Добірка наукової літератури з теми "Bacterial surface"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Bacterial surface".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Bacterial surface"
Absolom, Darryl R. "The role of bacterial hydrophobicity in infection: bacterial adhesion and phagocytic ingestion." Canadian Journal of Microbiology 34, no. 3 (March 1, 1988): 287–98. http://dx.doi.org/10.1139/m88-054.
Повний текст джерелаEvans, Adele, Anthony J. Slate, Millie Tobin, Stephen Lynch, Joels Wilson Nieuwenhuis, Joanna Verran, Peter Kelly, and Kathryn A. Whitehead. "Multifractal Analysis to Determine the Effect of Surface Topography on the Distribution, Density, Dispersion and Clustering of Differently Organised Coccal-Shaped Bacteria." Antibiotics 11, no. 5 (April 21, 2022): 551. http://dx.doi.org/10.3390/antibiotics11050551.
Повний текст джерелаVadillo-Rodríguez, Virginia, Henk J. Busscher, Willem Norde, Joop de Vries, René J. B. Dijkstra, Ietse Stokroos, and Henny C. van der Mei. "Comparison of Atomic Force Microscopy Interaction Forces between Bacteria and Silicon Nitride Substrata for Three Commonly Used Immobilization Methods." Applied and Environmental Microbiology 70, no. 9 (September 2004): 5441–46. http://dx.doi.org/10.1128/aem.70.9.5441-5446.2004.
Повний текст джерелаHogan, Kayla, Sai Paul, Guanyou Lin, Jay Fuerte-Stone, Evgeni V. Sokurenko, and Wendy E. Thomas. "Effect of Gravity on Bacterial Adhesion to Heterogeneous Surfaces." Pathogens 12, no. 7 (July 15, 2023): 941. http://dx.doi.org/10.3390/pathogens12070941.
Повний текст джерелаPatel, Nirav, Ryan Guillemette, Ratnesh Lal, and Farooq Azam. "Bacterial surface interactions with organic colloidal particles: Nanoscale hotspots of organic matter in the ocean." PLOS ONE 17, no. 8 (August 25, 2022): e0272329. http://dx.doi.org/10.1371/journal.pone.0272329.
Повний текст джерелаSejati, Bramasto Purbo, Tetiana Haniastuti, Ahmad Kusumaatmaja, and Maria Goreti Widyastuti. "The Influence of Surface Damage on Miniplates: A Study of Bacterial Attachment Across Various Strains." F1000Research 14 (February 4, 2025): 158. https://doi.org/10.12688/f1000research.159954.1.
Повний текст джерелаDang, Hongyue, Tiegang Li, Mingna Chen, and Guiqiao Huang. "Cross-Ocean Distribution of Rhodobacterales Bacteria as Primary Surface Colonizers in Temperate Coastal Marine Waters." Applied and Environmental Microbiology 74, no. 1 (October 26, 2007): 52–60. http://dx.doi.org/10.1128/aem.01400-07.
Повний текст джерелаDu, Cezhi, Chengyong Wang, Tao Zhang, Xin Yi, Jianyi Liang, and Hongjian Wang. "Reduced bacterial adhesion on zirconium-based bulk metallic glasses by femtosecond laser nanostructuring." Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 234, no. 4 (December 30, 2019): 387–97. http://dx.doi.org/10.1177/0954411919898011.
Повний текст джерелаMüller, Rainer, Gerhard Gröger, Karl-Anton Hiller, Gottfried Schmalz, and Stefan Ruhl. "Fluorescence-Based Bacterial Overlay Method for Simultaneous In Situ Quantification of Surface-Attached Bacteria." Applied and Environmental Microbiology 73, no. 8 (February 16, 2007): 2653–60. http://dx.doi.org/10.1128/aem.02884-06.
Повний текст джерелаCorcionivoschi, Nicolae, Igori Balta, Eugenia Butucel, David McCleery, Ioan Pet, Maria Iamandei, Lavinia Stef, and Sorin Morariu. "Natural Antimicrobial Mixtures Disrupt Attachment and Survival of E. coli and C. jejuni to Non-Organic and Organic Surfaces." Foods 12, no. 20 (October 21, 2023): 3863. http://dx.doi.org/10.3390/foods12203863.
Повний текст джерелаДисертації з теми "Bacterial surface"
Château, Maarten de. "Functional, structural and evolutionary studies on a family of bacterial surface proteins." Lund : Dept. of Cell and Molecular Biology, Lund University, 1996. http://catalog.hathitrust.org/api/volumes/oclc/38947242.html.
Повний текст джерелаLloyd, Diarmuid Padraig. "Microscopic studies of surface growing bacterial populations." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/10509.
Повний текст джерелаPetkova, Petya Stoyanova. "Surface nano-structured materials to control bacterial contamination." Doctoral thesis, Universitat Politècnica de Catalunya, 2016. http://hdl.handle.net/10803/398122.
Повний текст джерелаLa propagación de bacterias e infecciones, inicialmente limitada a infecciones adquiridas en el hospital, se ha extendido al resto de la sociedad causando enfermedades muy graves y más difíciles de tratar. Además, muchas de estas enfermedades son provocadas por bacterias que se han hecho resistentes a los antibióticos convencionales. Por lo tanto, limitar la capacidad de estas bacterias para desarrollar resistencia puede potencialmente reducir la alta incidencia de estas infecciones y evitar miles de muertes cada año. Las partículas de escala nanométrica son unas candidatas prometedoras para combatir las bacterias, ya que su mecanismo de acción las hace disminuir las probabilidades en el desarrollo de resistencia. Las nanopartículas (NPs) se pueden incorporar en matrices poliméricas para diseñar una amplia variedad de materiales nanocompuestos. Estas nanoestructuras consisten en NPs orgánicas/inorgánicas e inorgánicas representando una nueva clase de materiales con una amplia gama de aplicaciones. Esta tesis trata sobre el desarrollo de materiales antibacterianos con estructura nanométrica dirigidos a prevenir la propagación de bacterias. Para lograr esto, dos herramientas fisicoquímicas y biotecnológicas versátiles tales como sonoquímica y biocatálisis, se combinaron de manera innovadora. La irradiación por ultrasonido se ha utilizado para la generación de nanoestructuras diversas y su combinación con biocatalizadores (enzimas) abre nuevas perspectivas en el tratamiento de materiales, aquí ilustrados por la producción de textiles médicos recubiertos con NPs, membranas de tratamiento de agua y apósitos para heridas crónicas. La primera parte de la tesis tiene como objetivo el desarrollo de textiles médicos antibacterianos para prevenir la transmisión y proliferación de bacterias utilizando dos estrategias "de un solo paso" para el recubrimiento antibacteriano de estos textiles con NPs. En el primer enfoque NPs antibacterianas de óxido de zinc (ZnO NPs) y quitosano (CS) fueron depositadas simultáneamente sobre tejido de algodón por irradiación de ultrasonido. Los recubrimientos híbridos de NPs obtenidos demostraron propiedades antibacterianas duraderas después de varios lavados exhaustivos. Por otra parte, la presencia de biopolímeros en las NPs híbridas mejoraba la biocompatibilidad del material en comparación con el recubrimiento de solamente de ZnO NPs. En la segunda parte de la tesis, híbridos antibacterianos hechos de biopolímeros y NPs de plata y matrices de corcho, fueron ensamblados enzimáticamente en un material antimicrobiano para su utilización en la remediación de aguas. Biopolímeros antibacterianos aminofuncionalizados (CS y aminocelulosa) se utilizaron como agentes dopantes para estabilizar las dispersiones coloidales de plata (Ag NPs). Además, estas partículas presentan todas las funciones necesarias para su inmovilización covalente en el corcho proporcionando un efecto antibacteriano duradero. Estos biopolímeros aumentaron la eficacia antibacteriana de estos nanocompuestos en condiciones que simulan una situación real en humedales construidos. En la tercera parte de la tesis, se desarrolló un hidrogel nanocompuesto bioactivo para el tratamiento de heridas crónicas. Nanoesferas de galato de epigalocatequina (EGCG NSs) fueron sintetizadas a través de sonoquimica y se incorporaron y simultáneamente reticularon enzimáticamente en un hidrogel de quitosano tiolado. El potencial del material generado para el tratamiento de heridas crónicas fue evaluado por sus propiedades antibacterianas y su efecto inhibidor sobre biomarcadores producidos en heridas crónicas infectadas (mieloperoxidasa y colagenasa). También se consiguió la liberación sostenida de EGCG NSs por parte de la matriz generada, que junto con su buena biocompatibilidad, demostraba su potencial para el tratamiento de heridas crónicas.
Haynie, Teron D. "Synthesis of Bacterial Surface Glycans for Conjugate Vaccines." BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8669.
Повний текст джерелаRamos, Isabel Cristina Santos Silva de Faria. "Culturable bacterial community of the estuarine surface microlayer." Master's thesis, Universidade de Aveiro, 2009. http://hdl.handle.net/10773/849.
Повний текст джерелаA camada superficial aquática (1-1000 μm) é um ecossistema único, definido como a interface entre a hidrosfera e a atmosfera. É uma camada exposta a altas intensidades de radiação solar Ultra-Violeta, sendo enriquecida com compostos orgânicos e poluentes antropogénicos. Além disso, está sujeita a condições instáveis de temperatura e salinidade. Assim sendo, é razoável colocar-se a hipótese de que esta camada é habitada por comunidades bacterianas distintas e especializadas. Apenas alguns estudos sobre este tema foram publicados e os resultados foram frequentemente divergentes. Apesar do já reconhecido enviesamento introduzido pelas metodologias dependentes do cultivo, tais técnicas permanecem essenciais para a compreensão da fisiologia e ecologia da comunidade bacteriana. Os estuários são ambientes confinados e frequentemente muito poluídos, o que provavelmente favorece a formação de camadas superficiais claramente distintas das águas subjacentes. Portanto, o objectivo deste trabalho foi comparar as comunidades bacterianas cultiváveis da camada superficial aquática e da coluna de água. Foram escolhidos três locais ao longo do estuário Ria de Aveiro atendendo a diferentes parâmetros ambientais e exposição a poluentes. A amostragem foi realizada utilizando o método 'Glass- Plate'. As amostras foram obtidas em maré baixa, durante o dia e noite, em cinco campanhas, tendo em vista a quantificação das unidades formadoras de colónias e subsequente isolamento para caracterização filogenética. Para estes fins, usámos dois meios de cultura: GSP (Pseudomonas Aeromonas Selective Agar Base) e EA (Estuarine Agar). A quantificação das UFC indica que o número de bactérias provenientes da camada superficial (bacterioneuston) é cerca de três vezes mais abundante do que o proveniente da coluna de água (bacterioplâncton). Verifica-se uma diminuição da abundância de bacterioneuston de dia para noite, ao contrário do bacterioplâncton, que tende a aumentar durante o mesmo período. Dos isolados obtidos, o rDNA 16S foi e digerido com a enzima HaeIII. A partir de 402 isolados, foram identificados 72 perfis diferentes. Desses, 21 perfis foram exclusivos da camada superficial e 28 foram exclusivos da coluna de água. Representantes dos diferentes perfis foram analisados por sequenciação e bactérias pertencentes a 5 Filos: Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes e Deinococci-Thermus; e 9 Classes: Gammaproteobacteria, Alphaproteobacteria, Betaproteobacteria, Epsilonproteobacteria, Actinobacteria, Flavobacteria, Sphingobacteria, Deinococci e Bacilli foram identificadas. Os isolados afiliaram com sequências provenientes de ambientes aquáticos bem como de áreas altamente contaminadas. Os resultados apontam para uma comunidade cultivável distinta/particular na microcamada superficial estuarina. ABSTRACT: The sea surface microlayer (SML) is an unique ecosystem, defined as the interfacial film (uppermost 1–1000 μm) between the atmosphere and the ocean. Thereby, it is exposed to high intensities of solar radiation, and is enriched with organic compounds and pollutants from anthropogenic inputs. Also it is subjected to unstable temperature and salinity conditions. Thus, it is proper to hypothesize that the SML is inhabited by distinct and specialized microbial communities. Only a few studies on this topic were published and results wee frequently divergent. Despite the previously recognized biases introduced by culture-dependent methodologies, such techniques remain essential to understand bacterial population’s physiology and ecology. Estuaries are confined and frequently highly polluted environments, which probably favor the formation of distinct surface layers clearly distinct from underlying waters. Therefore, our goal was to compare the culturable bacterial communities occurring in SML and underlying waters (UW). Our work concerned three sampling sites in the estuary Ria de Aveiro, corresponding to different environmental parameters and exposure to pollutants. Sampling was conducted using the so-called ‘Glass-Plate’ method. The UW samples were collected directly into a sterilized glass bottle from a depth of approximately 0.4 m. Samples were obtained at low-tide, during day and night, in five campaigns, regarding the CFU (Colony Forming Units) quantification and subsequent recovery of bacterial isolates. For these purposes we used two culture media: GSP (Pseudomonas Aeromonas Selective Agar Base) and EA (Estuarine Agar). CFU quantification indicates that bacterioneuston is about three times more abundant than bacterioplankton. Generally bacterioneuston abundance decreases from day to night while bacterioplankton usually increases during the same period. From all the obtained isolates the 16S rDNA was amplified using universal primers and digested with the enzyme HaeIII. The profiles were analyzed using the software GelCompar and representatives of each pattern were selected for sequencing. From 402 isolates, 72 different profiles were identified. From those 21 profiles were exclusive from SML samples and 28 were exclusive from UW samples. Sequencing results allowed identifying bacteria belonging to 5 different Phyla: Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes and Deinococci-Thermus; and 9 Classes: Gammaproteobacteria, Alphaproteobacteria, Betaproteobacteria, Epsilonproteobacteria, Actinobacteria, Flavobacteria, Sphingobacteria, Deinococci e Bacilli. Isolates affiliated with sequences from aquatic environments as well as highly contaminated areas. The results point to a distinct/particular culturable community within the SML of this estuarine environment.
Auditto, Sanjana. "Synthesis of organic conductive polymers to struggle bacterial infections." Electronic Thesis or Diss., Aix-Marseille, 2022. http://www.theses.fr/2022AIXM0179.
Повний текст джерелаBacterial biofilms are in the background of many industrial, health and domestic adverse effects with economic losses leading to intensive research to design solutions to combat their formation and development. Two routes are commonly used to solve these issues, one aiming at preventing the adhesion of bacteria and the other at inhibiting and killing adhered microorganisms. Recent work has been done in that direction with the use of polymer-based antifouling or antibacterial surfaces acting either by contact effect or continuous release of bacterial substances. Besides, responsive surfaces to various stimuli (microenvironment, light, acoustic waves, etc.) have been developed to release biocides in a controlled way. In addition, the use of an electrical potential (bioelectric effect) has aroused interest to disrupt biofilms but remains underexploited. The present work focuses on the development of biocompatible electrostimulable surfaces based on either (i) self-assembled monolayers (SAMs) deposited on titanium or gold electrodes, or (ii) functionalized conductive polymers (CPs), to prevent adhesion and/or kill bacteria. Phosphonium-based SAMs have demonstrated interesting antibacterial properties, without release of biocidal agent, against Gram positive and negative strains (S. aureus, K. pneumoniae). In addition, thin films of homo- and copolymers of phosphonium-based pyrrole CPs were obtained by electropolymerization, and analyzed by modifying and applying a set of parameters and tested as antibacterial coatings. Lastly, hydrophilic phosphoniums have been synthesized and preliminary studies have highlighted their potential use as nanocarriers for drug delivery
Mitik-Dineva, Natasa. "Bacterial attachment to micro- and nano- structured surfaces." Swinburne Research Bank, 2009. http://hdl.handle.net/1959.3/48547.
Повний текст джерелаYe, Zhou. "Effect of Nanoscale Surface Structures on Microbe-Surface Interactions." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/85387.
Повний текст джерелаPh. D.
Panhorst, Kimberly A. "Estimating Bacterial Loadings to Surface Waters from Agricultural Watersheds." Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/36433.
Повний текст джерелаThe bacterial model simulates die-off, bacterial partitioning between soil and water, and bacterial transport to surface waters in free (in solution) and sediment-adsorbed forms. Bacterial die-off was modeled using Chick's Law, bacterial partitioning was modeled with a linear isotherm equation, and bacterial transport was modeled using continuity and flow equations. The bacterial model was incorporated into the ANSWERS-2000 model, a continuous, distributed, nonpoint source pollution model. The model was tested using data from two plot studies. Calibration was required to improve runoff and sediment predictions. Bacterial model predictions underpredicted bacterial concentrations in runoff with a maximum underprediction error of 92.9%, but predictions were within an order of magnitude in all cases. Further model evaluation, on a larger watershed with predominantly overland flow, over a longer time period, is recommended, but such data were not available at the time of this assessment. The overall conclusions of this research were 1) FC and EC die-off or diminution under the examined field conditions followed Chick's Law, 2) measured die-off rate constants in the field were much less than those cited in literature for laboratory experiments, and 3) for the conditions simulated for two plot studies, the bacterial model predicted bacterial concentrations in runoff within an order of magnitude.
Master of Science
Redford, Amanda J. "Interspecies and temporal variation in bacterial leaf surface communities." Connect to online resource, 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1456691.
Повний текст джерелаКниги з теми "Bacterial surface"
Ian, Hancock, and Poxton Ian, eds. Bacterial cell surface techniques. Chichester [West Sussex]: Wiley, 1988.
Знайти повний текст джерелаB, Sleytr Uwe, ed. Crystalline bacterial cell surface proteins. Austin, TX: R.G. Landes Co., 1996.
Знайти повний текст джерелаSleytr, Uwe B., Paul Messner, Dietmar Pum, and Margit Sára, eds. Crystalline Bacterial Cell Surface Layers. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73537-0.
Повний текст джерелаB, Sleytr U., ed. Crystalline bacterial cell surface layers. Berlin: Springer-Verlag, 1988.
Знайти повний текст джерелаSaeid, Abdolkabir M. Bacterial surface modification of pyrite. Birmingham: University of Birmingham, 1994.
Знайти повний текст джерелаBeveridge, Terry J., and Susan F. Koval, eds. Advances in Bacterial Paracrystalline Surface Layers. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4757-9032-0.
Повний текст джерелаJ, Beveridge Terrance, Koval Susan F, and NATO Advanced Research Workshop on Advances in Bacterial Paracrystalline Surface Layers (1992 : London, Ont.), eds. Advances in bacterial paracrystalline surface layers. New York: Plenum Press, 1993.
Знайти повний текст джерелаK, Korhonen Timo, Dawes Edwin A, Mäkelä P. Helena, Federation of European Microbiological Societies., and Societas Biochemica, Biophysica, et Microbiologica Fenniae., eds. Enterobacterial surface antigens: Methods for molecular characterisation. Amsterdam: Elsevier, 1985.
Знайти повний текст джерелаPaul, Actor, and American Society for Microbiology, eds. Antibiotic inhibition of bacterial cell surface assembly and function. Washington, D.C: American Society for Microbiology, 1988.
Знайти повний текст джерелаNava, Mozes, ed. Microbial cell surface analysis: Structural and physicochemical methods. New York: VCH, 1991.
Знайти повний текст джерелаЧастини книг з теми "Bacterial surface"
Ofek, Itzhak, Halina Lis, and Nathan Sharon. "Animal Cell Surface Membranes." In Bacterial Adhesion, 71–88. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4615-6514-7_3.
Повний текст джерелаIsticato, Rachele, and Ezio Ricca. "Spore Surface Display." In The Bacterial Spore, 349–66. Washington, DC, USA: ASM Press, 2016. http://dx.doi.org/10.1128/9781555819323.ch17.
Повний текст джерелаCerone, Antonio, and Enrico Marsili. "A Formal Model for the Simulation and Analysis of Early Biofilm Formation." In From Data to Models and Back, 134–51. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70650-0_9.
Повний текст джерелаRozgonyi, Ferenc, Åsa Ljungh, Wubshet Mamo, Stellan Hjertén, and Torkel Wadström. "Bacterial Cell-Surface Hydrophobicity." In Pathogenesis of Wound and Biomaterial-Associated Infections, 233–44. London: Springer London, 1990. http://dx.doi.org/10.1007/978-1-4471-3454-1_28.
Повний текст джерелаReps, A. "Bacterial Surface-Ripened Cheeses." In Cheese: Chemistry, Physics and Microbiology, 137–72. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2648-3_5.
Повний текст джерелаReps, A. "Bacterial Surface-Ripened Cheeses." In Cheese: Chemistry, Physics and Microbiology, 137–72. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-2800-5_5.
Повний текст джерелаParwin, Shabnam, Sashi Kalan, and Preeti Srivastava. "Bacterial Cell Surface Display." In ACS Symposium Series, 81–108. Washington, DC: American Chemical Society, 2019. http://dx.doi.org/10.1021/bk-2019-1329.ch005.
Повний текст джерелаDing, Aihao, and Carl Nathan. "Regulation of Cell Surface Receptor Expression by LPS." In Bacterial Endotoxic Lipopolysaccharides, 373–86. Boca Raton: CRC Press, 2024. https://doi.org/10.1201/9781003574859-18.
Повний текст джерелаKoch, Arthur L. "Stresses on the Surface Stress Theory." In Bacterial Growth and Lysis, 427–42. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4757-9359-8_50.
Повний текст джерелаArdö, Ylva, Françoise Berthier, Katja Hartmann, Elisabeth Eugster-Meier, Marie-Therese Fröhlich-Wyder, Ernst Jakob, and Daniel Wechsler. "Bacterial Surface-Ripened (Smear) Cheeses." In Global Cheesemaking Technology, 397–414. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781119046165.ch10.
Повний текст джерелаТези доповідей конференцій з теми "Bacterial surface"
Madugula, Sita Sirisha, Blythe Dumerer, Ruben Millan-Solsona, Checa Nualart Marti, Liam Collins, Rama K. Vasudevan, Retterer Scott, Lance Zhang, Spencer Cox, and Jennifer L. Morrell-Falvey. "Image Segmentation of Bacterial Biofilms to Study Pathogen-Surface Interactions." In 2024 IEEE International Conference on Big Data (BigData), 4939–40. IEEE, 2024. https://doi.org/10.1109/bigdata62323.2024.10826045.
Повний текст джерелаDurand, Hippolyte, Loïc Laplatine, Ali Kheir-Aldine, Caroline Fontelaye, Doriane Eyvrard, Anne-Gaëlle Bourdat, Malika Amdaoud, Guillaume Nonglaton, and Thomas Alava. "Surface Biofunctionalization of Silicon Photonic Mach-Zehnder Interferometers for Bacterial Biosensor Development." In 2024 IEEE BioSensors Conference (BioSensors), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/biosensors61405.2024.10712725.
Повний текст джерелаIbrahim, Mohd Danial, Alyssa Asong Ananthan, Dayang Salyani Abang Mahmod, Awang Ahmad Sallehin Awang Husaini, Ngieng Ngui Sing, Shunsuke Nakano, Yuta Sunami, and Pierre Barroy. "Antibacterial Properties of Snakeskin Inspired PDMS Surfaces Layered With Poly-DL-lactic Acid Nanosheet." In ASME 2023 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/smasis2023-111176.
Повний текст джерелаKrebsbach, Meaghen A., and Karim H. Muci-Ku¨chler. "Effect of Initial Surface Concentration on Bacterial Distribution in a Surrogate Ballistic Wound." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64243.
Повний текст джерелаPark, Eun-Jung, Myoung-Ock Cho, and Jung Kyung Kim. "Growth Responses of Swarming and Gliding Bacteria on Substrates With Different Levels of Stiffness." In ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13154.
Повний текст джерелаTzeng, Tzuen-Rong J., Yunyan R. Cheng, Reza Saeidpourazar, Siddharth Sanjeev Aphale, and Nader Jalili. "Adhesin-Specific Nanomechnical Cantilever Biosensors for Detection of Microorganisms." In ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18487.
Повний текст джерелаBunpot - Sirinutsomboon, Michael J Delwiche, and Glenn M Young. "Effect of Surface Microstructure on Bacterial Attachment." In 2010 Pittsburgh, Pennsylvania, June 20 - June 23, 2010. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2010. http://dx.doi.org/10.13031/2013.30009.
Повний текст джерелаLitvinenko, V. V., E. V. Vasilieva, M. A. Abdulkadieva, E. V. Sysolyatina, and S. A. Ermolaeva. "THE USE OF BACTERIAL MOTILITY CHARACTERISTICS FOR RAPID ASSESSMENT OF ANTIBIOTIC SENSITIVITY." In X Международная конференция молодых ученых: биоинформатиков, биотехнологов, биофизиков, вирусологов и молекулярных биологов — 2023. Novosibirsk State University, 2023. http://dx.doi.org/10.25205/978-5-4437-1526-1-193.
Повний текст джерелаZheng, Zhouyuan, Parth Bansal, and Yumeng Li. "Numerical Study on Antibacterial Effects of Bio-Inspired Nanostructured Surface." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23594.
Повний текст джерелаSteager, Edward, M. Selman Sakar, U. Kei Cheang, David Casale, Vijay Kumar, George J. Pappas, and Min Jun Kim. "Galvanotactic Control of Self-Powered Microstructures." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66647.
Повний текст джерелаЗвіти організацій з теми "Bacterial surface"
Apte, Shruti, Smita Bhutda, Sourav Ghosh, and Anirban Banerjee. Ubiquitination of bacterial surface proteins act as novel innate pathogen sensing strategy. Peeref, June 2023. http://dx.doi.org/10.54985/peeref.2306p5609776.
Повний текст джерелаAlvarez, Rene, Alexander J. Burdette, Xiaomeng Wu, Christian Kotanen, Yiping Zhao, and Ralph A. Tripp. Rapid Identification of Bacterial Pathogens of Military Interest Using Surface-Enhanced Raman Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, June 2014. http://dx.doi.org/10.21236/ada605244.
Повний текст джерелаFrymier, P. D. Jr. Bacterial migration and motion in a fluid phase and near a solid surface. Office of Scientific and Technical Information (OSTI), January 1995. http://dx.doi.org/10.2172/573237.
Повний текст джерелаBranch, Darren W., Dale L. Huber, Susan Marie Brozik, and Thayne L. Edwards. Shear horizontal surface acoustic wave microsensor for Class A viral and bacterial detection. Office of Scientific and Technical Information (OSTI), October 2008. http://dx.doi.org/10.2172/1028915.
Повний текст джерелаLindow, Steven, Isaac Barash, and Shulamit Manulis. Relationship of Genes Conferring Epiphytic Fitness and Internal Multiplication in Plants in Erwinia herbicola. United States Department of Agriculture, July 2000. http://dx.doi.org/10.32747/2000.7573065.bard.
Повний текст джерелаKozlowski, Mark, Joshua Orlicki, Randall Hughes, and Randi Pullen. Peptide and Hydrophobin Interactions with Polymeric Substrates Screened by a Bacterial Surface Display Method. Aberdeen Proving Ground, MD: DEVCOM Army Research Laboratory, September 2021. http://dx.doi.org/10.21236/ad1150281.
Повний текст джерелаPhisalaphong, Muenduen, and Neeracha Sanchavanakit. Development of bacterial cellulose for temporary skin substitute. Chulalongkorn University, 2006. https://doi.org/10.58837/chula.res.2006.74.
Повний текст джерелаGottlieb, Yuval, Bradley Mullens, and Richard Stouthamer. investigation of the role of bacterial symbionts in regulating the biology and vector competence of Culicoides vectors of animal viruses. United States Department of Agriculture, June 2015. http://dx.doi.org/10.32747/2015.7699865.bard.
Повний текст джерелаChoudhary, Ruplal, Victor Rodov, Punit Kohli, Elena Poverenov, John Haddock, and Moshe Shemesh. Antimicrobial functionalized nanoparticles for enhancing food safety and quality. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7598156.bard.
Повний текст джерелаSplitter, Gary, and Menachem Banai. Microarray Analysis of Brucella melitensis Pathogenesis. United States Department of Agriculture, 2006. http://dx.doi.org/10.32747/2006.7709884.bard.
Повний текст джерела