Добірка наукової літератури з теми "Batterie au Li"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Batterie au Li".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Batterie au Li"

1

Do, Dinh Vinh, Christophe Forgez, Khadija El Kadri Benkara, and Guy Friedrich. "Surveillance temps réel de batterie Li-ion." European Journal of Electrical Engineering 14, no. 2-3 (June 30, 2011): 383–97. http://dx.doi.org/10.3166/ejee.14.383-397.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hörpel, G., P. Pilgram, and M. Winter. "Moderne Li-Ionen-Batterie-Komponenten: Gegenwart und Zukunft." Chemie Ingenieur Technik 80, no. 9 (September 2008): 1241. http://dx.doi.org/10.1002/cite.200750844.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhao-Karger, Zhirong, and Maximilian Fichtner. "Exploring Battery Materials for Ca Batteries." ECS Meeting Abstracts MA2023-02, no. 4 (December 22, 2023): 639. http://dx.doi.org/10.1149/ma2023-024639mtgabs.

Повний текст джерела
Анотація:
Rechargeable calcium (Ca) batteries have the prospects of high energy, low-cost and sustainability. Ca metal has a low reduction potential of -2.9 V vs. NHE (close to that of lithium -3.0 V)) and a high capacity, and thus the voltage and energy density of Ca batteries is potentially comparable with lithium-ion batteries. However, divalent Ca-ions and reactive Ca metal strongly interact with cathode materials and electrolyte solutions, leading to high charge-transfer barriers at the electrode-electrolyte interfaces and consequently low electrochemical performance. Herein, we will present the recent progress in the development of stable calcium tetrakis(hexafluoroisopropyloxy) borate Ca[B(hfip)4]2 (hfip = CH(CF3)2) electrolytes and the search for suitable cathode materials. We will discuss the interfacial properties of Ca anodes in liquid electrolytes and the chemistry of sulfur conversion electrodes in Ca batteries. References Li, O. Fuhr, M. Fichtner, Z. Zhao-Karger, Towards stable and efficient electrolytes for room-temperature rechargeable calcium batteries.Energy Environ. Sci. 12, 3496 (2019). Li, Z. M. Fichtner, Z. Zhao-Karger, Rechargeable Calcium–Sulfur Batteries Enabled by an Efficient Borate-Based Electrolyte. Small 16, 1–6 (2020). Zhao-Karger, Y. Xiu, Z. Li, A. Reupert, T. Smok, M. Fichtner, Calcium-tin alloys as anodes for rechargeable non-aqueous calcium-ion batteries at room temperature, Nature Comm. 13, 3849 (2022).
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mathialagan, Kowsalya, Saranya T, Ammu Surendran, Ditty Dixon, Nishanthi S.T., and Aiswarya Bhaskar. "(Digital Presentation) Development of Bifunctional Oxygen Electrocatalysts for Electrically Rechargeable Zinc-Air Batteries." ECS Meeting Abstracts MA2022-02, no. 4 (October 9, 2022): 403. http://dx.doi.org/10.1149/ma2022-024403mtgabs.

Повний текст джерела
Анотація:
Zinc-air battery is a promising battery system as it possesses high theoretical energy density and is cost-effective3. The theoretical energy density of a Zinc-air battery is 1086 Wh kg-1, which is five times greater than that of lithium-ion batteries2. Moreover, zinc metal is one of the most abundant metals in the earth’s crust and is inexpensive. Rechargeable metal-air batteries operate based on two fundamental electrochemical reactions as Oxygen Reduction Reaction (ORR) during discharge and Oxygen Evolution Reaction (OER) during recharge processes, respectively3. Electrocatalytic activity of the bifunctional electrocatalyst towards these two oxygen reactions will decide the performance of the battery1. Recent advancements in catalyst development are the fabrication of rechargeable air electrodes using a single active material that is capable of bifunctionally catalyzing ORR and OER3. The development of bifunctional catalysts with high activity is necessary for rechargeable metal-air batteries, such as zinc-air batteries3. In this work, a perovskite-type LaFeO3 material was synthesized using a citric acid-assisted sol-gel method and is investigated as bifunctional oxygen electrocatalyst for electrically rechargeable zinc-air batteries. Structural studies using X-ray diffraction revealed the formation of phase pure LaFeO3 in space group Pbnm. This catalyst displayed considerable bifunctional catalytic activity for both oxygen reduction (0.74 V vs. RHE) and oxygen evolution reactions (0.40 V vs. RHE at 10 mA cm-2) in 1 M KOH electrolyte. Electrically rechargeable zinc-air batteries assembled using LaFeO3 as the oxygen electrocatalyst deliver a specific capacity of 936.38 mAh g( Zn) -1 after the 1st discharge. Further details will be discussed in the poster. Financial support from Department of Science and Technology, Govt. of India under research grant number DST/TMD/MECSP/2K17/20 is gratefully acknowledged. References: [01] Y. Li, M. Gong, et. al., Nature communications, 4, (2013), 1-7 [02] P. Gu, M. Zheng, et. al., Journal of Material Chemistry, (2017), 1-17 [03] D. U. Lee, P. Xu, et. al., Journal of Material Chemistry, 4, (2016), 7107-7134
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hao, Shuai. "Studies on the Performance of Two Dimensional AlSi as the Anodes of Li Ion Battery." Solid State Phenomena 324 (September 20, 2021): 109–15. http://dx.doi.org/10.4028/www.scientific.net/ssp.324.109.

Повний текст джерела
Анотація:
Recently, two-dimensional (2D) materials have been rapidly developed and they provided a wide application on the anode of the batteries, reducing the adverse effect of traditional ion batteries including low capacity, short cycle life, low charging rate and poor safety mainly coming from the use of graphite anode. The current report investigates the anode performances of AlSi, a new 2D material exfoliated from NaAlSi, for Li ion batterys (LIBs) through density functional theory (DFT) calculations and gives quantitative discussions on the Li ion valences, binding energies and open-circuit voltages of 2D AlSi anode. The results indicate that 2D AlSi performs great as a novel anode due to the moderate adhesion to Li and low barrier for ion diffusion. Furthermore, our research results illustrate a broad application prospect on the new anode inventions as well as reducing useless consumption on the batteries by the practice of AlSi anode.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yuan, Yuan. "Comparative Studies on Monolayer and Bilayer Phosphorous as the Anodes of Li Ion Battery." Key Engineering Materials 896 (August 10, 2021): 61–66. http://dx.doi.org/10.4028/www.scientific.net/kem.896.61.

Повний текст джерела
Анотація:
Recently, two-dimensional (2D) material developed rapidly and provided a wide application on the anode of the batteries, reducing the adverse effect of traditional ion batteries such as low capacity, short cycle life, slow charging and poor safety mainly coming from the use of graphite anode. The current report investigates the anode performances of phosphorus, a new 2D material in electrochemistry field, with monolayer and bilayer structure for Li ion batterys (LIBs) through density functional theory (DFT) calculations and gives a comparison on the Li ion valences, binding energies and open-circuit voltages between the two structures. The results indicate that bilayer phosphorus perform better as a novel anode due to the stronger adhesion to Li and lower barrier for ion diffusion. Furthermore, our research results illustrate a broad application prospect on the new anode inventions as well as reducing useless consumption on the batteries by the practice of bilayer phosphorus anode.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kotobuki, Masashi. "Recent progress of ceramic electrolytes for post Li and Na batteries." Functional Materials Letters 14, no. 03 (February 18, 2021): 2130003. http://dx.doi.org/10.1142/s1793604721300036.

Повний текст джерела
Анотація:
Recently, post Li batteries have been intensively researched due to high cost and localization of Li sources, especially for large-scale applications. Concurrently, ceramic electrolytes for post Li batteries also gain much attention to develop all-solid-state post Li batteries. The most intensively researched post Li battery is Na battery because of chemical and electrochemical similarities between Li and Na elements. Many good review papers about Na battery have been published including Na-ion conductive ceramic electrolytes. Contrary, ceramic electrolytes for other post Li batteries like K, Mg, Ca, Zn and Al batteries are hardly summarized. In this review, research on ceramic electrolytes for K, Mg, Ca, Zn and Al batteries is analyzed based on latest papers published since 2019 and suggested future research direction of ceramic electrolytes for post-Li batteries.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mossaddek, Meriem, El Mehdi Laadissi, Chouaib Ennawaoui, Sohaib Bouzaid, and Abdelowahed Hajjaji. "Enhancing battery system identification: nonlinear autoregressive modeling for Li-ion batteries." International Journal of Electrical and Computer Engineering (IJECE) 14, no. 3 (June 1, 2024): 2449. http://dx.doi.org/10.11591/ijece.v14i3.pp2449-2456.

Повний текст джерела
Анотація:
Precisely characterizing Li-ion batteries is essential for optimizing their performance, enhancing safety, and prolonging their lifespan across various applications, such as electric vehicles and renewable energy systems. This article introduces an innovative nonlinear methodology for system identification of a Li-ion battery, employing a nonlinear autoregressive with exogenous inputs (NARX) model. The proposed approach integrates the benefits of nonlinear modeling with the adaptability of the NARX structure, facilitating a more comprehensive representation of the intricate electrochemical processes within the battery. Experimental data collected from a Li-ion battery operating under diverse scenarios are employed to validate the effectiveness of the proposed methodology. The identified NARX model exhibits superior accuracy in predicting the battery's behavior compared to traditional linear models. This study underscores the importance of accounting for nonlinearities in battery modeling, providing insights into the intricate relationships between state-of-charge, voltage, and current under dynamic conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bao, Wurigumula, and Ying Shirley Meng. "(Invited) Development and Application of Titration Gas Chromatography in Elucidating the Behavior of Anode in Lithium Batteries." ECS Meeting Abstracts MA2023-01, no. 2 (August 28, 2023): 633. http://dx.doi.org/10.1149/ma2023-012633mtgabs.

Повний текст джерела
Анотація:
The accelerated transition to renewable energy systems worldwide has triggered increasing interest in energy storage technologies, especially in lithium batteries. Accurate diagnosis and understanding of the batteries degradation mechanism are essential. Titration Gas Chromatography (TGC) has been developed to quantitively understand the anode. The inactive Li in the cycled anode can be categorized into two kinds: 1) trapped Li0 (such as trapped lithiated graphite (LixC6), Li0, and lithium silicon alloy (LixSi)) and 2) solid electrolyte interphase (SEI) Li+. Noted that only trapped Li0 can react with the protic solvent to generate the hydrogen (H2), while SEI (Li+) does not1. Therefore, the H2 gas quantification can be correlated to the trapped Li0 as the foundation mechanism of TGC. With the optimal solvent selection, we successfully applied TGC to investigated: 1) the degradation behavior of Si-based anode materials2, 3; 2) corrosion effects on electrochemically deposited Li metal anode4; 3) the cycling behavior of Gr anode; 4) Li inventory quantification in practical Li metal battery5. We demonstrate the various application of TGC techniques in quantitatively examining the Li inventory changes of the anode. Beyond that, the results can provide unique insights into identifying the critical bottlenecks that facilitate battery performance development. References: Fang, C.; Li, J.; Zhang, M.; Zhang, Y.; Yang, F.; Lee, J. Z.; Lee, M. H.; Alvarado, J.; Schroeder, M. A.; Yang, Y.; Lu, B.; Williams, N.; Ceja, M.; Yang, L.; Cai, M.; Gu, J.; Xu, K.; Wang, X.; Meng, Y. S., Quantifying inactive lithium in lithium metal batteries. Nature 2019, 572 (7770), 511-515. Bao, W.; Fang, C.; Cheng, D.; Zhang, Y.; Lu, B.; Tan, D. H.; Shimizu, R.; Sreenarayanan, B.; Bai, S.; Li, W., Quantifying lithium loss in amorphous silicon thin-film anodes via titration-gas chromatography. Cell Reports Physical Science 2021, 2 (10), 100597. Sreenarayanan, B.; Tan, D. H.; Bai, S.; Li, W.; Bao, W.; Meng, Y. S., Quantification of lithium inventory loss in micro silicon anode via titration-gas chromatography. Journal of Power Sources 2022, 531, 231327. Lu, B.; Li, W.; Cheng, D.; Bhamwala, B.; Ceja, M.; Bao, W.; Fang, C.; Meng, Y. S., Suppressing chemical corrosions of lithium metal anodes. Advanced Energy Materials 2022, 2202012. Deng, W.; Yin, X.; Bao, W.; Zhou, X.; Hu, Z.; He, B.; Qiu, B.; Meng, Y. S.; Liu, Z., Quantification of reversible and irreversible lithium in practical lithium-metal batteries. Nature Energy 2022, 7 (11), 1031-1041.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Younesi, Reza, Gabriel M. Veith, Patrik Johansson, Kristina Edström, and Tejs Vegge. "Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S." Energy & Environmental Science 8, no. 7 (2015): 1905–22. http://dx.doi.org/10.1039/c5ee01215e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Batterie au Li"

1

Idolo, Eugenio. "Modellazione di batterie Li-ione mediante circuiti elettrici." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.

Знайти повний текст джерела
Анотація:
Il funzionamento di una pila si basa essenzialmente su reazioni di ossido - riduzione, in cui una specie chimica si ossida perdendo elettroni mentre una seconda specie chimica si riduce acquistando gli elettroni persi dalla prima specie. Questo movimento di elettroni dal riducente all’ossidante non è altro che una corrente elettrica. Riuscire a definire l’andamento delle curve di carica e scarica delle batterie permette di capire in quale maniera si comporta il sistema se viene caricato o scaricato sotto certe condizioni operative piuttosto che altre; di conseguenza ciò permette di scegliere in maniera accurata le migliori condizioni di funzionamento della batteria, vale a dire i valori di corrente di scarica e di temperatura. Scopo principale di questo lavoro è quello di caratterizzare in maniera più accurata possibile alcuni modelli di batteria Litio - ione, cercando di riprodurne matematicamente le curve di carica e scarica: ciò è possibile grazie all’utilizzo di opportuni modelli elettrico - sperimentali da implementare all’interno di un ambiente di calcolo numerico. L'obiettivo finale del lavoro è quello di trovare dei parametri caratteristici, che siano esprimibili secondo una stessa equazione in funzione della corrente di scarica e della temperatura. In questo modo sarà possibile estendere il modello ad ogni batteria Litio - ione e costruire un modello unificato per poter prevedere il comportamento di una qualsiasi batteria Litio - ione durante la sua scarica.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hémery, Charles-Victor. "Etudes des phénomènes thermiques dans les batteries Li-ion." Phd thesis, Université de Grenoble, 2013. http://tel.archives-ouvertes.fr/tel-00968666.

Повний текст джерела
Анотація:
Les travaux présentés dans cette thèse concernent l'étude thermique des batteries Li-ion en vue d'une application de gestion thermique pour l'automobile. La compréhension des phénomènes thermiques à l'échelle accumulateur est indispensable avant de réaliser une approche de type module ou pack batterie. Ces phénomènes thermiques sont mis en évidence à partir d'une modélisation thermique globale de deux accumulateurs de différentes chimies, en décharge à courant constant. La complexité du caractère résistif de l'accumulateur Li-ion a mené au développement d'un modèle prenant en compte l'interaction entre les phénomènes électrochimiques et thermiques, permettant une approche prédictive de son comportement. Enfin la réalisation de deux boucles expérimentales, de simulation de systèmes de gestion thermique d'un module de batterie, montre les limites d'un refroidissement classique par air à respecter les critères de management thermique. En comparaison, le second système basé sur l'intégration innovante d'un matériau à changement de phase (MCP) se montre performant lors de situations usuelles, de défauts ou encore lors du besoin d'une charge rapide de la batterie.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lu, Xueyi. "Architectural Nanomembranes as Cathode Materials for Li-O2 Batteries." Doctoral thesis, Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-228120.

Повний текст джерела
Анотація:
Li-O2 batteries have attracted world-wide research interest as an appealing candidate for future energy supplies because they possess the highest energy density of any battery technology. However, such system still face some challenges for the practical application. One of the key issues is exploring highly efficient cathode materials for Li-O2 batteries. Here, a rolled-up technology associated with other physical or chemical methods are applied to prepare architectural nanomembranes for the cathode materials in Li-O2 batteries. The strain-release technology has recently proven to be an efficient approach on the micro/nanoscale to fabricate composite nanomembranes with controlled thickness, versatile chemical composition and stacking sequence. This dissertation first focuses on the synthesis of trilayered Pd/MnOx/Pd nanomembranes. The incorporation of active Pd layers on both sides of the poor conductive MnOx layer commonly used in energy storage systems greatly enhances the conductivity and catalytic activity. Encouraged by this design, Pd nanoparticles functionalized MnOx-GeOy nanomembranes are also fabricated, which not only improve the conductivity but also facilitate the transport of Li+ and oxygen-containing species, thus greatly enhancing the performance of Li-O2 batteries. Similarly, Au and Pd arrays decorated MnOx nanomembranes act as bifunctional catalysts for both oxygen reduction reaction and oxygen evolution reaction in Li-O2 batteries. Moreover, by introducing hierarchical pores on the nanomembranes, the performance of Li-O2 batteries is further promoted by porous Pd/NiO nanomembranes. The macropores created by standard photolithography facilitate the rolling process and the nanopores in the nanomembranes induced by a novel template-free method supply fast channels for the reactants diffusion. In addition, a facile thermal treatment method is developed to fabricate Ag/NiO-Fe2O3/Ag hybrid nanomembranes as carbon-free cathode materials in Li-O2 batteries. A competing scheme between the intrinsic strain built in the oxide nanomembranes and an external driving force provided by the metal nanoparticles is introduced to tune the morphology of the 3D tubular architectures which greatly improve the performance by providing continuous tunnels for O2 and electrolyte diffusion and mitigating the side reactions produced by carbonaceous materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

FIORE, MICHELE. "Nanostructured Materials for secondary alkaline ion batteries." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2020. http://hdl.handle.net/10281/262348.

Повний текст джерела
Анотація:
Thanks to their superior energy and power density, lithium-ion batteries (LIBs) currently dominate the market of power sources for portable devices. The economy of scale and engineering optimizations have driven the cost of LIBs below the 200 $/KWh at the pack level. This catalyzed the market penetration of electric vehicles and made them a viable candidate for stationary energy storage. However, the rapid market expansion of LIBs raised growing concerns about the future sustainability of this technology. In particular, lithium and cobalt supplies are considered vulnerable, primarily because of the geopolitical implications of their high concentration in only a few countries. In the search for the next generation secondary batteries, known as post-lithium ion batteries, candidates that do not use rare metals have been extensively investigated in the last 10 years. Sodium-ion batteries (SIBs) attracted considerable attention thanks to the high abundance of the precursors and wide distribution of sodium on the earth's crust. As a matter of fact, as it will be pointed out during the dissertation, it is not straightforward to allocate the reduction of the price of the alkaline ion precursors to the reduction of the battery price. However, the difficulties in the supply of raw materials for LIBs, such as shortages in lithium carbonates and cobalt ores, could make lithium and cobalt-free systems, such as SIBs, attractive and cost-competitive alternatives. Compared to other, more exotic chemistries including Ca2+, Mg2+ and Al3+ batteries, SIBs are nowadays considered one as the most promising alternative to LIBs. Despite the extensive research, anode materials for SIBs still represent a serious problem for the commercial exploitation of this technology. Accordingly, the doctoral research on SIBs has been focused on anode materials. In particular, the attention was directed towards conversion oxides. Compared to intercalation materials, conversion-based ones have higher capacities but are more challenging to deal with because of the high volume variation during cycling. This challenge was addressed by material's nanostructuring and morphology control which proved to significantly reduce the pulverization of the active material. Different anode candidates have been studied during the doctoral work. Cobalt oxide nanofibers have been here explored as a first prototype for conversion materials in sodium ion batteries. The sodiation-desodiation mechanism is analyzed by means of ex situ XRD which led to a deeper understanding of the conversion reaction in SIBs. A cost-effective and environmentally benign alternative based on iron oxide is then considered. The limits of iron (III) oxide are tackled by combining the advantages of the nanostructuring and the doping with an aliovalent element. Si-doped Fe2O3 nanofibers are synthesized via an easy scalable process based on the electrospinning method. It is found that Si-addition improves the transport properties as well as induces changes in the crystal structure and morphology. In the final section of the thesis, potassium-ion batteries (KIBs) are examined as a promising alternative to sodium ion batteries. KIBs exhibit all the benefits of SIBs, with the additional advantage that graphite, can reversibly accommodate K-ions. On the positive side, Potassium manganese hexacyanoferrate (KMnHCF), has been reported to provide high operating voltages and satisfactory capacity retention. The proposed research activity presents the use of an ionic liquid based electrolyte compatible with the most promising anode and cathode for KIBs. In addition, a high-throughput optimization of the KMnHCF synthesis is reported. The selected candidates are then fully characterized, and their electrochemical properties investigated. The optimized material exhibits the highest ever reported coulombic efficiency for the KMHCF. This find, opens up the possibility of highly efficient, high energy potassium ion batteries.
Thanks to their superior energy and power density, lithium-ion batteries (LIBs) currently dominate the market of power sources for portable devices. The economy of scale and engineering optimizations have driven the cost of LIBs below the 200 $/KWh at the pack level. This catalyzed the market penetration of electric vehicles and made them a viable candidate for stationary energy storage. However, the rapid market expansion of LIBs raised growing concerns about the future sustainability of this technology. In particular, lithium and cobalt supplies are considered vulnerable, primarily because of the geopolitical implications of their high concentration in only a few countries. In the search for the next generation secondary batteries, known as post-lithium ion batteries, candidates that do not use rare metals have been extensively investigated in the last 10 years. Sodium-ion batteries (SIBs) attracted considerable attention thanks to the high abundance of the precursors and wide distribution of sodium on the earth's crust. As a matter of fact, as it will be pointed out during the dissertation, it is not straightforward to allocate the reduction of the price of the alkaline ion precursors to the reduction of the battery price. However, the difficulties in the supply of raw materials for LIBs, such as shortages in lithium carbonates and cobalt ores, could make lithium and cobalt-free systems, such as SIBs, attractive and cost-competitive alternatives. Compared to other, more exotic chemistries including Ca2+, Mg2+ and Al3+ batteries, SIBs are nowadays considered one as the most promising alternative to LIBs. Despite the extensive research, anode materials for SIBs still represent a serious problem for the commercial exploitation of this technology. Accordingly, the doctoral research on SIBs has been focused on anode materials. In particular, the attention was directed towards conversion oxides. Compared to intercalation materials, conversion-based ones have higher capacities but are more challenging to deal with because of the high volume variation during cycling. This challenge was addressed by material's nanostructuring and morphology control which proved to significantly reduce the pulverization of the active material. Different anode candidates have been studied during the doctoral work. Cobalt oxide nanofibers have been here explored as a first prototype for conversion materials in sodium ion batteries. The sodiation-desodiation mechanism is analyzed by means of ex situ XRD which led to a deeper understanding of the conversion reaction in SIBs. A cost-effective and environmentally benign alternative based on iron oxide is then considered. The limits of iron (III) oxide are tackled by combining the advantages of the nanostructuring and the doping with an aliovalent element. Si-doped Fe2O3 nanofibers are synthesized via an easy scalable process based on the electrospinning method. It is found that Si-addition improves the transport properties as well as induces changes in the crystal structure and morphology. In the final section of the thesis, potassium-ion batteries (KIBs) are examined as a promising alternative to sodium ion batteries. KIBs exhibit all the benefits of SIBs, with the additional advantage that graphite, can reversibly accommodate K-ions. On the positive side, Potassium manganese hexacyanoferrate (KMnHCF), has been reported to provide high operating voltages and satisfactory capacity retention. The proposed research activity presents the use of an ionic liquid based electrolyte compatible with the most promising anode and cathode for KIBs. In addition, a high-throughput optimization of the KMnHCF synthesis is reported. The selected candidates are then fully characterized, and their electrochemical properties investigated. The optimized material exhibits the highest ever reported coulombic efficiency for the KMHCF. This find, opens up the possibility of highly efficient, high energy potassium ion batteries.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Celasun, Yagmur. "Synthèse et caractérisation de nouveaux matériaux d'électrode positive pour des applications Li-ion à haute énergie." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALI047.

Повний текст джерела
Анотація:
Cette thèse concerne le développement de rocksalts désordonnés surlithiés pour les systèmes Li-Ion à haute densité d’énergie. Dans un premier volet, les paramètres de synthèse ont été optimisés pour améliorer les performances du rocksalt désordonné Li2.2NiTi0.2Nb0.6O4. Pour comprendre l’origine de sa forte irréversibilité au premier cycle, des analyses in situ structurales et électrochimiques avancées montrent un changement structural avec l’apparition d’un désordre durant la première charge. Ensuite, le rocksalt désordonné Li2TiS3 a été préparé selon notre procédé breveté. De nouvelles compositions avec une substitution au Sélénium, Li2TiSexS3-x, ont permis d’obtenir de fortes capacités de décharge à des potentiels inférieurs avec une meilleure cyclabilité. L’activité réversible redox du soufre a été confirmée par électrochimie et par analyses de surface ex situ mais des caractérisations plus poussées sont nécessaires pour élucider le procédé redox complexe du sélénium
This thesis focuses on the development of overlithiated disordered rocksalts for high-energy Li-ion systems. Firstly, synthesis parameters have been optimized to improve the performances of the disordered rocksalt Li2.2NiTi0.2Nb0.6O4. To examine its high irreversibility (35%) at the first cycle, in situ advanced structural and electrochemical analyses have been performed. Results show that a structural change and disordering happen during the first charge. In a second part, the disordered rocksalt Li2TiS3 has been prepared with our patented process. To improve cycling stability of the cells, Li2TiS3 has been partially substituted with selenium and new Li2TiSexS3-x compositions have been prepared. Li2TiSexS3-x cells have large discharge capacities at slightly lower potentials. Reversible sulfur redox activity is confirmed by electrochemistry and ex situ surface analyses, however further characterizations are required to elucidate the relatively complex selenium redox process
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tonin, Guillaume. "Caractérisation operando des accumulateurs Li/S par tomographie d’absorption et diffraction des rayons X, vers une meilleure compréhension des mécanismes électrochimiques." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAI036/document.

Повний текст джерела
Анотація:
L’objectif principal de la thèse était d’identifier les processus limitants et les phénomènes de dégradation intervenant lors du cyclage d’un accumulateur Li/S, et d’expliciter l’évolution des performances électrochimiques au cours du temps. Pour ce faire, une cellule électrochimique a été développée permettant de réaliser des caractérisations à l’ESRF par diffraction et absorption des rayons X en mode operando. Ces deux techniques complémentaires ont permis de mettre en évidence des changements morphologiques importants et des cinétiques de réactions limitées par le transport de matière au sein de la structure 3D de l’électrode positive de soufre. L’oxydation/réduction de l’électrode négative de lithium a également été caractérisée, permettant de mettre en évidence une évolution hétérogène de l’interface lithium/électrolyte, fonction de la densité de courant, induisant une diminution des performances électrochimiques en cyclage
The main objective was to identify the degradations phenomena and the limiting processes occurring while cycling Li/S accumulators to therefore put in relation the electrode morphology, the cell design, the electrochemical performances and the degradations phenomena. A new design of operando cell has been developed to be suitable with ESRF experiments. Operando Absorption and X-ray Diffraction tomography technics were performed. Thanks to both technics, the morphological changes and transport limitation kinetics along the 3D positive electrode have been evidenced. In addition, the lithium electrode/electrolyte interface has been characterized and heterogeneous stripping/plating has been evidenced, leading to low electrochemical performances while cycling
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Marchal, Laureline. "Développement d'une nouvelle technologie Li-ion fonctionnant en solution aqueuse." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00728179.

Повний текст джерела
Анотація:
L'utilisation d'un électrolyte aqueux pour la technologie Li-ion devrait permettre des performances en termes de puissance et de coût tout en garantissant une sécurité de fonctionnement et un impact neutre vis-à-vis de l'environnement. Cette technologie utilise des composés d'insertion du lithium fonctionnant habituellement en milieu organique dont le choix doit être adapté à un électrolyte aqueux, présentant une fenêtre de stabilité électrochimique réduite. Le travail de thèse porte dans un premier temps sur la sélection des différents éléments constituant un accumulateur Li-ion aqueux: choix de l'électrolyte, des collecteurs de courant, des liants d'électrode et des matériaux d'électrode. Les performances électrochimiques en milieu aqueux de différents composés d'insertion du lithium ont été évaluées. Afin d'augmenter la fenêtre de stabilité électrochimique de l'électrolyte aqueux, la passivation des électrodes par réduction de sels de diazonium a été réalisée. L'influence de la nature des sels de diazonium et de l'épaisseur des films sur les performances électrochimiques des électrodes a été évaluée par diverses techniques, voltampérométrie et impédance électrochimique. Les résultats obtenus montrent l'impact positif des dépôts obtenus vis-à-vis de l'augmentation de la surtension de réduction de l'eau. Ces travaux ouvrent la voie à des perspectives prometteuses sur cette technologie Li-Ion aqueuse.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bertasi, Federico. "Advanced Materials for High-Performance Secondary Li and Mg Batteries." Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3424613.

Повний текст джерела
Анотація:
In order to obtain advanced energy storage systems with high energy density, the research activity here described, is focused on the study of electrolyte and cathodic materials for application in Lithium and Magnesium batteries. The materials are synthesized through inert atmosphere procedures and characterized with several techniques such as: Thermogravimetric Analyses (TGA), Differential Scanning Calorimetry (DSC), Vibrational spectroscopies (MIR, FIR, Raman), Solid state MAS-NMR, several electrochemical techniques (CV, CA, EIS) and Broadband Electrical Spectroscopy (BES). The results are used to study the interplay between the structure and the conduction mechanism of these materials. The most promising materials are then tested in prototype cells in order to evaluate their performance in operating devices. As a general procedure, the electrolytes are synthesized with different concentrations of Li+ or Mg2+ charge carriers in order to evaluate the effect of the cation concentration on the thermal properties and conductivity of the materials. In addition, the complexation of the cations and its effect on the long-range charge transfer migration is carefully studied by Infrared and Raman spectroscopy. In the case of the cathodic materials the and their composition are modulated in order to study their effect on the lithium intercalation/deintercalation processes, efficiencies and on battery prototype performance. The investigated materials comprise: a) an inorganic Solid-state Li-ion conductors, based on lithium-functionalized fluorinated titanium oxide NPs; b) a new class of single-ion conducting nanocomposite polymer electrolytes for Li batteries; and c) two electrolytes for Mg secondary batteries based on ILs and an innovative Mg salt. Moreover two studies about dielectric relaxation phenomena in 4a) Magnesium-polymer electrolytes and 4b) clay-based solid polymer electrolytes (SPEs) are presented which elucidate the interplay existent between molecular relazations in host polymer matrices and long range charge transfer processes. Concerning cathodic materials a family of high voltage multi-metal phosphate cathodic materials for secondary lithium batteries is proposed, studied and tested in button battery prototypes. Firstly, a general introduction about the state of art of electrolytes and cathodes, with a particular attention on drawbacks and possible solution, which characterize these materials, is presented. Secondly, details about the synthesis and the characterizations of each class of materials is described in great details. Thirdly a concluding remark is provided.
Al fine di ottenere sistemi di accumulo di energia elettrica sempre più performanti, l'attività di ricerca qui descritta, è focalizzata sullo studio di elettroliti e materiali catodici per applicazioni in batterie al litio e magnesio. I materiali vengono sintetizzati attraverso sintesi in atmosfera inerte e caratterizzati con diverse tecniche quali: analisi termogravimetrica (TGA), calorimetria a scansione differenziale (DSC), spettroscopie vibrazionali (FT-MIR, FT-FIR, Raman), NMR di stato solido, diverse tecniche elettrochimiche (voltammetria ciclica, cronoamperometria, impedenza elettrochimica) e spettroscopia elettrica a banda larga. I risultati sono utilizzati per studiare l'interazione tra la struttura e il meccanismo di conduzione di questi materiali. I materiali più promettenti sono testati in batterie a bottone prototipo tipo CR2032 per valutare la loro ciclabilità e stabilità su lungo periodo. Come procedura generale, gli elettroliti vengono sintetizzati con differenti concentrazioni di portatori di carica tipo Mg2+ o Li+ per valutare l'effetto della concentrazione di cationi sulle proprietà termiche e sulla conducibilità dei materiali. Inoltre, la complessazione dei cationi e il suo effetto sul trasferimento di carica a lungo raggio sono studiati accuratamente tramite spettroscopia infrarossa e Raman. Nel caso dei materiali catodici la struttura e la composizione chimica di questi sistemi è modulata al fine di studiare il loro effetto sul processo di intercalazione/deinteracalazione dello ione litio, sull’efficienza e le prestastazioni dei prototipi di batteria a bottone tipo CR2032. I materiali studiati comprendono: a) un conduttore inorganico di stato solido a singolo catione di litio basato su di un ossido di titanio fluorurato; b) una nuova classe di elettroliti nanocompositi polimerici per batterie al litio; e c) due elettroliti per batterie al magnesio basati su liquidi ionici e un sale innovativo di Mg. Inoltre, al fine di evidenziare le correlazioni esistenti tra le dinamiche dei rilassamenti molecolari degli elettroliti e i processi di trasferimento di carica a lungo raggio, sono stati effettuati due studi sui meccanismi di rilassamento dielettrico di: a) elettroliti polimerici al Mg; e b) elettroliti polimerici solidi a base di alluminio silicati (SPE). Infine viene proposta una nuova promettente famiglia di materiali catodici di cui si studiano le correlazioni tra struttura, morfologia e prestazioni in batterie secondare prototipo a bottone. La tesi inizia con un’ introduzione generale sullo stato dell'arte degli elettroliti e dei catodi. Particolare attenzione è rivolta sugli svantaggi e sulle possibili future soluzioni. In secondo luogo, vengono descritti I n dettaglio la sintesi e caratterizzazione di ciascuna classe di materiali qui proposti. Quindi, si conclude evidenziando I risultati più salient ottenuti sui vari sistemi proposti.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Perez, Arnaud. "Energy storage properties of iridium oxides : model materials for the study of anionic redox." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066323/document.

Повний текст джерела
Анотація:
L’amélioration des systèmes de stockage d’énergie représente un défi majeur de la transition vers les véhicules électriques et les énergies renouvelables. Les accumulateurs Li-ion, qui ont déjà conquis le marché de l’électronique portatif, constitueront la technologie dominante pour réaliser cet objectif, et sont donc l’objet d’intense recherches afin d’améliorer leurs performances, en particulier en termes de capacité. Parmi les stratégies les plus prometteuse pour augmenter la capacité des matériaux de cathodes, beaucoup d’espoir est placé dans la préparation de matériaux riches en lithium, qui combinent l’activité électrochimique des cations (métaux de transitions) et des anions (oxygène). Cependant, l’activation des propriétés redox de l’oxygène est accompagnée de plusieurs problèmes qui freinent le développement industriel de ces matériaux. Il est donc nécessaire d’obtenir de solides connaissances fondamentales sur le phénomène de redox anionique pour résoudre ces problèmes. En utilisant des matériaux modèles à base d’iridium, ce travail explore comment l’activité de l’oxygène est influencé par son environnement local. Les propriétés électrochimiques des composés Na2IrO3 et Na(Li1/3Ir2/3)O2 sont étudiés afin de comprendre l’impact de la nature de l’ion alcalin. L’influence du ratio Li/M dans les oxydes de structure NaCl est étudié à travers la synthèse d’un nouveau composé de formule Li3IrO4, qui présente la plus haute capacité réversible parmi les matériaux d’insertion utilisés comme cathode. Cette famille de matériau est finalement étendue à des phases contenant des protons par une simple méthode d’échange cationique, et les propriétés électrochimiques d’un nouveau composé H3+xIrO4 sont étudiées, dévoilant de très bonnes propriétés de stockage de puissance en milieu aqueux
Improving energy storage stands as a key challenge to facilitate the transition to electric vehicles and renewable energy sources in the next years. Li-ion batteries, which have already conquered the portable electronic market, will be the leading technology to achieve this goal and are therefore the focus of intense research activities to improve their performances, especially in terms of capacity. Among the most promising strategies to obtain high capacity cathode materials, the preparation of Li-rich materials combining the redox activity of cations (transition metals) and anions (oxygen) attracts considerable interest. However, activation of anionic redox in these high capacity materials comes with several issues that need to be solved prior their implementation in the energy storage market. Deep fundamental understanding of anionic redox is therefore required to go forward. Using model systems based on iridium, this work explores how the oxygen local environment can play a role on the activation of anionic redox. The electrochemical properties of Na2IrO3 and Na(Li1/3Ir2/3)O2 phases are studied to understand the impact of the alkali nature. The influence of the Li/M ratio in rocksalt oxides is investigated with the synthesis of a new material Li3IrO4, which presents the highest reversible capacity among intercalation cathode materials. The rich electrochemical properties of this family of iridate materials are finally extended by preparing proton-based materials through a simple ion-exchange reaction and the electrochemical properties of a new H3+xIrO4 material are presented, with high rate capability performances
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ahouari, Hania. "Exploration de nouveaux matériaux d'électrodes positives à base de polyanions carboxylates (oxalates, malonates et carbonates) et de métaux de transition." Thesis, Amiens, 2015. http://www.theses.fr/2015AMIE0027/document.

Повний текст джерела
Анотація:
Dans cette thèse, nous avons exploré toute une palette de composés à base de métaux de transition et de polyanions carboxylates (oxalates, malonates et carbonates) préparés via des procédés éco-efficaces. La synthèse du composé oxalate de fer (III) (Fe2(C2O4)3·4H2O) dont nous en avons élucidé pour la première fois la structure cristalline en combinant les techniques de diffraction des rayons X et neutrons, fait l'objet de la première partie de cette étude. Ce composé cristallise dans une maille triclinique (P -1) et il présente des propriétés électrochimiques intéressantes (98 mAh/g à 3.35 V vs. Li+/Li0). Dans cette quête pour de meilleurs matériaux, nous avons exploré la famille des oxalates Na2M2(C2O4)3·2H2O, dont la synthèse avait été déjà rapportée, mais sans qu'aucune activité électrochimique ne puisse être détectée. En revanche, le remplacement du groupement oxalate par un groupement malonate nous a permis d’obtenir pour la première fois plusieurs membres de la famille (Na2M(H2C3O4)2·nH2O (n=0, 2), M= Mn, Fe, Co, Ni, Zn et Mg) dont nous avons résolu leurs structures cristallines correspondantes. Cependant, comme dans le cas des oxalates, ces phases ne dévoilent aucune activité électrochimique vis-à-vis du lithium, bien qu'elles présentent des propriétés magnétiques intéressantes. Enfin nous avons conclu ce travail par la synthèse de composés appartenant à la famille des fluorocarbonates KMCO3F (M= Ca et Mn) en utilisant la voie tout solide. La phase au calcium, déjà rapportée dans la littérature, a fait l'objet d'une étude en température qui nous a permis de mettre en évidence pour la première fois la formation d'une phase haute température (KCaCO3F-HT), pour T≥320°C, dont nous avons résolu la structure. Finalement, l'utilisation du Mn au lieu du Ca a conduit à l'obtention d'une nouvelle phase (KMnCO3F) qui cristallise dans une maille hexagonale (P -6 c 2)
This thesis has focused on the exploration of new compounds based on 3d-metal and carboxylate polyanions (oxalates, malonates and carbonates) prepared through different sustainable synthetic approaches. In the first part, we report a new synthetic route to prepare the iron (III) oxalate compound (Fe2(C2O4)3·4H2O) and solve its crystal structure through combined X-ray and neutron powder diffraction. The compound crystallizes within a triclinic cell (P-1) and exhibits attractive electrochemical properties (98 mAh/g at 3.35 V vs. Li+/Li0). Motivated by this finding we pursued our quest for new positive electrode materials. We prepared by hydrothermal synthesis single crystals of sodium 3d-metal oxalates Na2M2(C2O4)3·2H2O, which are widely investigated in the literature for their magnetic properties. Unfortunately, these phases are electrochemically inactive versus lithium. Thereafter, we extended the synthesis towards the malonate family and we reported for the first time several members (Na2M(H2C3O4)2·nH2O (n= 0, 2), M= Mn, Fe, Co, Ni, Zn et Mg). These systems present rich crystal chemistry together with interesting antiferromagnetic properties but as in the case of the oxalates, they are not electrochemically active versus lithium. Finally, we synthesized two members of fluorocarbonates compounds KMCO3F (M= Ca and Mn) using solid state process. We succeeded in the preparation of the calcium member, already reported in the literature and we identified for the first time a phase transition at 320°C. The crystal structure of the high temperature phase (KCaCO3F-HT) was solved using neutron powder diffraction. A new manganese phase (KMnCO3F) was synthesized using the same technique and its crystal structure was solved by combining TEM, XR and neutrons powder diffraction techniques. This compound crystallizes within a hexagonal unit cell (P -6 c 2)
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Batterie au Li"

1

Dian dong qi che yong li li zi er ci dian chi. 2nd ed. Beijing: Ke xue chu ban she, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dong li dian chi. Beijing Shi: Ji xie gong ye chu ban she, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Monconduit, Laure, Laurence Croguennec, and Rémi Dedryvère. Electrodes for Li-Ion Batteries. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119007364.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dian dong qi che yong li li zi er ci dian chi. Beijing: Ke xue chu ban she, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Li li zi dian chi yong lin suan tie li zheng ji cai liao: LiFePO4 Cathode Material Used for Li-ion Battery. Beijing Shi: Ke xue chu ban she, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhang, Huamin, Xianfeng Li, and Hongzhang Zhang. Li-S and Li-O2 Batteries with High Specific Energy. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-0746-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Fei jiu jin shu, dian chi, cui hua ji hui shou li yong shi li. Beijing: Zhongguo fang zhi chu ban she, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Li, Biao. Studies on Anionic Redox in Li-Rich Cathode Materials of Li-Ion Batteries. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-2847-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dong li dian chi ji shu yu ying yong. 2nd ed. Beijing Shi: Hua xue gong ye chu ban she, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Keyser, Matt. Development of a novel test method for on-demand internal short circuit in a li-ion cell. Golden, CO: National Renewable Energy Laboratory, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Batterie au Li"

1

Liu, Kailong, Yujie Wang, and Xin Lai. "Introduction to Battery Full-Lifespan Management." In Data Science-Based Full-Lifespan Management of Lithium-Ion Battery, 1–25. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-01340-9_1.

Повний текст джерела
Анотація:
AbstractAs one of the most promising alternatives to effectively bypass fossil fuels and promote net-zero carbon emission target around the world, rechargeable lithium-ion (Li-ion) batteries have become a mainstream energy storage technology in numerous important applications such as electric vehicles, renewable energy storage, and smart grid. However, Li-ion batteries present inevitable ageing and performance degradation with time. To ensure efficiency, safety, and avoid potential failures for Li-ion batteries, reliable battery management during its full-lifespan is of significant importance. This chapter first introduces the background and motivation of Li-ion battery, followed by the description of Li-ion battery fundamentals and the demands of battery management. After that, the basic information and benefits of using data science technologies to achieve effective battery full-lifespan management are presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tsurumaki, Akiko, Sergio Brutti, Giorgia Greco, and Maria Assunta Navarra. "Closed Battery Systems." In The Materials Research Society Series, 173–211. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-48359-2_10.

Повний текст джерела
Анотація:
AbstractBattery technologies are expected to strongly contribute to the global energy storage industry and market. Among the several promising battery technologies, Li-metal batteries, all-solid-state Li batteries, and beyond-lithium systems are discussed in this chapter. Li metal represents a key anode material for boosting the energy density of batteries, but the formation of Li dendrites limits a safe and stable function of the system. The use of solid-state electrolytes allows a safer battery operation, by limiting the electrolyte flammability and dendrite formation, yet the performance is insufficient because of slower kinetics of the lithium ion. Possible solutions against these critical problems, especially through the discovery of new materials, are here discussed. Moreover, other innovative technologies based on Na, Ca, and Mg, so-called beyond-lithium batteries, are presented. Insights into these emerging battery systems, as well as a series of issues that came up with the replacement of lithium, are described in this chapter. Focus is particularly placed on development of battery materials with different perspectives, including performance, stability, and sustainability.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sakaebe, Hikari, and Hajime Matsumoto. "Li Batteries." In Electrochemical Aspects of Ionic Liquids, 203–20. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118003350.ch14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hayashi, Akitoshi. "Li Negative Electrode." In Next Generation Batteries, 137–42. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6668-8_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Julien, Christian, Alain Mauger, Ashok Vijh, and Karim Zaghib. "Anodes for Li-Ion Batteries." In Lithium Batteries, 323–429. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-19108-9_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Liu, Kailong, Yujie Wang, and Xin Lai. "The Ways Ahead." In Data Science-Based Full-Lifespan Management of Lithium-Ion Battery, 245–58. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-01340-9_7.

Повний текст джерела
Анотація:
AbstractAlthough great efforts have been made in developing data science technology for benefitting full-lifespan management of Li-ion batteries, many knowledge gaps still exist. This chapter summarizes these challenges, future trends, and promising solutions to boost the development of data science solutions in the management of battery manufacturing, operation, and reutilization, respectively. This could further inform the selections of data science methodology and academic research agendas alike, thus boosting progress in data science-based battery full-lifespan management on different technology readiness levels.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chang, Zhiwen, and Xin-bo Zhang. "Li-Air Battery: Electrocatalysts." In Metal-Air Batteries, 125–49. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527807666.ch6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Garnier, L., J. Dauchy, D. Chatroux, D. Gevet, and G. Despesse. "14 Système batterie et gestion associée - BMS." In Batteries Li-ion, 329–54. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2410-6-015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Garnier, L., J. Dauchy, D. Chatroux, D. Gevet, and G. Despesse. "14 Système batterie et gestion associée - BMS." In Batteries Li-ion, 329–54. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2410-6.c015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Genies, S., A. Boulineau, A. Benayad, C. Chabrol, J. F. Martin, D. Brun-Buisson, X. Fleury, et al. "12 Caractérisation microstructurale et physico-chimique des matériaux de batterie." In Batteries Li-ion, 293–310. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2410-6-013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Batterie au Li"

1

Yersak, Tom. "Sulfide Glass Solid-State Electrolyte Separators for Semi-Solid Li-S Batteries." In TechBlick - Battery Materials and Solid-State Batteries. US DOE, 2023. http://dx.doi.org/10.2172/2326225.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wang, Chongye, Yong Wang, Lin Li, Hua Shao, and Changxu Wu. "Modeling of Multi-Cell Lithium-Ion Battery Packs for Electric Vehicles Considering Effects of Manufacturing Processes." In ASME 2013 International Manufacturing Science and Engineering Conference collocated with the 41st North American Manufacturing Research Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/msec2013-1120.

Повний текст джерела
Анотація:
Electric vehicle (EV) technologies have received great attention due to the potential contributions to relieving the energy dependence on petroleum and reducing carbon dioxide emissions. The advancement of EV technologies greatly relies on the development of battery technologies. Lithium-ion (Li-ion) batteries have recently become the main choice as the power source for major EV manufacturers. Previous research on EV Li-ion batteries is mainly focused on materials and chemical properties of single cells, while the effects of manufacturing processes on the performance of entire battery packs have almost been neglected. In practice, EV batteries are used in packs containing multiple cells, which may not be ideally manufactured. This research proposes a novel modeling method for analyzing the effects of manufacturing processes on the dynamics of EV Li-ion battery packs. The method will help engineers gain a deeper understanding of the roles of manufacturing processes in improving EV Li-ion battery performance.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zandigohar, Mehrdad, and Nima Lotfi. "An Investigation of Temperature Measurement Granularity Towards Improving Li-Ion Battery Management System Design." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11874.

Повний текст джерела
Анотація:
Abstract Li-ion batteries have gained increased popularity in the past few decades as the main source in various mobile and stationary energy storage applications. Battery management system design, especially fault diagnosis, however, is still a challenge regarding Li-ion batteries. Traditional Li-ion BMSs rely on measurements from current, voltage, and temperature sensors sparsely located throughout the battery pack. Such a BMS is not capable of predicting battery behavior under various operating conditions; moreover, it cannot account for internal discrepancies among battery cells, incipient faults, the distributed nature of battery parameters and states, and the propagation effects inside a battery pack. Although majority of these effects have already been observed and reported, they are either studied in electrochemistry laboratories using in-situ techniques and detailed theoretical analysis or in practical manufacturing settings by engineers and technicians, which are typically considered proprietary information. The aim of this paper is to bridge the gap between these two domains. In other words, a detailed electrochemical/thermal simulation of a Li-ion battery cell under healthy and faulty conditions is performed to provide a better understanding of the exact spatial requirements for an efficient and reliable thermal management system for Li-ion batteries. The results of this study are specifically of great importance for battery fault detection and identification, mainly due to the recent advancements in distributed sensing technologies such as fiber optics.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wang, Xiuling. "Numerical Investigation of Thermal Properties for Li-Ion Battery." In ASME 2020 Heat Transfer Summer Conference collocated with the ASME 2020 Fluids Engineering Division Summer Meeting and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/ht2020-9108.

Повний текст джерела
Анотація:
Abstract Li-ion battery is becoming a popular energy storage device in Hybrid Electric Vehicles (HEV) and Electric Vehicles (EV) due to its high energy density, high voltage and low self-discharge rate. The major concerns in designing Li-ion batteries are their life, performance and safety, which have close relations to their thermal behaviors. The temperature of Li-ion batteries rises during charge/discharge process. It goes faster especially with high charge/discharge rate during fast charging procedure. In this research, CFD models are developed based on ANSYS/FLUENT MSMD battery model coupled with electrochemical submodel-Newman, Tiedeman, Gu and Kim (NTGK) empirical model. Detailed simulation results are obtained in battery thermal and electrochemical behavior for different bi-cell electrode and current collector tab configurations. The temperature, potential, current density distribution at the battery length scale are determined, temperature gradient distribution is computed, and the maximum temperature at different discharge rate are also compared. The thermal investigation can provide valuable input for Li-ion battery design and analysis, especially for fast-charging batteries where heat distribution and cooling is critical for the battery design.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Alavi-Soltani, S. R., T. S. Ravigururajan, and Mary Rezac. "Thermal Issues in Lithium-Ion Batteries." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15106.

Повний текст джерела
Анотація:
This paper reviews various studies carried out on thermal issues in lithium-ion batteries. Although thermal behavior of Li-ion batteries plays an important role in performance, life cycle and safety of these batteries, it has not been studied as intensely as chemical characteristics of these batteries. In this review paper, studies concerning thermal issues on Li-ion batteries are classified based on their methodologies and the battery components being investigated. The methodologies include mathematical thermal modeling, calorimetry, electrochemical impedance spectroscopy and thermal management system method. The battery components that have been studied include anode, cathode, electrolyte and the whole cell.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Durganjali, C. Santhi, Harini Raghavan, and Sudha Radhika. "Modelling and Performance Analysis of Different Types of Li-Ion Battery." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24404.

Повний текст джерела
Анотація:
Abstract Lithium ion batteries are at present, the most widely used battery technology in the world. Every battery’s performance is characterized by certain parameters like the State of Charge, and Depth of Discharge, C-rate etc. To explore the possibility of more efficient types of Li-ion batteries for more applications a wide demand in identifying, modeling and testing of different possible combinations of electrode materials and electrolytes of Li-ion batteries arose. Taking this demand into consideration authors of this paper focus on the modeling and simulation of a wide variety of possible combinations of Li-ion battery in a 2-dimensional model. In addition to that, a thermal model of a cylindrical lithium ion battery was built in 3-dimensions and was validated with experimental data. The simulations were carried out on COMSOL:Multiphysics.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Baviskar, Shreyas, Dipankar Chatterjee, Kiran Chandrakant Jawale, and A. Rammohan. "Battery Thermal Management of Lithium Prismatic Cell Battery by Using Different Coolants." In Automotive Technical Papers. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-5059.

Повний текст джерела
Анотація:
<div class="section abstract"><div class="htmlview paragraph">Lithium (Li)-based batteries have wide applications in the everyday gadgets. Li-based batteries have prominent usage in the automotive sector. All the major OEMs for manufacturing hybrid electric vehicles (HEVs) and electric vehicles (EVs) use only Li batteries and are still going to continue for the next decades. However, during the operation of these batteries, they are susceptible to environmental and battery factors. The amount of charge currently taken in or out influences the internal resistance and temperature of the battery. Therefore, the amount of heat generated by the Li-ion batteries during operation is critical for designing a cost-effective and efficient thermal management system (TMS) for HEVs and EVs. For that, the right cooling mechanism for a lithium-ion (Li-ion) battery pack is to be chosen for the vehicles and establishing optimal cooling conditions to keep the temperature within a safe range of 15 to 35°C, which is critical to improving performance, safety, and life of the battery. For a high-energy Li-ion battery module, this work provides a comparison of air-type and liquid-type thermal management systems. Computational fluid dynamics (CFD) simulations are used to investigate the cooling performance of thermal management systems with different fluids. In this study, the 12 V modules are made up of five prismatic pouch cells and initial constant heat flux is provided for all the cases. The effect of different coolants (i.e., air, water with ethylene glycol, and nano-coolant) at different flow rates and compositions on the module’s thermal behavior are evaluated and compared. Both air and ethylene glycol and water are given a flow rate of 0.5, 1.0, 1.5, and 2.0 m/s, whereas the nano-coolant is given a flow rate of 1.0 m/s. As the nano-coolant flow rate is increased, the Li-ion temperature drops below its optimum range, hence affecting its performance. The results of this research are being put to use in the development of a more effective energy-saving battery temperature management system and in the widespread adoption of nano-coolant for Li batteries. It is observed that the nanofluid gave a superior performance in terms of temperature reduction, that is, 5.04% and 2.97% more efficient than air-cooling and water + ethylene glycol cooling.</div></div>
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Li, Yifei, Mohammad Kazem Sadoughi, Zhixiong Li, and Chao Hu. "An Ensemble Bias-Correction Method With Adaptive Weights for Dynamic Modeling of Lithium-Ion Batteries." In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-68416.

Повний текст джерела
Анотація:
Accurate modeling of the electrical behavior of a lithiumion (Li-ion) battery can provide accurate dynamic characteristics of the battery during charging/discharging and relaxation phases, which is essential to accurate online estimation of the battery state of charge (SoC). This paper proposes an ensemble bias-correction (BC) method with adaptive weights to improve the accuracy of an equivalent circuit model (ECM) in dynamic modeling of Li-ion batteries. The contribution of this paper is twofold: (i) the development of a novel ensemble method based on BC learning to model the dynamic characteristics of Li-ion batteries; and (ii) the creation of an adaptive-weighting scheme to learn online the weights of offline member BC models for building an online ensemble BC model. Repeated pulsing tests with single and multiple C-rates were conducted on seven Li-ion battery cells to evaluate the effectiveness of the proposed ensemble BC method. The analysis results with the use of an ECM demonstrate that the proposed method can reduce, on average, the voltage modeling error of the ECM by at least 50%.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chatterjee, Krishnashis, Pradip Majumdar, David Schroeder, and S. Rao Kilaparti. "Analysis of Li-Ion Battery Characteristics and Thermal Behavior." In ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ht2013-17815.

Повний текст джерела
Анотація:
Development of electric and hybrid electric vehicles is of great interest to the transportation industry due to increased demand and cost of imported fuel, uncertainty in the steady supply of oil, and increased standards for reduced emissions. Lithium-ion batteries are considered as one of the leading types for the battery systems to be employed in electric vehicles (EVs) or hybrid electric vehicles (HEVs). Using a regenerative braking system and storing it in battery stacks and using it later for propulsion and acceleration can improve the overall efficiency and reduction of fuel consumption. The objective of this study is to evaluate experimentally the battery performance considering different discharge and charge rates, and investigate the thermal behavior and thermal management requirements of the batteries under a variety of environmental conditions. An experimental test facility has been developed to evaluate thermal performance during charging and discharging modes. Environmental temperatures were varied in environmental chamber to analyze their effects on the charging and discharging patterns of the battery by using the CADEX battery analyzer in order to find the temperature range for optimum battery performance. The batteries were monitored with thermal sensors and a thermal imaging camera while they were run through different load scenarios. In the present study, lithium-ion batteries have been tested and battery performance in terms of polarization curves and discharge capacity were measured using a computerized battery analyzer system for different discharge and charge rates, and over a range of ambient temperatures. Results indicate that at higher discharge and charge rates battery performance decreases due to increased polarization losses, which results in increased internal heat generation and temperature of the battery. Battery performance also depends strongly on the ambient temperature conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hu, Chao, Gaurav Jain, Craig Schmidt, Carrie Strief, and Melani Sullivan. "Online Estimation of Lithium-Ion Battery Capacity Using Sparse Bayesian Learning." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46964.

Повний текст джерела
Анотація:
Lithium-ion (Li-ion) rechargeable batteries are used as one of the major energy storage components for implantable medical devices. Reliability of Li-ion batteries used in these devices has been recognized as of high importance from a broad range of stakeholders, including medical device manufacturers, regulatory agencies, patients and physicians. To ensure a Li-ion battery operates reliably, it is important to develop health monitoring techniques that accurately estimate the capacity of the battery throughout its life-time. This paper presents a sparse Bayesian learning method that utilizes the charge voltage and current measurements to estimate the capacity of a Li-ion battery used in an implantable medical device. Relevance Vector Machine (RVM) is employed as a probabilistic kernel regression method to learn the complex dependency of the battery capacity on the characteristic features that are extracted from the charge voltage and current measurements. Owing to the sparsity property of RVM, the proposed method generates a reduced-scale regression model that consumes only a small fraction of the CPU time required by a full-scale model, which makes online capacity estimation computationally efficient. 10 years’ continuous cycling data and post-explant cycling data obtained from Li-ion prismatic cells are used to verify the performance of the proposed method.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Batterie au Li"

1

Kolodziejczyk, Bart. Emerging Automotive Battery Chemistries: Hedging Market Bets. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, April 2023. http://dx.doi.org/10.4271/epr2023008.

Повний текст джерела
Анотація:
<div class="section abstract"><div class="htmlview paragraph">There is an urgent need to decarbonize various industry sectors, including transportation; however, this is difficult to achieve when relying solely on today’s lithium-ion (Li-ion) battery technology. A lack of sufficient supply of critical materials—including lithium, nickel, and cobalt—is a major driving force behind research, development, and commercialization of new battery chemistries that can support this energy transition. Many emerging chemistries do not face the same supply, safety, and often durability challenges associated with Li-ion technology, yet these solutions are still very immature and require significant development effort to be commercialized.</div><div class="htmlview paragraph"><b>Emerging Automotive Battery Chemistries: Hedging Market</b> identifies and evaluates various chemistries suitable for deployment in the automotive industry and describes advantages, disadvantages, and development challenges for each identified technology. Additionally, it outlines development timelines, contending that, to benefit from these new technologies in a decade or so, commercialization needs to begin today (e.g., de-risking critical material supply chains, developing circular approaches). The report also proposes policy interventions to enable developments of these new chemistries and to allow those immature technologies to compete with well-established Li-ion batteries.</div><div class="htmlview paragraph"><a href="https://www.sae.org/publications/edge-research-reports" target="_blank">Click here to access the full SAE EDGE</a><sup>TM</sup><a href="https://www.sae.org/publications/edge-research-reports" target="_blank"> Research Report portfolio.</a></div></div>
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lee, Sehee. Solid State Li-ion Batteries. Fort Belvoir, VA: Defense Technical Information Center, October 2013. http://dx.doi.org/10.21236/ada589846.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Visco, Steven J. Advanced Lithium Anodes for Li/Air and Li/Water Batteries. Fort Belvoir, VA: Defense Technical Information Center, October 2005. http://dx.doi.org/10.21236/ada441240.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Garibay, Claudia. Characterization of Li-air batteries: Lithium Peroxide Formation in Li-air Electrodes. Portland State University Library, June 2014. http://dx.doi.org/10.15760/trec.78.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lake, Carla. High performance anode for advanced Li batteries. Office of Scientific and Technical Information (OSTI), November 2015. http://dx.doi.org/10.2172/1224711.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Xing, Yangchuan. High Performance Cathodes for Li-Air Batteries. Office of Scientific and Technical Information (OSTI), August 2013. http://dx.doi.org/10.2172/1092965.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Johnson, Erik B. Li-Ion Batteries for Forensic Neutron Dosimetry. Fort Belvoir, VA: Defense Technical Information Center, March 2016. http://dx.doi.org/10.21236/ad1005451.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

B. Fultz. Anode Materials for Rechargeable Li-Ion Batteries. Office of Scientific and Technical Information (OSTI), January 2001. http://dx.doi.org/10.2172/773359.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Xu, Kang, and Arthur v. Cresce. Electrolytes in Support of 5V Li-ion Batteries. Fort Belvoir, VA: Defense Technical Information Center, November 2010. http://dx.doi.org/10.21236/ad1000143.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Doo, Johnny. The Use of eVTOL Aircraft for First Responder, Police, and Medical Transport Applications. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, September 2023. http://dx.doi.org/10.4271/epr2023020.

Повний текст джерела
Анотація:
<div class="section abstract"><div class="htmlview paragraph">Advancements in electric vertical takeoff and landing (eVTOL) aircraft have generated significant interest within and beyond the traditional aviation industry. One particularly promising application involves on-demand, rapid-response use cases to broaden first responders, police, and medical transport mission capabilities. With the dynamic and varying public service operations, eVTOL aircraft can offer potentially cost-effective aerial mobility components to the overall solution, including significant lifesaving benefits.</div><div class="htmlview paragraph"><b>Multi-agent Collaborative Perception for Autonomous Driving: Unsettled Aspects</b> discusses the challenges need to be addressed before identified capabilities and benefits can be realized at scale: <ul class="list disc"><li class="list-item"><div class="htmlview paragraph">Mission-specific eVTOL vehicle development </div></li><li class="list-item"><div class="htmlview paragraph">Operator- and patient-specific accommodations</div></li><li class="list-item"><div class="htmlview paragraph">Detect-and-avoid capabilities in complex and challenging operating environments</div></li><li class="list-item"><div class="htmlview paragraph">Autonomous and artificial intelligence-enhanced mission capabilities</div></li><li class="list-item"><div class="htmlview paragraph">Home-base charging systems for battery power platforms</div></li><li class="list-item"><div class="htmlview paragraph">Simplified operator and support training</div></li><li class="list-item"><div class="htmlview paragraph"> Vehicle/fleet maintenance and support</div></li><li class="list-item"><div class="htmlview paragraph">Acceptance and participation from stakeholder services, local and state-level leadership, field operators, and support team members</div></li></ul></div><div class="htmlview paragraph"><a href="https://www.sae.org/publications/edge-research-reports" target="_blank">Click here to access the full SAE EDGE</a><sup>TM</sup><a href="https://www.sae.org/publications/edge-research-reports" target="_blank"> Research Report portfolio.</a></div></div>
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії