Добірка наукової літератури з теми "Automated Rendezvous and Docking"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Automated Rendezvous and Docking".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Automated Rendezvous and Docking"

1

Kemble, Stephen. "Automated Rendezvous and Docking of Spacecraft." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 221, no. 6 (June 2007): 997. http://dx.doi.org/10.1177/095441000722100603.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kawano, Isao, Masaaki Mokuno, Hiroshi Koyama, and Taichi Nakamura. "Space robot. Guidance and Control for the Automatic Rendezvous Docking Technology. Engineering Test Satellite VII Rendezvous Docking System." Journal of the Robotics Society of Japan 14, no. 7 (1996): 935–39. http://dx.doi.org/10.7210/jrsj.14.935.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

HU, Jun, Hao ZHANG, YongChun XIE, and HaiXia HU. "Automatic control system design of Shenzhou spacecraft for rendezvous and docking." SCIENTIA SINICA Technologica 44, no. 1 (January 1, 2014): 12–19. http://dx.doi.org/10.1360/092013-1263.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhao, Xia, Quan Gan, and Tian Hua Lin. "Multi-Slide-Mode Control for the Homing Phase of Automatic Rendezvous and Docking." Applied Mechanics and Materials 336-338 (July 2013): 599–603. http://dx.doi.org/10.4028/www.scientific.net/amm.336-338.599.

Повний текст джерела
Анотація:
Multi-Slide-Mode Control (MSMC) is proposed to decrease energy consumption for homing phase of automatic rendezvous and docking (AR&D). The energy consumption is an important target in homing phase. MSMC is developed from sliding mode control (SMC) and its advantage is energy saving. The switching function of MSMC is piecewise, which is named as multi-sliding-mode. The control system is simulated and the results show the control effects are in accord with prospects.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhang, Pan, and Ma. "Real-Time Docking Ring Detection Based on the Geometrical Shape for an On-Orbit Spacecraft." Sensors 19, no. 23 (November 28, 2019): 5243. http://dx.doi.org/10.3390/s19235243.

Повний текст джерела
Анотація:
Docking ring is a circular hatch of spacecraft that allows servicing spacecraft to dock in various space missions. The detection of the ring is greatly beneficial to automatic capture, rendezvous and docking. Based on its geometrical shape, we propose a real-time docking ring detection method for on-orbit spacecraft. Firstly, we extract arcs from the edge mask and classify them into four classes according to edge direction and convexity. By developing the arc selection strategy, we select a combination of arcs possibly belonging to the same ellipse, and then estimate its parameters via the least squares fitting technique. Candidate ellipses are validated according to the fitness of the estimation with the actual edge pixels. The experiments show that our method is superior to the state-of-the-art methods, and can be used in real time application. The method can also be extended to other applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Xu, Haojian. "Wigbert Fehse, Automated Rendezvous and Docking of Spacecraft, Cambridge University Press, Cambridge, ISBN: 0-521-82492-3, 2003 (price: $ 120, pp. 495)." Automatica 41, no. 7 (July 2005): 1295–97. http://dx.doi.org/10.1016/j.automatica.2005.02.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chen, Zhiming, Zhouhuai Luo, Yunhua Wu, Wei Xue, and Wenxing Li. "Research on High-Precision Attitude Control of Joint Actuator of Three-Axis Air-Bearing Test Bed." Journal of Control Science and Engineering 2021 (March 25, 2021): 1–11. http://dx.doi.org/10.1155/2021/5582541.

Повний текст джерела
Анотація:
Three-axis air-bearing test bed is important semiphysical simulation equipment for spacecraft, which can simulate spacecraft attitude control, rendezvous, and docking with high confidence. When the three-axis air-bearing table is maneuvering at a large angle, if it is only controlled by the flywheel, it will cause the problems of slow maneuvering speed and high energy consumption, and when the external interference torque becomes large, the control accuracy will decline. A combined actuator including flywheel, air-conditioner thruster, and automatic balancing device is designed, and a hierarchical saturation PD control algorithm is proposed to improve the control accuracy and anti-interference ability of the three-axis air-bearing test bed. Finally, the mathematical simulation of the proposed control algorithm is carried out, and the physical verification is carried out on the three-axis air-bearing test bed. The results show that the control algorithm has higher control accuracy than the traditional control algorithm, and the control accuracy is better than 0.1 ∘ and basically meets the attitude control requirements of the ground simulation in-orbit satellite.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hou, Shu Ping, Xiao Yan Wang, and Jian Nan Zhang. "A Method of Rendezvous and Docking Based on the 6-DOF Parallel Mechanism in Subsea Environment." Applied Mechanics and Materials 574 (July 2014): 651–57. http://dx.doi.org/10.4028/www.scientific.net/amm.574.651.

Повний текст джерела
Анотація:
According to the condition of the docking of the oceanic space with low visibility,strong sea current and large declining attitude, the rendezvous and docking device based on the 6-DOF parallel mechanism is proposed. A method of the rendezvous and docking operation is discussed between subsea vehicle and deep-sea space station. The mathematic model of the docking device is established after analyzing the structural characteristics and operational principle of subsea vehicle docking device, the momentum of the docking device. In order to satisfy the need of the subsea docking, a moving path is brought forward for the docking device. The impacting analysis of the docking device is conducted under its docking trait, which shows that the docking device could achieve the rendezvous and docking in case of the serious condition in subsea environment.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

KOYAMA, Hiroshi. "Rendezvous & Docking of Spacecraft." Journal of the Society of Mechanical Engineers 110, no. 1066 (2007): 704–5. http://dx.doi.org/10.1299/jsmemag.110.1066_704.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pairot, J. M., M. Frezet, J. Tailhades, W. Fehse, A. Tobias, and A. Getzschmann. "European rendezvous and docking system." Acta Astronautica 28 (August 1992): 31–42. http://dx.doi.org/10.1016/0094-5765(92)90007-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Automated Rendezvous and Docking"

1

Duzzi, Matteo. "Spacecraft Rendezvous and Docking Using Electromagnetic Interactions." Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3422295.

Повний текст джерела
Анотація:
On-orbit operations such as refuelling, payload updating, inspection, maintenance, material and crew transfer, modular structures assemblies and in general all those processes requiring the participation of two or more collaborative vehicles are acquiring growing importance in the space-related field, since they allow the development of longer-lifetime missions. To successfully accomplish all these on-orbit servicing operations, the ability to approach and mate with another vehicle is fundamental. Rendezvous strategies, proximity procedures and docking manoeuvres between spacecraft are of utmost importance and new, effective, standard and reliable solutions are needed to ensure further technological developments. Presently, the possibility to create low-cost clusters of vehicles able to share their resources may be exploited thanks to the broadening advent of CubeSat-sized spacecraft, which are conditioning the space market nowadays. In this context, this thesis aims at presenting viable strategies for spacecraft RendezVous and Docking (RVD) manoeuvres exploiting electro-magnetic interactions. Two perspective concepts have been investigated and developed, linked together by the use of CubeSat-size testing platforms. The idea behind the first one, PACMAN (Position and Attitude Control with MAgnetic Navigation) experiment, is to actively exploit magnetic interactions for relative position and attitude control during rendezvous and proximity operations between small-scale spacecraft. PACMAN experiment has been developed within ESA Education Fly Your Thesis! 2017 programme and has been tested in low-gravity conditions during the 68th ESA Parabolic Flight Campaign (PFC) in December 2017. The experiment validation has been accomplished by launching a miniature spacecraft mock-up (1 U CubeSat, the CUBE) and a Free-Floating Target (1 U CubeSat, the FFT) that generates a static magnetic fields towards each other; a set of actively-controlled magnetic coils on board the CUBE, assisted by dedicated localization sensors, are used to control the CUBE attitude and relative position, assuring in this way the accomplishment of the soft-docking manoeuvre. The second one, TED (Tethered Electromagnetic Docking), concerns a novel docking strategy in which a tethered electromagnetic probe is expected to be ejected by a chaser toward a receiving electromagnetic interface mounted on a target spacecraft. The generated magnetic field drives the probe to the target and realizes an automatic alignment between the two interfaces, thus reducing control requirements for close approach manoeuvres as well as the fuel consumption necessary for them. After that, hard-docking can be accomplished by retracting the tether and bringing the two spacecraft in contact.
La capacità di eseguire operazioni di servizio su veicoli in orbita ha riscontrato, negli ultimi anni, un’enorme interesse da parte delle maggiori compagnie e agenzie spaziali internazionali. La necessità di ridurre i costi di produzione, assieme alla possibilità di ottenere sistemi complessi più affidabili e duraturi, ha indirizzato marcatamente il mercato dell’ingegneria aerospaziale verso lo studio di soluzioni innovative per eseguire in orbita operazioni quali rifornimento, aggiornamento e manutenzione di sottositemi, riparazioni di componenti non funzionanti e ispezioni. Le nuove idee e tecnologie in via di sviluppo per eseguire queste operazioni sono percepite come estremamente funzionali e efficienti in termini di costo, in grado di estendere la vita operativa di un satellite e diminuire i costi connessi alla sua completa sostituzione. Attualmente, il tassello mancante per poter procedere efficacemente con questo tipo di procedure, è un sistema automatico di docking che possa costituire un nuovo standard semplice ed affidabile. Gli odierni sistemi di docking, infatti, sono caratterizzati da elevati requisiti di puntamento e necessitano dell’attuazione di precise azioni sul controllo d’assetto in modo da garantire un aggancio sicuro tra i due veicoli coinvolti nella manovra. Questo è dovuto al fatto che tali sistemi di aggancio sono stati progettati quasi unicamente per il trasferimento di equipaggio o di materiali mentre nessuna progettazione, finora, è mai stata prevista per i satelliti commerciali e scientifici. Recentemente, l’avvento dei CubeSat ha fortemente incoraggiato aziende e agenzie del settore aerospaziale ad investire nello sviluppo di dimostratori tecnologici e payload scientifici, grazie alla notevole riduzione nel costo necessario per lanciare in orbita tali veicoli. Lo svantaggio nell’utilizzare questo tipo di piattaforme è principalmente legato ai limiti tecnici intrinseci degli stessi, rappresentati dalle ridotte risorse a disposizione. Ciononostante, gran parte di queste limitazioni sono state superate grazie alla possibilità di scalare i risultati ottenuti ed applicarli a sistemi più grandi. Numerose tecnologie sono già state testate e caratterizzate nello spazio usando moduli CubeSat, ma solo esperimenti marginali sono stati condotti sino ad oggi su sistemi di docking, anche se si sta percependo un cambio di tendenza. Tali sistemi, infatti, permetterebbero l’esecuzione di operazioni di aggancio e sgancio, ampliando enormemente i possibili scenari di missione: sistemi modulari formati da molteplici unità CubeSat potrebbero interagire tra loro creando agglomerati più grandi in grado di condividere le risorse più efficacemente, riorganizzarsi e aggiornarsi autonomamente. Lo scopo di questa ricerca è quello di proporre un nuovo sistema di soft-docking caratterizzato da requisiti meno stringenti per quanto concerne l’accuratezza nel puntamento e nel controllo d’assetto rispetto ai sistemi esistenti. L’idea innovativa alla base dello studio è quella di sfruttare la capacità di auto-allineamento e reciproca attrazione garantita dall’interazione magnetica che si instaura tra due interfacce elettromagnetiche, in modo da facilitare le manovre di prossimità ed aggancio. La trattazione è suddivisa in due parti principali. Nella prima parte viene presentato l’esperimento PACMAN (Position and Attitude Control with MAgnetic Navigation) il quale rappresenta un dimostratore tecnologico di un sistema di docking per piccoli satelliti basato su attuatori magnetici. Tale sistema, sviluppato all'interno del programma ESA Education Fly Your Thesis! 2017, è stato testato in gravità ridotta durante la 68th campagna di voli parabolici ESA a dicembre. La seconda parte si focalizza invece su un nuovo concept, TED (Tethered Electromagnetic Docking), secondo il quale le manovre di close-range rendezvous e docking possono essere realizzate lanciando una sonda elettromagnetica collegata ad un filo da un satellite chaser verso un’interfaccia elettromagnetica montata su di un satellite target. Stabilito il collegamento, tramite il recupero del filo, i due veicoli sono connessi rigidamente concludendo la manovra.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

MAMMARELLA, MARTINA. "A Comprehensive Modeling Framework for Integrated Mission Analysis and Design of a Reusable Electric Space Tug." Doctoral thesis, Politecnico di Torino, 2019. http://hdl.handle.net/11583/2750013.

Повний текст джерела
Анотація:
"Earth is a small town with many neighborhoods in a very big universe." The quote of the American Astronaut Ronald John Garan Jr. perfectly summarizes the universal and enduring mankind's interest in exploring the unknown, discovering new worlds, pushing the boundaries of scientific and technical limits further and beyond. More than a half century ago, during a speech delivered at Rice University in Houston, President John F. Kennedy claimed the Moon as the new frontier for the human space exploration. The outstanding achievements of the Apollo mission pushed the research in space across the second part of the last century with new goals, as the permanent presence of the human in space. The evolutionary space program built up around that promise was, to say the least, challenging and involved the development of several revolutionary elements. Due to the significant economic effort required by the Apollo mission, only two elements were realized: the Space Shuttle on one side and the Skylab space station on the other. While the Shuttle remained operative until 2011, Skylab was short-lived and disposed after about six years. Only by joining forces with other international partners, NASA was able to realize a long lasting permanent outpost orbiting around Earth, i.e. the International Space Station (ISS). But again, due to the considerable efforts dedicated to build up the ISS and to keep the Space Shuttle operative, the space race suffered a second setback. Until 2007, when the international community drew up a new visionary program. Moon exploration stepped again into the spotlight to extend and sustain human activities beyond Low Earth Orbit (LEO) towards Mars. The new era of space exploration has begun with the intent of expanding the frontiers of knowledge, capability, and opportunities in space. One of the first milestones is represented by the settlement of the so-called Lunar Orbital Platform-Gateway (LOP-G) by the mid 2020's. The Gateway will serve as a manned outpost in the lunar vicinity to support activities on and around the Moon while also servicing as technological and operational testbed to open the frontier for human exploration of Mars, thanks to the exploitation of key technologies, such as high-power electric propulsion. To sustain the LOP-G and its future visiting crews, the Orion spacecraft is currently under development. However, the usability of the Gateway could be extended if new transportation systems would be available to support the station transferring additional supplies and equipment. In compliance with the current plans to efficiently reduce the number of development and validation economic efforts by designing and exploiting same elements for multiple missions, a reusable, high-power electric space tug, i.e. the Lunar Space Tug (LST), is proposed in this Thesis to support the replenishment of the LOP-G. This innovative transportation system should be flexible enough to be adopted in different phases of the Gateway lifetime and for evolving needs. The LST should be in charge of recovering cargo modules released in Earth proximity and transfer them up to the Gateway performing a low-thrust transfer, before return to its operational orbit, ready for the next delivery mission, envisioning a closed-loop mission profile. A tailored multi-input/multi-output design tool has been developed to obtain the preliminary and detailed design, at component level, of the LST spacecraft for several propulsion subsystem architectures. The impact of adopting this technology on the platform design is investigated with respect to several thruster working points and case studies, each one characterized by different refurbishment needs. Then, the optimal LST configuration able to support the Gateway crew for different resupply needs is selected, performing a trade-off analysis among the design solutions that comply with all mission and system constraints previously defined in order to minimize the spacecraft mass, propellant consumption and overall mission cost. From an operational viewpoint, the LST should significantly rely on the Automated Rendezvous and Docking (ARVD) technology, which has been identified as crucial for the transition of space missions from geocentric architectures to self-sustainable, autonomy and independent. At this end, new Guidance Navigation and Control (GNC) algorithms shall be investigated to allow ARVD maneuvers to become reliable routine. In particular, the control problem encapsulates safety restrictions and performance specification that shall be properly addressed verifying the effectiveness and real-time implementability of innovative control strategies. Thus, a 6 Degrees-of-Freedom (DoF) orbital simulator has been developed to simulate the rotational and translational dynamics of the LST and its target vehicles in both Earth orbit and Lunar proximity. Moreover, to reproduce a realistic simulation environment, uncertainty and disturbance affecting the spacecraft dynamics during the maneuver have been modeled and included in the simulator. For attitude and orbital control, three different Model Predictive Control (MPC) algorithms have been implemented and their performance evaluated in the presence of disturbance and parametric uncertainty. In particular, a sampling-based stochastic MPC algorithm is proposed and the typical binding computational effort required by these type of stochastic algorithms, especially when running on low-performing hardware, has been overcome shifting the intensive computations to the offline phase, thus greatly reducing the online computational cost. To complete the algorithms verification process, all three MPC strategies have been experimentally validated exploiting spacecraft mock-up and running the algorithms on the on-board micro-controller, demonstrating their effectiveness and real-time computational applicability.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Seito, Narumi. "Modelagem e simulação de rendezvous e docking." Instituto Nacional de Pesquisas Espaciais (INPE), 2015. http://urlib.net/sid.inpe.br/mtc-m21b/2015/06.03.14.07.

Повний текст джерела
Анотація:
Esta tese tem como objetivo apresentar uma solução para o problema de RVD/B (encontro e acoplamento/atracação) entre duas espaçonaves, perseguidora e alvo, em órbita. Depois de uma breve revisão da literatura para contextualizar este trabalho, apresentam-se as estratégias de aproximação, as técnicas de sincronização de órbita e atitude, e a técnica de aproximação de proximidade, sendo suportadas por dois sistemas de equações diferenciais para os movimentos translacional e rotacional das espaçonaves. Duas configurações são consideradas para a espaçonave robótica perseguidora: uma, quando o manipulador robótico, nela incorporado, estiver inerte, e a outra, quando o manipulador robótico estiver em ação. Na primeira configuração, a formulação newtoniana é usada para obter as equações da dinâmica de translação de Hill-Clohessy-Wiltshire, e o movimento de atitude é determinado pelas equações de Euler. Estes dois sistemas de equações obtidos acima permitem conduzir o perseguidor até o espaço de trabalho de atracação do alvo. Na segunda configuração, a formulação de Lagrange, para quase-coordenadas e para coordenadas generalizadas, fornece as equações do movimento do manipulador robótico para a atracação no alvo. No equacionamento e na simulação numérica das aberturas do manipulador robótico, reside a originalidade da tese. As simulações computacionais da dinâmica de ambas as configurações foram implementadas utilizando-se o pacote de software MatLab.
In this thesis strategies to solve the problem of the RVD/B (RendezVous and Docking/Berthing) orbital operations are studied. In a brief review of the literature, the strategies of approximation, the techniques for orbit and attitude synchronization, and the technique for the close proximity approximation are presented, all of them supported by two systems of differential equations for the translational and rotational motion of both spacecrafts. Two configurations are considered for the chaser: one when the robotic manipulator of the chaser is inert, and a second one when the robotic manipulator is in action. In the first configuration the Newtonian formulation is used to obtain the equations of Hill-Clohessy-Klein for the translational dynamics, while the attitude motion is determined by Eulers equations. These two systems of differential equations allow to guide the chaser up to the point for berthing the target. In the second configuration, the Lagrangian formulation for quasi-coordinates and generalized coordinates supplies the equations for the motion of the robotic manipulator when berthing the target. These latter equations and their numerical simulation of berthing the target are the original part of this thesis. The computational simulations of the dynamics are carried out by use of the software MatLab.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Maaroufi, Helmi. "Dynamics and Control of Unmanned Spacecraft Rendezvous and Docking." Thesis, KTH, Farkost och flyg, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209188.

Повний текст джерела
Анотація:
This paper presents a study on spacecraftRendezvous and Docking (RvD) through a comprehensiveliterature review, in addition to investigate the main phases andpossible control methods during the space rendezvous and docking.It presents a study of different energy efficient far rangerendezvous (e.g. Hoffman, bi-elliptic, phasing maneuver etc.). Aset of formation flying models (i.e. relative navigation) for twospacecraft operating in close proximity are examined. Oneapproach to depict the relative orbit’s dynamics model for closeproximity operations is to mathematically express it by thenonlinear equations of relative motion (NERM), that present thehighest accuracy and are valid for all types of orbit eccentricitiesand separations. Another approach is the Hill-Clohessy-Wiltshire(HCW). This method is only valid for two conditions, when thetarget satellite orbit is near circular and the distance between thechaser and target is small. The dynamics models in this paperdescribe the spacecraft formation flying in both unperturbed andperturbed environment, where only the Earth oblatenessperturbations are being treated.Furthermore, this paper presents a design of a control, guidance,and navigation (GNC) based on the aforementioned dynamicmodel. This will enable the chaser satellite to autonomouslyapproach towards the target satellite during the close proximitynavigation using some control techniques such Linear QuadraticRegulation (LQR) and Linear Quadratic Gaussian (LQG). Thesecontrol techniques aim to reduce both the duration and the ΔVcost of the entire mission.
I denna rapport utreds olika faser avrymdfarkosters rendezvous och docknings manövrar (RvD) samtundersöks en rad matematiska modeller för formationsflygning,nämligen de icke-linjära ekvationerna av relativ rörelse (NERM)och Hill-Clohessy-Wiltshire-ekvationer (HCW). Dessa dynamiskasystemmodeller beskriver formationsflygningen i både ostörd ochstörd omgivning. Vidare undersöks alternativa reglermetoder ochen filtreringsmetod såsom Linjär Kvadratisk Regulator (LQR),Linjär Kvadratisk Gaussisk (LQG) och utökad Kalman filtrering(EKF), för att reducera både tid och ΔV-kostnaden för hela rymduppdraget.Målen med dessa reglermetoder är att rymdfarkostensjälvständigt skall kunna utföra rendezvous och dockning.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Andersson, Oscar, and Lucas Molin. "AutoTruck : Automated docking with internal sensors." Thesis, KTH, Maskinkonstruktion (Inst.), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-230383.

Повний текст джерела
Анотація:
The purpose of this bachelor thesis was to discover howan articulated vehicle can park itself using a pre-definedparking path with a combination of ultrasonic sensors aswell as a rotary angle sensor.The project was divided into two parts: constructing asmall scale demonstrator and the software controlling thedemonstrator. The demonstrator was constructed from offthe-shelf components and custom parts. The truck was designedbased on a rear wheel driven truck with Ackermannsteering. The localization of a parking spot and measuringother distances was done with ultrasonic sensors and thehitch angle was measured by a rotary angle sensor.The performance of the demonstrator was evaluated bymeasuring the trailers angle difference from the center lineof the parking spot.The performance was deemed to be reasonably goodwith successful parkings in 8 out of 10 attempts.
Kandidatarbetet syftar till att undersöka hur ett ledatfordon kan parkera sig självt efter en förbestämd parkeringsruttmed en kombination av flera ultraljudssensorersamt en vinkelgivare.Projektet består av två delar; konstruktion av ett miniatyrfordonsamt mjukvaran som styr fordonet. Fordonettillverkades från butiksköpta komponenter och skräddarsyddadelar. Lastbilens design var baserad p°a en bakhjulsdrivenAckermannstyrd lastbil. Identifieringen av en parkeringsplatssamt avståndsmätning hanterades av ultraljudssensoreroch hitch vinkeln mättes av en vinkelgivare.Miniatyrfordonets prestanda utvärderades genom attmäta släpets vinkelskillnad från centerlinjen av parkeringsplatsen.Prestandan ansågs att vara tillräckligt god med lyckadeparkeringar i 8 av 10 tester.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

ANDERSSON, OSCAR, and LUCAS MOLIN. "AutoTruck : Automated docking with internal sensors." Thesis, KTH, Mekatronik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233142.

Повний текст джерела
Анотація:
The purpose of this bachelor thesis was to discover how an articulated vehicle can park itself using a pre-defined parking path with a combination of ultrasonic sensors as well as a rotary angle sensor. The project was divided into two parts: constructing a small scale demonstrator and the software controlling the demonstrator. The demonstrator was constructed from offthe- shelf components and custom parts. The truck was designed based on a rear wheel driven truck with Ackermann steering. The localization of a parking spot and measuring other distances was done with ultrasonic sensors and the hitch angle was measured by a rotary angle sensor. The performance of the demonstrator was evaluated by measuring the trailers angle difference from the center line of the parking spot. The performance was deemed to be reasonably good with successful parkings in 8 out of 10 attempts.
Kandidatarbetet syftar till att undersöka hur ett ledat fordon kan parkera sig självt efter en förbestämd parkeringsrutt med en kombination av flera ultraljudssensorer samt en vinkelgivare. Projektet består av två delar; konstruktion av ett miniatyrfordon samt mjukvaran som styr fordonet. Fordonet tillverkades från butiksköpta komponenter och skräddarsydda delar. Lastbilens design var baserad på en bakhjulsdriven Ackermannstyrd lastbil. Identifieringen av en parkeringsplats samt avståndsmätning hanterades av ultraljudssensorer och hitch vinkeln mättes av en vinkelgivare. Miniatyrfordonets prestanda utvärderades genom att mäta släpets vinkelskillnad från centerlinjen av parkeringsplatsen. Prestandan ansågs att vara tillräckligt god med lyckade parkeringar i 8 av 10 tester.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Simpson, Richard Edward. "Engineering a coordinated rendezvous system for docking USVs to ships using GPS positioning." Thesis, University of Bristol, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.707706.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hettrick, Hailee Elida. "Autonomous rendezvous and docking with tumbling, uncooperative, and fragile targets under uncertain knowledge." Thesis, Massachusetts Institute of Technology, 2019.

Знайти повний текст джерела
Анотація:
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Thesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2019
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 189-194).
As efforts to expand humanity's presence in space continue to increase, a need for spacecraft to autonomously perform in-space close proximity maneuvers without a human operator increases, as well. Such in-space close proximity maneuvers include active debris removal, satellite servicing, and in-space assembly. Active debris removal will facilitate the continued use and access to low Earth orbit, mitigating the exponential debris growth occurring due to decrepit satellites and rocket bodies colliding. Satellite servicing will provide the capability to repair and refurbish spacecraft, elongating the lifetime of valuable assets both locally orbiting Earth and on routes further out in the solar system. In-space assembly is the means by which large space structures are developed in orbit. Currently, such feats occur with the help of astronauts and robotic arms (i.e. the continued development of the International Space Station). However, for increased benefit, in-space assembly must occur autonomously, without a human in-the-loop, in order to create large structures in locations unideal for humans or with a non-negligible communication latency. These three reference missions need the software enabling autonomous rendezvous and docking to reach a technical readiness level to be employed with confidence. In-space close proximity maneuvers share a standard sequence of events described in this thesis. The focus of this thesis address the terminal approach trajectory to soft docking, the contact dynamics of docking between two spacecraft, the optimization of the detumble procedure to bring the Target to stabilization, and adaptive control techniques to handle uncertainties in spacecraft knowledge. The software developed in support of these subproblems is included in the appendices and is largely based on implementation with the Synchronized Position Hold Engage Reorient Experimental Satellites (SPHERES) platform or with the characteristics of SPHERES considered.
by Hailee Elida Hettrick.
S.M.
S.M. Massachusetts Institute of Technology, Department of Aeronautics and Astronautics
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Jewison, Christopher Michael. "Guidance and control for multi-stage rendezvous and docking operations in the presence of uncertainty." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112362.

Повний текст джерела
Анотація:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2017.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 251-267).
Rendezvous and docking missions have been a mainstay of space exploration from the Apollo program through present day operations with the International Space Station. There remains a growing interest in several mission types that not only rely on rendezvous and docking, but also rely on maneuvering spacecraft once docked. For example, there is active interest in orbital debris removal, on-orbit assembly, on-orbit refueling, and on-orbit servicing and repair missions. As these missions become more and more popular, the number of rendezvous and docking class operations will increase dramatically. Current methods focus on performing rendezvous and docking to very well-known targets and in very well-known conditions. Inherent to these new mission types, however, is an increasing element of uncertainty to which new guidance and control architectures will need to be robust. As guidance and control techniques become more robust, a corresponding tradeoff in performance can typically be experienced. This thesis attempts to address the uncertainties in rendezvous and docking operations while maintaining a probabilistically optimal level of performance. There are two main focuses in the thesis: spacecraft trajectory optimization and reference-tracking controller selection. With respect to trajectory optimization, the goal is to nd probabilistically optimal trajectories given large uncertainties in mission critical parameters, such as knowledge of an obstacle's position, while knowing that the trajectory is able to be replanned onboard the spacecraft when higher precision information is obtained. This baseline optimal trajectory and subsequently replanned trajectories are then followed by an optimally determined set of reference-tracking controllers. These controllers are selected and scheduled throughout the phases of the mission based on the probabilistically expected performance in the presence of noise and uncertain parameters. This process is explored through its implementation on a generic problem setup for rendezvous, docking, and joint maneuvering. Results specfic to this problem and associated analysis motivate the use of probabilistic planning in future space missions. Specically, the thesis shows that fuel and tracking performance can be improved if multi-stage missions are planned continuously through phase transitions and without the use of waypoints. Furthermore, under the presence of large uncertainties, the techniques in this thesis produce better expected fuel and tracking performance than traditional trajectory planning and controller selection methods.
by Christopher Michael Jewison.
Ph. D.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Scheithauer, Amy T. "3D Relative Position and Orientation Estimation for Rendezvous and Docking Applications Using a 3D Imager." Ohio University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1265809623.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Automated Rendezvous and Docking"

1

H, Tolson Robert, and Langley Research Center, eds. Evaluation of GPS position and attitude determination for automated rendezvous and docking missions. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hang tian qi zi dong jiao hui dui jie: Automated rendezvous and docking of spacecraft. Beijing: Zhongguo yu hang chu ban she, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kong jian jiao hui dui jie ce liang ji shu ji gong cheng ying yong. Beijing Shi: Zhongguo yu hang chu ban she, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Syromi︠a︡tnikov, V. S. 100 stories about docking and other adventures in space and on Earth. Moscow: Universitetskaya kniga, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Jiao hui dui jie: Rendezvous and docking. Beijing Shi: Guo fang gong ye chu ban she, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Syromi͡atnikov, V. S. Spacecraft docking devices. Princeton, N.J. (P.O. Box 82, Princeton 08542): Space Studies Institute, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

United States. National Aeronautics and Space Administration., ed. Automated rendezvous and capture demonstration study: Final report. Huntsville, Ala: Applied Research Inc., 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

United States. National Aeronautics and Space Administration., ed. Automated rendezvous and capture demonstration study: Final report. Huntsville, Ala: Applied Research Inc., 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Haines, Richard F. Space vehicle approach velocity judgments under simulated visual space conditions. Moffett Field, Calif: Ames Research Center, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Xie, Yongchun, Changqing Chen, Tao Liu, and Min Wang. Guidance, Navigation, and Control for Spacecraft Rendezvous and Docking: Theory and Methods. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-6990-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Automated Rendezvous and Docking"

1

Wang, Zhenhua, Zhaohui Chen, Guofeng Zhang, and Hanxiao Zhang. "Automatic Test of Space Rendezvous and Docking GNC Software." In Lecture Notes in Electrical Engineering, 81–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34531-9_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Xie, Yongchun, Changqing Chen, Tao Liu, and Min Wang. "Automatic Control Method and Scheme Design for Rendezvous and Docking." In Guidance, Navigation, and Control for Spacecraft Rendezvous and Docking: Theory and Methods, 219–80. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-6990-6_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Woods, W. David. "Rendezvous and docking." In How Apollo Flew to the Moon, 395–428. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-7179-1_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yang, Yaguang. "Spacecraft Rendezvous and Docking." In Spacecraft Modeling, Attitude Determination, and Control Quaternion-based Approach, 249–66. Boca Raton, FL : CRC Press, 2019. | “A science publishers book.”: CRC Press, 2019. http://dx.doi.org/10.1201/9780429446580-15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yang, Hong. "Manned Rendezvous and Docking Technology." In Manned Spacecraft Technologies, 185–96. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4898-7_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Xie, Yongchun, Changqing Chen, Tao Liu, and Min Wang. "Simulation Verification of Rendezvous and Docking." In Guidance, Navigation, and Control for Spacecraft Rendezvous and Docking: Theory and Methods, 449–77. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-6990-6_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Xie, Yongchun, Changqing Chen, Tao Liu, and Min Wang. "Rendezvous Kinematics and Dynamics." In Guidance, Navigation, and Control for Spacecraft Rendezvous and Docking: Theory and Methods, 37–66. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-6990-6_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Li, Dongyu, Shuzhi Sam Ge, and Tong Heng Lee. "Time-Synchronized Spacecraft Control in Rendezvous and Docking." In Time-Synchronized Control: Analysis and Design, 189–220. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-3089-7_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wang, Baozhi. "Modeling and Simulation in Rendezvous and Docking Spaceflight Training." In Proceedings of the 14th International Conference on Man-Machine-Environment System Engineering, 399–407. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44067-4_48.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Li, Bin, Zuo Xun Li, and Kai Zhang. "Distributionally Model Predictive Control for Spacecraft Rendezvous and Docking." In Lecture Notes in Electrical Engineering, 4447–57. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8155-7_369.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Automated Rendezvous and Docking"

1

Williamson, Marlin, Nick Johnston, Richard T. Howard, Drew P. Hall, Joseph Gaines, and Katherine Chavis. "Automated rendezvous and docking operations evaluations." In Defense and Security Symposium, edited by Pejmun Motaghedi. SPIE, 2006. http://dx.doi.org/10.1117/12.668352.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Guglieri, Giorgio, Fulvia Quagliotti, Antonio Saluzzi, and Pasquale Pellegrino. "Analysis of Automated Rendezvous and Docking Operations." In AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-6766.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Howard, Richard T., Connie K. Carrington, and Mohamed S. El-Genk. "Multi-Sensor Testing for Automated Rendezvous and Docking." In 008. AIP, 2008. http://dx.doi.org/10.1063/1.2845037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhu, Xiang. "Optical design of space cameras for automated rendezvous and docking systems." In Sensors and Systems for Space Applications XI, edited by Khanh D. Pham and Genshe Chen. SPIE, 2018. http://dx.doi.org/10.1117/12.2305238.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mitchell, Jennifer D., Scott P. Cryan, David Strack, Linda L. Brewster, Marlin J. Williamson, Richard T. Howard, and A. S. Johnston. "Automated Rendezvous and Docking Sensor Testing at the Flight Robotics Laboratory." In 2007 IEEE Aerospace Conference. IEEE, 2007. http://dx.doi.org/10.1109/aero.2007.352723.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Howard, Richard T., Marlin L. Williamson, Albert S. Johnston, Linda L. Brewster, Jennifer D. Mitchell, Scott P. Cryan, David Strack, and Kevin Key. "Automated rendezvous and docking sensor testing at the flight robotics laboratory." In Defense and Security Symposium, edited by Richard T. Howard and Robert D. Richards. SPIE, 2007. http://dx.doi.org/10.1117/12.723437.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

TOBIAS, A., W. FEHSE, D. WILDE, J. PAIROT, and F. PAOLI. "Intervention of human operators in automated spacecraft Rendezvous and Docking GNC." In Navigation and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-2791.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Turbe, Michael, James McDuffie, Brandon DeKock, Kevin Betts, and Connie Carrington. "SPARTAN: A High-Fidelity Simulation for Automated Rendezvous and Docking Applications." In AIAA Modeling and Simulation Technologies Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-6806.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hannah, S. Joel. "A relative navigation application of ULTOR technology for automated rendezvous and docking." In Defense and Security Symposium, edited by Richard T. Howard and Robert D. Richards. SPIE, 2006. http://dx.doi.org/10.1117/12.665055.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Howard, Richard T., Thomas C. Bryan, Michael L. Book, and John L. Jackson. "Active sensor system for automatic rendezvous and docking." In AeroSense '97, edited by Gary W. Kamerman. SPIE, 1997. http://dx.doi.org/10.1117/12.281001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Automated Rendezvous and Docking"

1

Smith, Samuel M., and Stanley E. Dunn. Enhancing AUV Operational Capabilities: Hovering, Rendezvous, and Docking. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada628288.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jatko, W. B., J. S. Goddard, R. K. Ferrell, S. S. Gleason, J. S. Hicks, and V. K. Varma. Crusader Automated Docking System Phase 3 report. Office of Scientific and Technical Information (OSTI), March 1996. http://dx.doi.org/10.2172/230272.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kring, C. T., V. K. Varma, and W. B. Jatko. Crusader Automated Docking System: Technology support for the Crusader Resupply Team. Interim report, Ammunition Logistics Program. Office of Scientific and Technical Information (OSTI), November 1995. http://dx.doi.org/10.2172/208313.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Drotning, W. D. Automated waste canister docking and emplacement using a sensor-based intelligent controller; Yucca Mountain Site Characterization Project. Office of Scientific and Technical Information (OSTI), August 1992. http://dx.doi.org/10.2172/140803.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії