Добірка наукової літератури з теми "Baryons"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Baryons".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Baryons"

1

GARCIA-RECIO, C., L. L. SALCEDO, D. GAMERMANN, J. NIEVES, O. ROMANETS, and L. TOLOS. "CHARMING BARYONS." International Journal of Modern Physics: Conference Series 26 (January 2014): 1460124. http://dx.doi.org/10.1142/s2010194514601240.

Повний текст джерела
Анотація:
We study odd-parity baryonic resonances with one heavy and three light flavors, dynamically generated by meson-baryon interactions. Special attention is paid to Heavy Quark Spin Symmetry (HQSS), hence pseudoscalar and vector mesons and baryons with Jπ = 1/2+ and 3/2+ are considered as constituent hadrons. For the hidden-charm sector ([Formula: see text]), the meson-baryon Lagrangian with Heavy Flavor Symmetry is constructed by a minimal extension of the SU(3) Weinberg-Tomozawa (WT) Lagrangian to fulfill HQSS, such that not new parameters are needed. This interaction can be presented in different formal ways: as a Field Lagrangian, as Hadron creation-annihilation operators, as SU(6)×HQSS group projectors and as multichannel matrices. The multichannel Bethe-Salpeter equation is solved for odd-parity light baryons, hidden-charm N and Δ and Beauty Baryons (Λb). Results of calculations with this model are shown in comparison with other models and experimental values for baryonic resonances.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

LEDDIG, TORSTEN. "INVESTIGATION OF B-MESON DECAYS INTO BARYONS WITH THE BABAR DETECTOR." International Journal of Modern Physics A 26, no. 03n04 (February 10, 2011): 545–48. http://dx.doi.org/10.1142/s0217751x11051986.

Повний текст джерела
Анотація:
We report on investigations of B-meson decays into baryons with the BABAR detector. The comparison of different decay channels reveals that higher multiplicities are preferred for these decays. Furthermore, an enhancement in the invariant baryon-antibaryon mass distribution can be observed in several baryonic decay modes. In addition, the study of baryon resonances seen in baryonic B-meson decays is presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kostyuk, Ivan, Robert Lilow, and Matthias Bartelmann. "Baryon-photon interactions in Resummed Kinetic Field Theory." Journal of Cosmology and Astroparticle Physics 2023, no. 09 (September 1, 2023): 032. http://dx.doi.org/10.1088/1475-7516/2023/09/032.

Повний текст джерела
Анотація:
Abstract We explore how interactions between baryons and photons can be incorporated into Kinetic Field Theory (KFT), a description of cosmic structure formation based on classical Hamiltonian particle dynamics. In KFT, baryons are described as effective mesoscopic particles which represent fluid elements governed by the hydrodynamic equations. In this paper, we modify the mesoscopic particle model to include pressure effects exerted on baryonic matter through interactions with photons. As a proof of concept, we use this extended mesoscopic model to describe the tightly coupled baryon-photon fluid between matter-radiation equality and recombination. We show that this model can qualitatively reproduce the formation of baryon-acoustic oscillations in the cosmological power spectrum.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pardo Calderón, Leandro Manuel. "Baryon Acoustic Oscillations. Equation and physical interpretation." Scientia et Technica 23, no. 2 (June 30, 2018): 263–68. http://dx.doi.org/10.22517/23447214.17251.

Повний текст джерела
Анотація:
Baryon Acoustic Oscillations are a phenomenon occurred before matter-radiation decoupling, characterized because the baryonic matter perturbation presents oscillations, as the name suggests. These perturbations propagate like a pressure wave on the photon-baryon fluid produced by gravitational potentials, which join the baryonic matter, and collisions of baryons and photons, which scatter it. This paper shows the Baryon Acoustic Oscillations equation and it provides its physical meaning. Besides, it presents software CAMB as a tool to find BAO equation solutions and support for its physical description.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dominguez-Tenreiro, Rosa, and Gustavo Yepes. "On the Possibility of a Higher Baryonic Contribution to Dark Matter." Symposium - International Astronomical Union 130 (1988): 592. http://dx.doi.org/10.1017/s0074180900137180.

Повний текст джерела
Анотація:
The most stringent constraint against baryonic dark matter is provided by primordial nucleosynthesis. Agreement between theory and observations is reachedonly for a limited range of the baryon-to-photon ratio ‘LR, namely , which implies that, in standard cosmological frameworks, the universe cannot be closed by baryons.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ghalenovi, Zahra. "Study of Heavy Strange Baryons in a Hypercentral Quark Model." International Journal of Modern Physics: Conference Series 46 (January 2018): 1860037. http://dx.doi.org/10.1142/s2010194518600376.

Повний текст джерела
Анотація:
In this work, we study the properties of the heavy baryons with strangeness employing a constituent quark model in the hypercentral approach. The potential model considers the interactions arising the one-gluon exchange, Goldstone boson exchange and confinement, aspects of underlying theory, quantum chromodynamics (QCD). By solving three-body Schrodinger equation of baryonic system, we obtain the ground as well as the corresponding energy eigenvalues of the system. Using the obtained energies, we calculate the baryon spectrum. We extend our scheme to predict the radiative decay width of the charm baryons. A comparison of our results with those of other works and experimental data is also presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wright, Ruby J., Claudia del P. Lagos, Chris Power, and Peter D. Mitchell. "The impact of stellar and AGN feedback on halo-scale baryonic and dark matter accretion in the eagle simulations." Monthly Notices of the Royal Astronomical Society 498, no. 2 (August 14, 2020): 1668–92. http://dx.doi.org/10.1093/mnras/staa2359.

Повний текст джерела
Анотація:
ABSTRACT We use the eagle suite of hydrodynamical simulations to analyse accretion rates (and the breakdown of their constituent channels) on to haloes over cosmic time, comparing the behaviour of baryons and dark matter (DM). We also investigate the influence of sub-grid baryon physics on halo-scale inflow, specifically the consequences of modelling radiative cooling, as well as feedback from stars and active galactic nuclei (AGNs). We find that variations in halo baryon fractions at fixed mass (particularly their circumgalactic medium gas content) are very well correlated with variations in the baryon fraction of accreting matter, which we show to be heavily suppressed by stellar feedback in low-mass haloes, Mhalo ≲ 1011.5 M⊙. Breaking down accretion rates into first infall, recycled, transfer, and merger components, we show that baryons are much more likely to be smoothly accreted than to have originated from mergers when compared to DM, finding (averaged across halo mass) a merger contribution of $\approx 6{{\ \rm per\ cent}}$ for baryons, and $\approx 15{{\ \rm per\ cent}}$ for DM at z ≈ 0. We also show that the breakdown of inflow into different channels is strongly dependent on sub-grid physics, particularly the contribution of recycled accretion (accreting matter that has been previously ejected from progenitor haloes). Our findings highlight the dual role that baryonic feedback plays in regulating the evolution of galaxies and haloes: by (i) directly removing gas from haloes, and (ii) suppressing gas inflow to haloes.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Khan, Mehbub, Yun Hao, and Jong-Ping Hsu. "Baryonic Force for Accelerated Cosmic Expansion and Generalized U1b Gauge Symmetry in Particle-Cosmology." EPJ Web of Conferences 168 (2018): 04004. http://dx.doi.org/10.1051/epjconf/201816804004.

Повний текст джерела
Анотація:
Based on baryon charge conservation and a generalized Yang-Mills symmetry for Abelian (and non-Abelian) groups, we discuss a new baryonic gauge field and its linear potential for two point-like baryon charges. The force between two point-like baryons is repulsive, extremely weak and independent of distance. However, for two extended baryonic systems, we have a dominant linear force α r. Thus, only in the later stage of the cosmic evolution, when two baryonic galaxies are separated by an extremely large distance, the new repulsive baryonic force can overcome the gravitational attractive force. Such a model provides a gauge-field-theoretic understanding of the late-time accelerated cosmic expansion. The baryonic force can be tested by measuring the accelerated Wu-Doppler frequency shifts of supernovae at different distances.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

HOSAKA, A., H. TOKI, and M. TAKAYAMA. "BARYON SPECTRA IN DEFORMED OSCILLATOR QUARK MODEL." Modern Physics Letters A 13, no. 21 (July 10, 1998): 1699–707. http://dx.doi.org/10.1142/s0217732398001777.

Повний текст джерела
Анотація:
We study theoretically the baryon spectra in terms of a deformed oscillator quark (DOQ) model. This model is motivated by confinement of quarks and chiral symmetry breaking, which are the most important nonperturbative phenomena of QCD. The minimization of the DOQ Hamiltonian with respect to the deformation for each principal quantum number results in deformations for the intrinsic states of excited baryonic states. We find that the resulting baryon spectra agree very well with the existing experimental data including SU(3) baryons. The spatial deformation of the baryonic excited states carry useful information on the quark confinement and provide a clue to understand the confining mechanism.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

McGaugh, Stacy S. "The Halo by Halo Missing Baryon Problem." Proceedings of the International Astronomical Union 3, S244 (June 2007): 136–45. http://dx.doi.org/10.1017/s1743921307013920.

Повний текст джерела
Анотація:
AbstractThe global missing baryon problem – that the sum of observed baryons falls short of the number expected form BBN – is well known. In addition to this, there is also a local missing baryon problem that applies to individual dark matter halos. This halo by halo missing baryon problem is such that the observed mass fraction of baryons in individual galaxies falls short of the cosmic baryon fraction. This deficit is a strong function of circular velocity. I give an empirical estimate of this function, and note the presence of a critical scale of ~ 900 km s−1 therein. I also briefly review Ωb from BBN, highlighting the persistent tension between lithium and the CMB, and discuss some pros and cons of individual galaxies and clusters of galaxies as potential reservoirs of dark baryons.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Baryons"

1

Urlichs, Konrad. "Baryons and baryonic matter in four-fermion interaction models." [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=983572755.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ouared, Mohamed Rafik. "Étude des propriétés de production et de désintégration du baryon charme lambda C dans les interactions PP à 400 GeV/c." Paris 11, 1987. http://www.theses.fr/1987PA112191.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Haupt, Christian. "Electromagnetic properties of baryons." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=980373271.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Drach, Vincent. "Fermions twistés dynamiques et spectroscopie des baryons." Phd thesis, Grenoble, 2010. http://www.theses.fr/2010GRENY015.

Повний текст джерела
Анотація:
Ce travail s'intéresse au calcul de la masse des baryons à partir de la théorie décrivant l'interaction forte : la chromodynamique quantique (QCD). Cette théorie régit l'interaction entre les quarks et l es gluons et a pu durant ces dernières décennies être vérifiée à haute énergie grâce à l'une de ses propriétés : la liberté asymptoti que. Celle-ci prédit que les calculs perturbatifs sont valides à haute énergie car la constante de couplage tend vers zéro. Les quantités physiques régissant la physique à basse énergie nécessitent quant à elles un traitement non pertubatif et font l'objet de ce travail. La seule approche con nue permettant de calculer ces observables en contrôlant tous les effets systématiques est la QCD sur réseau. Le C hapitre 1 est une introduction au formalisme de la QCD et à sa formulation discrétisée. Le second chapitre est dédié à la discréti sation particulière utilisée au sein de la collaboration Europan Twisted Mass (ETM). Le Chapitre 3 met en place la technologie nécessaire au calcul des masses des hadrons. L'estimation des intégrales fonctionnelles en utilisant le calcul massi vement parallèle sur des Super Calculateurs est décrite dans le Chapitre 4. La production de configurations de jauge sur ce type d'architecture constitue une part importante du travail effectué durant cette thèse. Le Chapitre 5 est dédié à la formulation des théories effectives dites de pertubations chirales. Les Chapitres 6 et 7 sont consacrés aux baryons légers et étranges. Les eff ets systématiques ainsi que les extrapolations chirales sont largement discutés
The aim of this work is an ab initio computation of the baryon masses starting from quantum chromodynamics (QCD). This theory describe the interaction betw een quarks and gluons and has been established at high energy thanks to one of its fundamental properties : the asymptotic freedom. This property predicts th at the running coupling constant tends to zero at high energy and thus that perturbative expansions in the coupling constant are justified in this regime. On the contrary the low energy dynamics can only be understood in terms of a non perturbative approach. To date, the only known method that allows the computat ion of observables in this regime together with a control of its systematic effects is called lattice QCD. It consists in formulating the theory on an Eucl idean space-time and to evaluating numerically suitable functional integrals. The chapter 1 and 2 are an introduction to the QCD in the continuum and on a discrete space time. The chapter 3 deals with the techniques needed to build hadronic correlator starting from gauge configuration. We then discuss how we determine hadron masses and their statistical errors. The numerical estimation of functional integral is explained in chapter 4. It is stressed that it requires sophisticated algorithm and massive parallel computating on BlueGene type architecture. Gauge configuration production is an important part of the work realized during my Ph. D. Chapter 5 is a critical review on chiral perturbation theory in the baryon sector. Th e chapters 6 and 7 are devoted to the analyze in the light and strange baryon sector. Systematics and chiral extrapolation are extensively discussed
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Drach, Vincent. "Fermions twistés dynamiques et spectroscopie des baryons." Phd thesis, Université de Grenoble, 2010. http://tel.archives-ouvertes.fr/tel-00633497.

Повний текст джерела
Анотація:
Ce travail s'intéresse au calcul de la masse des baryons à partir de la théorie décrivant l'interaction forte : la chromodynamique quantique (QCD). Cette théorie régit l'interaction entre les quarks et l es gluons et a pu durant ces dernières décennies être vérifiée à haute énergie grâce à l'une de ses propriétés : la liberté asymptoti que. Celle-ci prédit que les calculs perturbatifs sont valides à haute énergie car la constante de couplage tend vers zéro. Les quantités physiques régissant la physique à basse énergie nécessitent quant à elles un traitement non pertubatif et font l'objet de ce travail. La seule approche con nue permettant de calculer ces observables en contrôlant tous les effets systématiques est la QCD sur réseau. Le C hapitre 1 est une introduction au formalisme de la QCD et à sa formulation discrétisée. Le second chapitre est dédié à la discréti sation particulière utilisée au sein de la collaboration Europan Twisted Mass (ETM). Le Chapitre 3 met en place la technologie nécessaire au calcul des masses des hadrons. L'estimation des intégrales fonctionnelles en utilisant le calcul massi vement parallèle sur des Super Calculateurs est décrite dans le Chapitre 4. La production de configurations de jauge sur ce type d'architecture constitue une part importante du travail effectué durant cette thèse. Le Chapitre 5 est dédié à la formulation des théories effectives dites de pertubations chirales. Les Chapitres 6 et 7 sont consacrés aux baryons légers et étranges. Les eff ets systématiques ainsi que les extrapolations chirales sont largement discutés.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Habibi, Farhang. "Searching for missing baryons through scintillation." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00625486.

Повний текст джерела
Анотація:
Cool molecular hydrogen H2 may be the ultimate possible constituent to the Milky-Way missing baryon. We describe a new way to search for such transparent matter in the Galactic disc and halo, through the diffractive and refractive effects on the light of background stars. By simulating the phase delay induced by a turbulent medium, we computed the corresponding illumination pattern on the earth for an extended source and a given passband. We show that in favorable cases, the light of a background star can be subjected to stochastic fluctuations of the order of a few percent at a characteristic time scale of a few minutes. We have searched for scintillation induced by molecular gas in visible dark nebulae as well as by hypothetical halo clumpuscules of cool molecular hydrogen (H2_He) during two nights, using the NTT telescope and the IR SOFI detector. Amongst a few thousands of monitored stars, we found one light-curve that is compatible with a strong scintillation effect through a turbulent structure in the B68 nebula. Because no candidate were found toward the SMC, we are able to establish upper limits on the contribution of gas clumpuscules to the Galactic halo mass. We show that the short time-scale monitoring of a few 10^6 star _ hour in the visible band with a >4 m telescope and a fast readout camera should allow one to interestingly quantify or constrain the contribution of turbulent molecular gas to the Galactic halo.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Avenarius, Christoph. "The spin structure of the baryons." Thesis, University of Oxford, 1992. http://ora.ox.ac.uk/objects/uuid:448e060b-085d-449f-b33a-dd3913093d6d.

Повний текст джерела
Анотація:
Baryons are considered in the Nonrelativistic Quark Model (NQM) to be bound states of three valence quarks. Each quark has two possible spin eigenstates in the restframe of the baryon whose spin is fully carried by quarks. The baryon wavefunctions are connected through SU(6) symmetry rotations. For a long time, the measured magnetic moments of the baryons appeared to be in agreement with the NQM predictions. However, recent experiments which are examining the spin structure of the baryons show the failure of several NQM predictions. The so-called 'spin crisis' arose from the interpretation of the EMC deep inelastic scattering measurement of ∫ gp1 that the quark spins in the proton appeared to sum up to (almost) zero. In this thesis it will be demonstrated that the spin problem is not a phenomenon restricted to quasi-massless current quarks in the high energy limit. Symmetry arguments are used to examine the baryon magnetic moments and reveal that we can observe massive but pointhke constituent quarks, with a characteristic mass ratio mu = md2andfrasl;3ms. Surprisingly they do not contribute much to the baryon spin either. This analysis is free of the ambiguity arising from the UA(1} gluon anomaly which makes it impossible to calculate precisely the spin sum of the current quarks. One important finding in our analysis is the observation that the effects of SU(6) breaking hyperfine spin-spin interactions (which cause well-known splittings in the baryon masses) can be seen in the environment dependence of the constituent quark masses. The effective mass of a quark cannot be independent of its surrounding energy since the mass of the baryon is distributed amongst its constituents. Consistent with the hypothesis that different quark masses do not impose SU(3) breaking on the baryon wavefunctions is the observation of induced 'second class' form factors. The way in which SU(3) breaking alters the gAandfrasl;gV ratios in semileptonic hyperon decays will be discussed and strong evidence for a new value of F/D is given, which is close to its SU(6) value. This value is derived independently from the baryon β-decays and from their magnetic moments. Dynamical models are discussed which might explain the observed polarised strangeness 'inside' the proton, and the almost vanishing quark spin sum.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

MERLI, ANDREA. "SEARCH FOR CP VIOLATION IN BARYONS." Doctoral thesis, Università degli Studi di Milano, 2019. http://hdl.handle.net/2434/656029.

Повний текст джерела
Анотація:
In the past, flavour physics has driven indirect discoveries of new particles through precision measurements of other processes before the actual particles could be produced directly. For example the discovery of the differences in the behaviour of matter and antimatter, CP violation (CPV), has led to the explanation of flavour mixing with three families of quarks; the absence of the decay{KL}{mumu} decay drove the prediction of the cquark quark trough the GIM mechanism; the measurement of the Bd mixing allowed for the prediction of high mass of the quark quark. The asymmetry between matter and antimatter behaviour is related to the violation of the CP symmetry, where $C$ and $P$ are the charge-conjugation and parity operators. CPV is accommodated in the Standard Model (SM) of particle physics by the Cabibbo-Kobayashi-Maskawa (CKM) mechanism that describes the transitions between up- and down-type quarks, in which quark decays proceed by the emission of a virtual W boson and where the phases of the couplings change sign between quarks and antiquarks. A significant excess of CPV with respect to the theoretical predictions would represent a proof of new physics beyond the SM (BSM). The experiments BaBar and Belle have systematically studied the Bd and Bpm mesons. The heavy baryon sector (ie containing the quark quark) still remains largely unexplored. Given the large production of heavy baryons at lhcb, precision measurements have become possible in this field. Moreover, the interest of the scientific community is growing on heavy baryons: the last measurement on $lvertVub vert$ in the channel decay{Lb}{protonmun eub} and the discovery of the pentaquark in the channel decay{Lb}{jpsiprotonKm} are only few relevant examples. Actually the theory describes very well, within the experimental error, the CPV mechanism so far observed in meson decays. Since in the mesons and baryons decays the quark transitions are the same, the CKM theory predicts CPV also in the baryon sector, which has never been observed so far. It is important to measure CPV also in baryons to check if the mechanisms through which it is generated is the same as mesons. We know that CPV is a key ingredient for baryogenesis, but the CKM mechanism cannot explain it quantitatively. New sources of CPV are necessary to explain baryogenesis. The search for electric dipole moment (EDM) of baryons represents a powerful probe for new sources of CPV and new physics beyond the Standard Model. In particular, it is sensitive to flavour diagonal CPV contributions that are predicted to be minuscule in the SM. The existence of permanent EDMs requires the violation of parity ($P$) and time reversal ($T$) symmetries and thus, relying on the validity of the CPT theorem, the violation of CP symmetry. These measurements are not foreseen in the physics program of the lhcb experiment dedicated to the study of the CP violation of heavy hadron via flavour-changing observables, and require new instrumentation.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Niemiec, Anna. "Influence of the environment on galaxy formation." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0260/document.

Повний текст джерела
Анотація:
Dans le modèle de formation hiérarchique des structures, les amas de galaxies se forment et grandissent par l'accrétion de groupes plus petits ou de galaxies isolées. Dans ce scenario, comprendre comment les galaxies accrétées interagissent avec cet environnement très dense est une étape importante pour comprendre le schéma global de l'évolution des galaxies et de la formation des structures. En effet, pendant leur chute au coeur de l'amas, les galaxies sont sujettes à diverses interactions avec l'amas hôte, au niveau de leur composante baryonique aussi bien que matière noire, et ces interactions vont modifier les propriétés de la galaxie. Au niveau de la matière noire, les simulations numériques suggèrent que la friction dynamique fait plonger les galaxies vers le centre de l'amas, et que les forces de marée exercées par l'hôte peuvent arracher une partie de la matière de la galaxie, et même détruire celle-ci. Ce processus, au cours duquel une partie de la matière noire de la galaxie est arrachée, est appelé stripping. La détection du stripping de matière noire contient d'importantes informations sur l'évolution des groupes et des amas. Le travail principal de cette thèse se concentre sur l'étude des galaxies dans les amas, et en particulier sur l'étude du stripping des galaxies par les forces de marées des amas. Les profils de densité des halos sont mesurés à l’aide de l’effet de lentille gravitationnelle faible, en utilisant les catalogues de formes de galaxies des relevés CFHTLenS, CFHT Stripe 82 et DES-SV, alliés au catalogue d’amas redMaPPer
Galaxy clusters are large structures in the Universe, composed of tens or hundreds of galaxies bound by gravity. In the hierarchical formation model, they are formed and grow by accretion of smaller groups or isolated galaxies. In this scenario, understanding how these accreted galaxies interact with the very dense cluster environnement is an important step towards explaining the global picture of galaxy evolution and structure formation. Indeed, during infall, galaxies are subject to numerous interactions with the host cluster, both at the level of the baryonic and dark matter component, and these interactions influence the properties of the infalling galaxy. At the level of dark matter, numerical simulations suggest that dynamical friction sinks galaxies towards the center of clusters, and tidal forces of the host can strip part of the satellite's matter away, and even disrupt it. The detection of this stripping contains important informations on the evolution of groups and clusters: what quantity of dark matter is associated to the cluster galaxies as a function of the distance to the centre of the cluster ? How does this depend on the redshift and dynamical state of the cluster ? Does stripping depend on the morphological type of cluster galaxies ? The main work of this thesis is focused on studying galaxies in clusters, in particular tidal stripping of their dark matter haloes. The dark matter halo profiles are measured with weak gravitational lensing, using galaxy shape catalogues from the CFHTLenS, CFHT Stripe 82 and DES-SV surveys, combined with the redMaPPer cluster catalogue
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Knippschild, Bastian [Verfasser]. "Baryons in the chiral regime / Bastian Knippschild." Mainz : Universitätsbibliothek Mainz, 2012. http://d-nb.info/1020765712/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Baryons"

1

Moshe, Gai, ed. Baryons '92. Singapore: World Scientific, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Barnes, Ted, and Hans-Peter Morsch. Baryon excitations: Lectures of the COSY workshop held at the Forschungszentrum Jülich from 2 to 3 May 2000. Jülich, Germany: Forschungszentrum Jülich, Central Library, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Weigel, H. Chiral soliton models for baryons. Berlin: Springer, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

H, Toki, ed. Quarks, baryons and chiral symmetry. Singapore: World Scientific, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mollerach, Silvia. Axino-induced baryogenesis. Batavia, IL: Fermi National Accelerator Laboratory, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Esteban, Roulet, and United States. National Aeronautics and Space Administration., eds. Axino-induced baryogenesis. Batavia, IL: Fermi National Accelerator Laboratory, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

W, Wilson John. BRYNTRN: A baryon transport model. Hampton, Va: Langley Research Center, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mollerach, Silvia. Axino-induced baryogenesis. Batavia, IL: Fermi National Accelerator Laboratory, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

International Conference on the Structure of Baryons (12th 2010 Osaka, Japan). International Conference on the Structure of Baryons: (Baryons '10) : Osaka, Japan, 7-11 December 2010. Edited by Hosaka Atsushi. Melville, N.Y: American Institute of Physics, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Judd, Eleanor Gillian. Production of singly and doubly strange baryons and anti-baryons in heavy ion collisions at ultra-relativisticenergies. Birmingham: University of Birmingham, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Baryons"

1

Povh, Bogdan, Klaus Rith, Christoph Scholz, Frank Zetsche, and Werner Rodejohann. "Baryons." In Graduate Texts in Physics, 253–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46321-5_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Amsler, Claude. "Baryons." In The Quark Structure of Hadrons, 155–67. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98527-5_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Carlson, C. E. "Perturbative QCD, Baryons, and Baryon Resonances." In New Aspects of Nuclear Dynamics, 71–92. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0547-7_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Povh, Bogdan, Klaus Rith, Christoph Scholz, and Frank Zetsche. "The Baryons." In Particles and Nuclei, 199–225. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05432-1_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Povh, Bogdan, Klaus Rith, Christoph Scholz, and Frank Zetsche. "The Baryons." In Particles and Nuclei, 197–223. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-87776-6_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Povh, Bogdan, Klaus Rith, Christoph Scholz, and Frank Zetsche. "The Baryons." In Particles and Nuclei, 183–206. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-97653-7_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Amsler, Claude. "Heavy Baryons." In The Quark Structure of Hadrons, 205–15. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98527-5_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Povh, Bogdan, Klaus Rith, Christoph Scholz, and Frank Zetsche. "The Baryons." In Particles and Nuclei, 199–225. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-05023-1_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Capstick, Simon. "Missing Baryons." In N* Physics and Nonperturbative Quantum Chromodynamics, 86–93. Vienna: Springer Vienna, 1999. http://dx.doi.org/10.1007/978-3-7091-6800-4_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

de Freitas Pacheco, J. A. "Physics of Baryons." In The Cosmic Microwave Background, 239–66. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44769-8_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Baryons"

1

Takeuchi, Sachiko, Makoto Takizawa, Kiyotaka Shimizu, Atsushi Hosaka, Kanchan Khemchandani, Hideko Nagahiro та Kanabu Nawa. "Negative-parity Λ[sub Q] baryons in the baryon-meson continuum". У INTERNATIONAL CONFERENCE ON THE STRUCTURE OF BARYONS (BARYONS' 10). AIP, 2011. http://dx.doi.org/10.1063/1.3647409.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

MANOHAR, A. V. "BARYONS." In Phenomenology of Large NC QCD. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776914_0015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

MANOHAR, A. V. "BARYONS." In Proceedings of the Workshop. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701725_0013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

NAWA, KANABU, HIDEO SUGANUMA, ATSUSHI HOSAKA, and TORU KOJO. "BARYONS AND BARYONIC MATTER IN HOLOGRAPHIC QCD." In Hadron and Nuclear Physics 09. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814313933_0015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

PAGE, P. R. "HYBRID BARYONS." In Proceedings of the 9th International Conference on the Structure of Baryons. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704887_0021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Menze, D. W., and B. Metsch. "Baryons '98." In 8th International Conference. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789814527491.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gibson, B. F., P. D. Barnes, J. B. McClelland, and W. Weise. "Baryons ’95." In 7th International Conference on the Structure of Baryons. WORLD SCIENTIFIC, 1996. http://dx.doi.org/10.1142/9789814531030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gai, Moshe. "Baryons '92." In International Conference on the Structure of Baryons and Related Mesons. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789814536950.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

LEBED, RICHARD F. "BARYONS, INC." In Proceedings of the Conference. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702326_0005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yi, Piljin, Atsushi Hosaka, Kanchan Khemchandani, Hideko Nagahiro, and Kanabu Nawa. "Precision Holographic Baryons." In INTERNATIONAL CONFERENCE ON THE STRUCTURE OF BARYONS (BARYONS' 10). AIP, 2011. http://dx.doi.org/10.1063/1.3647358.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Baryons"

1

Mukhopadhyay, N. C. Excited baryons. Office of Scientific and Technical Information (OSTI), January 1986. http://dx.doi.org/10.2172/6901547.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gibney, Mark C. Photoproduction of Charmed Baryons. Office of Scientific and Technical Information (OSTI), April 1989. http://dx.doi.org/10.2172/1427791.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gibney, Mark C. Photoproduction of Charmed Baryons. Office of Scientific and Technical Information (OSTI), April 1989. http://dx.doi.org/10.2172/1156311.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Swiatek, Joseph Alexander. A Study of charm baryons containing a lambda baryon in the final state. Office of Scientific and Technical Information (OSTI), April 1995. http://dx.doi.org/10.2172/1423680.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bjorken, James. Masses of charm and strange baryons. Office of Scientific and Technical Information (OSTI), August 1986. http://dx.doi.org/10.2172/1163145.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mattson, Mark Edward. Search for Baryons with Two Charm Quarks. Office of Scientific and Technical Information (OSTI), January 2002. http://dx.doi.org/10.2172/1420963.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Summers, D. J. Charm strange baryons and the 1.5 prong. Office of Scientific and Technical Information (OSTI), December 1992. http://dx.doi.org/10.2172/10125015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lanza, Lucille. Search for hybrid baryons with CLAS12 experimental setup. Office of Scientific and Technical Information (OSTI), March 2017. http://dx.doi.org/10.2172/1369432.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Vaandering, Eric Wayne. Mass and Width Measurements of $\Sigma_{c}$ Baryons. Office of Scientific and Technical Information (OSTI), January 2000. http://dx.doi.org/10.2172/1421442.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Torres Aguilar, Ibrahim Daniel. Observation of Double Charm Baryons in Several decay Modes. Office of Scientific and Technical Information (OSTI), June 2006. http://dx.doi.org/10.2172/1415801.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії