Добірка наукової літератури з теми "Augmented imaging"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Augmented imaging".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Augmented imaging"
DERSHAW, D. DAVID. "Imaging the Augmented Breast." Contemporary Diagnostic Radiology 21, no. 12 (1998): 1–5. http://dx.doi.org/10.1097/00219246-199821120-00001.
Повний текст джерелаStott, Peter. "Transcendental imaging and augmented reality." Technoetic Arts 9, no. 1 (September 5, 2011): 49–64. http://dx.doi.org/10.1386/tear.9.1.49_1.
Повний текст джерелаMarchesini, Stefano, Andre Schirotzek, Chao Yang, Hau-tieng Wu, and Filipe Maia. "Augmented projections for ptychographic imaging." Inverse Problems 29, no. 11 (October 3, 2013): 115009. http://dx.doi.org/10.1088/0266-5611/29/11/115009.
Повний текст джерелаDavidson, J., F. W. Poon, J. H. McKillop, and H. W. Gray. "Pethidine-augmented HMPAO leukocyte imaging." Nuclear Medicine Communications 20, no. 5 (May 1999): 479. http://dx.doi.org/10.1097/00006231-199905000-00087.
Повний текст джерелаJACOBSON, ARNOLD F. "False-Positive Morphine Augmented Hepatobiliary Imaging." Clinical Nuclear Medicine 21, no. 1 (January 1996): 81. http://dx.doi.org/10.1097/00003072-199601000-00030.
Повний текст джерелаEklund, GW, RC Busby, SH Miller, and JS Job. "Improved imaging of the augmented breast." American Journal of Roentgenology 151, no. 3 (September 1988): 469–73. http://dx.doi.org/10.2214/ajr.151.3.469.
Повний текст джерелаDouglas, David, Clifford Wilke, J. Gibson, John Boone, and Max Wintermark. "Augmented Reality: Advances in Diagnostic Imaging." Multimodal Technologies and Interaction 1, no. 4 (November 8, 2017): 29. http://dx.doi.org/10.3390/mti1040029.
Повний текст джерелаCHANDRAMOULY, BELUR S., and RAKESH D. SHAH. "False-Positive Morphine Augmented Hepatobiliary Imaging." Clinical Nuclear Medicine 21, no. 1 (January 1996): 80–81. http://dx.doi.org/10.1097/00003072-199601000-00029.
Повний текст джерелаKruse, Beth D., and A. Jill Leibman. "Breast Imaging and the Augmented Breast." Plastic Surgical Nursing 12, no. 3 (1992): 109–16. http://dx.doi.org/10.1097/00006527-199201230-00005.
Повний текст джерелаHuch, R. A., W. Künzi, J. F. Debatin, W. Wiesner, and G. P. Krestin. "MR imaging of the augmented breast." European Radiology 8, no. 3 (March 27, 1998): 371–76. http://dx.doi.org/10.1007/s003300050397.
Повний текст джерелаДисертації з теми "Augmented imaging"
Shen, Xin, Hong Hua, and Bahram Javidi. "3D augmented reality with integral imaging display." SPIE-INT SOC OPTICAL ENGINEERING, 2016. http://hdl.handle.net/10150/621808.
Повний текст джерелаMela, Christopher Andrew. "MULTIMODAL IMAGING, COMPUTER VISION, AND AUGMENTED REALITY FOR MEDICAL GUIDANCE." University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1542642892866467.
Повний текст джерелаShelton, Brett E. "How augmented reality helps students learn dynamic spatial relationships /." Thesis, Connect to this title online; UW restricted, 2003. http://hdl.handle.net/1773/7668.
Повний текст джерелаWatson, Jeffrey R., Summer Garland, and Marek Romanowski. "Intraoperative visualization of plasmon resonant liposomes using augmented microscopy." SPIE-INT SOC OPTICAL ENGINEERING, 2017. http://hdl.handle.net/10150/625390.
Повний текст джерелаElgort, Daniel Robert. "Real-Time Catheter Tracking and Adaptive Imaging for Interventional Cardiovascular MRI." Case Western Reserve University School of Graduate Studies / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=case1111437062.
Повний текст джерелаEustice, Ryan M. "Large-area visually augmented navigation for autonomous underwater vehicles." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/39227.
Повний текст джерелаThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 173-187).
This thesis describes a vision-based, large-area, simultaneous localization and mapping (SLAM) algorithm that respects the low-overlap imagery constraints typical of autonomous underwater vehicles (AUVs) while exploiting the inertial sensor information that is routinely available on such platforms. We adopt a systems-level approach exploiting the complementary aspects of inertial sensing and visual perception from a calibrated pose-instrumented platform. This systems-level strategy yields a robust solution to underwater imaging that overcomes many of the unique challenges of a marine environment (e.g., unstructured terrain, low-overlap imagery, moving light source). Our large-area SLAM algorithm recursively incorporates relative-pose constraints using a view-based representation that exploits exact sparsity in the Gaussian canonical form. This sparsity allows for efficient O(n) update complexity in the number of images composing the view-based map by utilizing recent multilevel relaxation techniques. We show that our algorithmic formulation is inherently sparse unlike other feature-based canonical SLAM algorithms, which impose sparseness via pruning approximations. In particular, we investigate the sparsication methodology employed by sparse extended information filters (SEIFs) and offer new insight as to why, and how, its approximation can lead to inconsistencies in the estimated state errors. Lastly, we present a novel algorithm for efficiently extracting consistent marginal covariances useful for data association from the information matrix.
(cont.) In summary, this thesis advances the current state-of-the-art in underwater visual navigation by demonstrating end-to-end automatic processing of the largest visually navigated dataset to date using data collected from a survey of the RMS Titanic (path length over 3 km and 3100 m² of mapped area). This accomplishment embodies the summed contributions of this thesis to several current SLAM research issues including scalability, 6 degree of freedom motion, unstructured environments, and visual perception.
by Ryan M. Eustice.
Ph.D.
Murray, Preston Roylance. "Flow-induced Responses of Normal, Bowed, and Augmented Synthetic Vocal Fold Models." BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/2873.
Повний текст джерелаHabert, Séverine [Verfasser], Nassir [Akademischer Betreuer] Navab, Nassir [Gutachter] Navab, and Pascal [Gutachter] Fallavollita. "Multi-Modal Visualization Paradigms for RGBD augmented X-ray Imaging / Séverine Habert ; Gutachter: Nassir Navab, Pascal Fallavollita ; Betreuer: Nassir Navab." München : Universitätsbibliothek der TU München, 2018. http://d-nb.info/1164590758/34.
Повний текст джерелаFeuerstein, Marco. "Augmented reality in laparoscopic surgery new concepts and methods for intraoperative multimodal imaging and hybrid tracking in computer aided surgery." Saarbrücken VDM Verlag Dr. Müller, 2007. http://d-nb.info/991301250/04.
Повний текст джерелаHammami, Houda. "Guidance of radioembolization procedures in the context of interventional oncology." Thesis, Rennes 1, 2021. http://www.theses.fr/2021REN1S121.
Повний текст джерелаRadioembolization is a minimally-invasive intervention performed to treat liver cancer by administering radioactive microspheres. In order to optimize radioembolization outcomes, the procedure is carried out in two sessions: pretreatment assessment intervention, mainly performed to locate the injection site, assess microspheres distribution and perform dosimetry evaluation, and treatment intervention performed to inject the estimated proper dose of radioactive microspheres in the located injection site. Due to the hepatic vasculature complexity, interventional radiologists carefully manipulate the catheter, during the two interventions, under X-Ray image guidance and resort to contrast media injection in order to highlight vessels. In this thesis, we propose a novel guidance strategy that promises a simplification and accuracy of the catheter navigation during the pretreatment assessment, as well as during the treatment interventions. The proposed navigation system processes pre- and intraoperative images to achieve intraoperative image fusion through a rigid registration technique. This approach is designed to 1) assist the celiac trunk access, 2) assist the injection site access and 3) automatically reproduce the injection site during the proper intervention. Knowing that the liver undergoes a motion induced by the breathing, we also propose an approach that allows obtaining a dynamic overlay of the projected 3D vessels onto fluoroscopy
Книги з теми "Augmented imaging"
Liao, Hongen, P. J. "Eddie" Edwards, Xiaochuan Pan, Yong Fan, and Guang-Zhong Yang, eds. Medical Imaging and Augmented Reality. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15699-1.
Повний текст джерелаDohi, Takeyoshi, Ichiro Sakuma, and Hongen Liao, eds. Medical Imaging and Augmented Reality. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-79982-5.
Повний текст джерелаYang, Guang-Zhong, TianZi Jiang, Dinggang Shen, Lixu Gu, and Jie Yang, eds. Medical Imaging and Augmented Reality. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11812715.
Повний текст джерелаZheng, Guoyan, Hongen Liao, Pierre Jannin, Philippe Cattin, and Su-Lin Lee, eds. Medical Imaging and Augmented Reality. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43775-0.
Повний текст джерелаYang, Guang-Zhong, and Tian-Zi Jiang, eds. Medical Imaging and Augmented Reality. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/b99698.
Повний текст джерелаLiao, Hongen, Cristian A. Linte, Ken Masamune, Terry M. Peters, and Guoyan Zheng, eds. Augmented Reality Environments for Medical Imaging and Computer-Assisted Interventions. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40843-4.
Повний текст джерелаInternational Workshop on Medical Imaging and Augmented Reality (5th 2010 Beijing, China). Medical imaging and augmented reality: 5th international workshop, MIAR 2010, Beijing, China, September 19-20, 2010 : proceedings. Berlin: Springer, 2010.
Знайти повний текст джерелаHuang, Weidong. Human Factors in Augmented Reality Environments. New York, NY: Springer New York, 2013.
Знайти повний текст джерелаDavid, Hutchison. Medical Imaging and Augmented Reality: 4th International Workshop Tokyo, Japan, August 1-2, 2008 Proceedings. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2008.
Знайти повний текст джерелаHöhl, Wolfgang. Interactive environments with open-source software: 3D walkthroughs and augmented reality for architects with Blender 2.43, DART 3.0 and ARToolKit 2.72. Wien: Springer, 2009.
Знайти повний текст джерелаЧастини книг з теми "Augmented imaging"
Borrelli, Claire D. "Imaging the Augmented Breast." In Digital Mammography, 223–29. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-04831-4_27.
Повний текст джерелаLiao, Hongen. "3D Medical Imaging and Augmented Reality for Image-Guided Surgery." In Handbook of Augmented Reality, 589–602. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0064-6_27.
Повний текст джерелаZheng, Guoyan, Hongen Liao, Pierre Jannin, Philippe Cattin, and Su-Lin Lee. "Erratum to: Medical Imaging and Augmented Reality." In Lecture Notes in Computer Science, E1. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43775-0_40.
Повний текст джерелаWubbels, Peter, Erin Nishimura, Evan Rapoport, Benjamin Darling, Dennis Proffitt, Traci Downs, and J. Hunter Downs. "Exploring Calibration Techniques for Functional Near-Infrared Imaging (fNIR) Controlled Brain-Computer Interfaces." In Foundations of Augmented Cognition, 23–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73216-7_3.
Повний текст джерелаKim, Gyoung, Joonhyun Jeon, and Frank Biocca. "M.I.N.D. Brain Sensor Caps: Coupling Precise Brain Imaging to Virtual Reality Head-Mounted Displays." In Augmented Cognition: Intelligent Technologies, 120–30. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91470-1_11.
Повний текст джерелаPhillips, Henry L., Peter B. Walker, Carrie H. Kennedy, Owen Carmichael, and Ian N. Davidson. "Guided Learning Algorithms: An Application of Constrained Spectral Partitioning to Functional Magnetic Resonance Imaging (fMRI)." In Foundations of Augmented Cognition, 709–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39454-6_76.
Повний текст джерелаKim, Jeong-Hyun, Zhu Teng, Dong-Joong Kang, and Jong-Eun Ha. "Multiple Plane Detection Method from Range Data of Digital Imaging System for Moving Robot Applications." In Augmented Vision and Reality, 201–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-55131-4_11.
Повний текст джерелаMakeig, Scott. "Mind Monitoring via Mobile Brain-Body Imaging." In Foundations of Augmented Cognition. Neuroergonomics and Operational Neuroscience, 749–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02812-0_85.
Повний текст джерелаKovalchuk, Mikhail V., and Yuri I. Kholodny. "Functional Magnetic Resonance Imaging Augmented with Polygraph: New Capabilities." In Advances in Intelligent Systems and Computing, 260–65. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25719-4_33.
Повний текст джерелаEdgcumbe, Philip, Rohit Singla, Philip Pratt, Caitlin Schneider, Christopher Nguan, and Robert Rohling. "Augmented Reality Imaging for Robot-Assisted Partial Nephrectomy Surgery." In Lecture Notes in Computer Science, 139–50. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43775-0_13.
Повний текст джерелаТези доповідей конференцій з теми "Augmented imaging"
Samset, E., D. Schmalstieg, J. Vander Sloten, A. Freudenthal, J. Declerck, S. Casciaro, Ø. Rideng, and B. Gersak. "Augmented reality in surgical procedures." In Electronic Imaging 2008, edited by Bernice E. Rogowitz and Thrasyvoulos N. Pappas. SPIE, 2008. http://dx.doi.org/10.1117/12.784155.
Повний текст джерелаBornik, Alexander, Bernhard Reitinger, Reinhard Beichel, Erich Sorantin, and Georg Werkgartner. "Augmented-reality-based segmentation refinement." In Medical Imaging 2004, edited by Robert L. Galloway, Jr. SPIE, 2004. http://dx.doi.org/10.1117/12.535478.
Повний текст джерелаSchutz, Christian L., and Heinz Huegli. "Augmented reality using range images." In Electronic Imaging '97, edited by Scott S. Fisher, John O. Merritt, and Mark T. Bolas. SPIE, 1997. http://dx.doi.org/10.1117/12.274489.
Повний текст джерелаKim, Juwan, Haedong Kim, Byungtae Jang, Jungsik Kim, and Donghyun Kim. "Augmented reality using GPS." In Photonics West '98 Electronic Imaging, edited by Mark T. Bolas, Scott S. Fisher, and John O. Merritt. SPIE, 1998. http://dx.doi.org/10.1117/12.307190.
Повний текст джерелаPoustinchi, Ebrahim. "Robotically Augmented Imaging (RAI Alpha)." In ACADIA 2019: Ubiquity and Autonomy. ACADIA, 2019. http://dx.doi.org/10.52842/conf.acadia.2019.352.
Повний текст джерелаPoustinchi, Ebrahim. "Robotically Augmented Imaging (RAI Alpha)." In ACADIA 2019: Ubiquity and Autonomy. ACADIA, 2019. http://dx.doi.org/10.52842/conf.acadia.2019.352.
Повний текст джерелаGarcia Giraldez, Jaime, Haydar Talib, Marco Caversaccio, and Miguel A. Gonzalez Ballester. "Multimodal augmented reality system for surgical microscopy." In Medical Imaging, edited by Kevin R. Cleary and Robert L. Galloway, Jr. SPIE, 2006. http://dx.doi.org/10.1117/12.651267.
Повний текст джерелаSauer, Frank, Sebastian Vogt, Ali Khamene, Sandro Heining, Ekkehard Euler, Marc Schneberger, Konrad Zuerl, and Wolf Mutschler. "Augmented reality visualization for thoracoscopic spine surgery." In Medical Imaging, edited by Kevin R. Cleary and Robert L. Galloway, Jr. SPIE, 2006. http://dx.doi.org/10.1117/12.654305.
Повний текст джерелаDrascic, David, and Paul Milgram. "Perceptual issues in augmented reality." In Electronic Imaging: Science & Technology, edited by Mark T. Bolas, Scott S. Fisher, and John O. Merritt. SPIE, 1996. http://dx.doi.org/10.1117/12.237425.
Повний текст джерелаKitchin, Paul, and Kirk Martinez. "Toward natural fiducials for augmented reality." In Electronic Imaging 2005, edited by Andrew J. Woods, Mark T. Bolas, John O. Merritt, and Ian E. McDowall. SPIE, 2005. http://dx.doi.org/10.1117/12.585923.
Повний текст джерела