is expected at the higher pH levels (12.5 and above) common to OPC-based concretes. During recent field campaigns at two sites in the Zambales ophiolite (Mangatarem and Bigbiga), samples of bentonite and the associated hyperalkaline groundwaters have been collected by drilling and trenching. At Mangatarem, qualitative data from a ‘fossil’ (i.e. no groundwater is currently present) reaction zone indicates some alteration of the bentonite to zeolite, serpentine and CSH phases. Preliminary reaction path modelling suggests that the zeolites could have been produced as a product of smectite reaction in the hyperalkaline groundwaters. Although not included in this calculation to date, the CSH phases identified are completely consistent with reaction of clays with hyperalkaline groundwaters, as seen at other sites worldwide. At the Bigbiga site, an active hyperalkaline groundwater/bentonite reaction zone (at the base of the bentonite deposit) has recently been identified and a drilling campaign is planned for late autumn 2010.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sato, Haruo. "An Analytical Model on the Sealing Performance of Space for the Design of Buffer Material and Backfill Material." In ASME 2010 13th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2010. http://dx.doi.org/10.1115/icem2010-40067.

Повний текст джерела
Анотація:
The self-sealing function of the clearances between buffer material and overpack and tunnel wall or disposal pit wall and between backfill material and tunnel wall is expected for bentonite which will be used as buffer material and part of the backfill material. In this study, an analytical theory on the clearance filling performance for both materials was constructed. Volumetric swelling ratio of bentonite (Rvs) and maximum clearance ratio that bentonite can fill clearance (Rsmax) were calculated against dry density for different montmorillonite and silica sand contents of bentonites in distilled water and saline water conditions (Horonobe groundwater and synthetic seawater). Both Rvs and Rsmax values decreased with decreasing montmorillonite content and decreased in saline water conditions. The Rvs values in the Horonobe groundwater (ionic strength IS = 0.207 M) were approximately a half of those in distilled water and those in synthetic seawater (IS = 0.64 M) were approximately a half of those in the Horonobe groundwater. In the case that actual sealing performance is judged, not only clearance filling, but also hydraulic conductivity etc. after the clearance was filled must be considered. In the design of buffer material and backfill material, those parameters must be systematically taken into account.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kalinowski, Birgitta, Patrik Sellin, and Daniel Svensson. "Sulfate Reduction in Bentonite." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.1237.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Marcos, N., L. Kivekäs, and H. Vanhala. "Electrical properties of bentonite." In 4th EEGS Meeting. European Association of Geoscientists & Engineers, 1998. http://dx.doi.org/10.3997/2214-4609.201407142.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jefferis, Stephan. "Cement-Bentonite Slurry Systems." In Proceedings of the Fourth International Conference on Grouting and Deep Mixing. Reston, VA: American Society of Civil Engineers, 2012. http://dx.doi.org/10.1061/9780784412350.0001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Jove Colon, Carlos, Clay Payne, Florie Caporuscio, Eric Coker, and Andrew Knight. "Characterization Studies of Bentonite Barrier Interactions: Results from FEBEX-Dp Bentonite Samples." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.1227.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Jeeva, Mark, and W. Y. Wan Zuhairi. "Adsorption of Acid Blue 25 dye by bentonite and surfactant modified bentonite." In THE 2017 UKM FST POSTGRADUATE COLLOQUIUM: Proceedings of the University Kebangsaan Malaysia, Faculty of Science and Technology 2017 Postgraduate Colloquium. Author(s), 2018. http://dx.doi.org/10.1063/1.5027945.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mara, Ady, Karna Wijaya, Wega Trisunaryati, and Mudasir. "Effect of sulfuric acid concentration of bentonite and calcination time of pillared bentonite." In High-Energy Spin Physics: 8th International Symposium. American Institute of Physics, 2016. http://dx.doi.org/10.1063/1.4945496.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Bentonite"

1

Ouyang, S., and J. J. K. Daemen. Sealing performance of bentonite and bentonite/crushed rock borehole plugs. Office of Scientific and Technical Information (OSTI), July 1992. http://dx.doi.org/10.2172/140792.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Serrato, M. G. Bentonite mat demonstration. Final report. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/105732.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Andrews, P. R. A. Bentonite, fuller's earth and kaolinite. Natural Resources Canada/CMSS/Information Management, 1992. http://dx.doi.org/10.4095/328638.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Cheshire, Michael C., Florie Andre Caporuscio, Michael S. Rearick, Carlos Jove-Colon, and Mary Kate McCarney. Bentonite Evolution Under Experimental Repository Conditions. Office of Scientific and Technical Information (OSTI), June 2013. http://dx.doi.org/10.2172/1083854.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Di Pietro, S. A., C. Joseph, and M. Zavarin. Neptunium(IV) Diffusion through Bentonite Clay. Office of Scientific and Technical Information (OSTI), October 2019. http://dx.doi.org/10.2172/1605055.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tinnacher, Ruth M., and James A. Davis. Laboratory Experiments on Bentonite Samples: FY15 Progress. Office of Scientific and Technical Information (OSTI), July 2015. http://dx.doi.org/10.2172/1225364.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ruth M. Tinnacher, Christophe Tournassat, and James A. Davis. Laboratory Experiments on Bentonite Samples: FY16 Progress. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1306333.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dennison, J. Tioga Bentonite in the Appalachian basin: Final report. Office of Scientific and Technical Information (OSTI), November 1986. http://dx.doi.org/10.2172/7057656.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Daemen, J., and Chongwei Ran. Bentonite as a waste isolation pilot plant shaft sealing material. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/434446.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Begg, J., M. Zavarin, S. Tumey, and A. Kersting. Plutonium Adsorption and Desorption from Bentonite: Progress Report FT-14LL0807071. Office of Scientific and Technical Information (OSTI), August 2014. http://dx.doi.org/10.2172/1162237.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії