Добірка наукової літератури з теми "Atmospheric Compounds"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Atmospheric Compounds".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Atmospheric Compounds"

1

Karlik, J. "Lesser-Known Atmospheric Compounds." Journal of Chemical Education 72, no. 12 (December 1995): 1075. http://dx.doi.org/10.1021/ed072p1075.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sukhapan, Jariya, and Peter Brimblecombe. "Ionic Surface Active Compounds in Atmospheric Aerosols." Scientific World JOURNAL 2 (2002): 1138–46. http://dx.doi.org/10.1100/tsw.2002.188.

Повний текст джерела
Анотація:
Surfactants in the atmosphere have several potential roles in atmospheric chemistry. They can form films on aqueous surfaces, which lowers the surface tension and possibly delays water evaporation and gaseous transportation across the aqueous interface. They can also increase the solubility of organic compounds in the aqueous phase. Recently, the decrease of surface tension in cloud growing droplets has been suggested as relevant to increases in the number of droplets of smaller size, potentially enhancing cloud albedo. Natural surfactants in the lung aid gas transfer and influence the dissolution rate of aerosol particles, so surfactants in atmospheric aerosols, once inhaled, may interact with pulmonary surfactants. Ambient aerosols were collected from the edge of Norwich, a small city in a largely agricultural region of England, and analysed for surfactants. Methylene blue, a conventional dye for detecting anionic surfactants, has been used as a colorimetric agent. The concentration of surfactants expressed as methylene blue active substances (MBAS) is in the range of 6–170 pmol m-3(air). A negative correlation with chloride aerosol indicates that these surfactants are probably not the well-known surfactants derived from marine spray. A more positive correlation with aerosol nitrate and gaseous NOxsupports an association with more polluted inland air masses. The surfactants found in aerosols seem to be relatively strong acids, compared with weaker acids such as the long-chain carboxylic acids previously proposed as atmospheric surfactants. Surfactants from the oxidation of organic materials (perhaps vegetation- or soil-derived) seem a likely source of these substances in the atmosphere.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Faxon, C. B., and D. T. Allen. "Chlorine chemistry in urban atmospheres: a review." Environmental Chemistry 10, no. 3 (2013): 221. http://dx.doi.org/10.1071/en13026.

Повний текст джерела
Анотація:
Environmental context Atmospheric chlorine radicals can affect the chemical composition of the atmosphere through numerous reactions with trace species. In urban atmospheres, the reactions of chlorine radicals can lead to effects such as increases in ozone production, thus degrading local and regional air quality. This review summarises the current understanding of atmospheric chlorine chemistry in urban environments and identifies key unresolved issues. Abstract Gas phase chlorine radicals (Cl•), when present in the atmosphere, react by mechanisms analogous to those of the hydroxyl radical (OH•). However, the rates of the Cl•-initiated reactions are often much faster than the corresponding OH• reactions. The effects of the atmospheric reactions of Cl• within urban environments include the oxidation of volatile organic compounds and increases in ozone production rates. Although concentrations of chlorine radicals are typically low compared to other atmospheric radicals, the relatively rapid rates of the reactions associated with this species lead to observable changes in air quality. This is particularly evident in the case of chlorine radical-induced localised increases in ozone concentrations. This review covers five aspects of atmospheric chlorine chemistry: (1) gas phase reactions; (2) heterogeneous and multi-phase reactions; (3) observational evidence of chlorine species in urban atmospheres; (4) regional modelling studies and (5) areas of uncertainty in the current state of knowledge.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Skarżyńska, K., Ż. Polkowska, and J. Namieśnik. "Sampling of Atmospheric Precipitation and Deposits for Analysis of Atmospheric Pollution." Journal of Automated Methods and Management in Chemistry 2006 (2006): 1–19. http://dx.doi.org/10.1155/jammc/2006/26908.

Повний текст джерела
Анотація:
This paper reviews techniques and equipment for collecting precipitation samples from the atmosphere (fog and cloud water) and from atmospheric deposits (dew, hoarfrost, and rime) that are suitable for the evaluation of atmospheric pollution. It discusses the storage and preparation of samples for analysis and also presents bibliographic information on the concentration ranges of inorganic and organic compounds in the precipitation and atmospheric deposit samples.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Resende, Stella M., and Fernando R. Ornellas. "Thermochemistry of atmospheric sulfur compounds." Chemical Physics Letters 367, no. 3-4 (January 2003): 489–94. http://dx.doi.org/10.1016/s0009-2614(02)01738-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lavrinenko, R. "Nitrogen compounds in atmospheric precipitation." Water, Air, & Soil Pollution 85, no. 4 (December 1995): 2149–54. http://dx.doi.org/10.1007/bf01186152.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Torokova, L., V. Mazankova, N. J. Mason, F. Krcma, G. Morgan, and S. Matejcik. "The Influence of CO2 Admixtures on Process in Titan's Atmospheric Chemistry." PLASMA PHYSICS AND TECHNOLOGY 3, no. 3 (February 14, 2016): 163–67. http://dx.doi.org/10.14311/ppt.2016.3.163.

Повний текст джерела
Анотація:
The exploration of planetary atmosphere is being advanced by the exciting results of the Cassin-Huygens mission to Titan. The complex chemistry revealed in such atmospheres leading to the synthesis of bigger molecules is providing new insights into our understanding of how life on Earth developed. In our experiments Titan's atmosphere is simulated in a glow discharge formed from a mixture of N<sub>2</sub>:CH<sub>4</sub>:CO<sub>2</sub> gas. Samples of the discharge gas were analysed by GC-MS and FTIR. The major products identified in spectra were: hydrogen cyanide, acetylene and acetonitrile. The same compounds were detected in the FTIR: hydrogen cyanide, acetylene and ammonia. Whilst many of these compounds have been predicted and/or observed in the Titan atmosphere, the present plasma experiments provide evidence of both the chemical complexity of Titan atmospheric processes and the mechanisms by which larger species grow prior to form the dust that should cover much of the Titan's surface.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Radmilović-Radjenović, Marija, Martin Sabo, and Branislav Radjenović. "Transport Characteristics of the Electrification and Lightning of the Gas Mixture Representing the Atmospheres of the Solar System Planets." Atmosphere 12, no. 4 (March 29, 2021): 438. http://dx.doi.org/10.3390/atmos12040438.

Повний текст джерела
Анотація:
Electrification represents a fundamental process in planetary atmospheres, widespread in the Solar System. The atmospheres of the terrestrial planets (Venus, Earth, and Mars) range from thin to thick are rich in heavier gases and gaseous compounds, such as carbon dioxide, nitrogen, oxygen, argon, sodium, sulfur dioxide, and carbon monoxide. The Jovian planets (Jupiter, Saturn, Uranus, and Neptune) have thick atmospheres mainly composed of hydrogen and helium involving. The electrical discharge processes occur in the planetary atmospheres leading to potential hazards due to arcing on landers and rovers. Lightning does not only affect the atmospheric chemical composition but also has been involved in the origin of life in the terrestrial atmosphere. This paper is dealing with the transport parameters and the breakdown voltage curves of the gas compositions representing atmospheres of the planets of the Solar System. Ionization coefficients, electron energy distribution functions, and the mean energy of the atmospheric gas mixtures have been calculated by BOLSIG+. Transport parameters of the carbon dioxide rich atmospheric compositions are similar but differ from those of the Earth’s atmosphere. Small differences between parameters of the Solar System’s outer planets can be explained by a small abundance of their constituent gases as compared to the abundance of hydrogen. Based on the fit of the reduced effective ionization coefficient, the breakdown voltage curves for atmospheric mixtures have been plotted. It was found that the breakdown voltage curves corresponding to the atmospheres of Solar System planets follow the standard scaling law. Results of calculations satisfactorily agree with the available data from the literature. The minimal and the maximal value of the voltage required to trigger electric breakdown is obtained for the Martian and Jupiter atmospheres, respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pasquini, Dalila, Antonella Gori, Francesco Ferrini, and Cecilia Brunetti. "An Improvement of SPME-Based Sampling Technique to Collect Volatile Organic Compounds from Quercus ilex at the Environmental Level." Metabolites 11, no. 6 (June 14, 2021): 388. http://dx.doi.org/10.3390/metabo11060388.

Повний текст джерела
Анотація:
Biogenic Volatile Organic Compounds (BVOCs) include many chemical compounds emitted by plants into the atmosphere. These compounds have a great effect on biosphere–atmosphere interactions and may affect the concentration of atmospheric pollutants, with further consequences on human health and forest ecosystems. Novel methods to measure and determine BVOCs in the atmosphere are of compelling importance considering the ongoing climate changes. In this study, we developed a fast and easy-to-handle analytical methodology to sample these compounds in field experiments using solid-phase microextraction (SPME) fibers at the atmospheric level. An improvement of BVOCs adsorption from SPME fibers was obtained by coupling the fibers with fans to create a dynamic sampling system. This innovative technique was tested sampling Q. ilex BVOCs in field conditions in comparison with the conventional static SPME sampling technique. The results showed a great potential of this dynamic sampling system to collect BVOCs at the atmosphere level, improving the efficiency and sensitivity of SPME fibers. Indeed, our novel device was able to reduce the sampling time, increase the amount of BVOCs collected through the fibers and add information regarding the emissions of these compounds at the environmental level.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Grankin, Dmitry, Irina Mironova, Galina Bazilevskaya, Eugene Rozanov, and Tatiana Egorova. "Atmospheric Response to EEP during Geomagnetic Disturbances." Atmosphere 14, no. 2 (January 30, 2023): 273. http://dx.doi.org/10.3390/atmos14020273.

Повний текст джерела
Анотація:
Energetic electron precipitation (EEP) is associated with solar activity and space weather and plays an important role in the Earth’s polar atmosphere. Energetic electrons from the radiation belt precipitate into the atmosphere during geomagnetic disturbances and cause additional ionization rates in the polar middle atmosphere. These induced atmospheric ionization rates lead to the formation of radicals in ion-molecular reactions at the heights of the mesosphere and upper stratosphere with the formation of reactive compounds of odd nitrogen NOy and odd hydrogen HOx groups. These compounds are involved in catalytic reactions that destroy the ozone. In this paper, we present the calculation of atmospheric ionization rates during geomagnetic disturbances using reconstructed spectra of electron precipitation from balloon observations; estimation of ozone destruction during precipitation events using one-dimensional photochemical radiation-convective models, taking into account both parameterization and ion chemistry; as well as provide an estimation of electron density during these periods.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Atmospheric Compounds"

1

Yin, Fangdong Seinfeld John H. "Atmospheric photooxidation of organosulphur compounds /." Diss., Pasadena, Calif. : California Institute of Technology, 1990. http://resolver.caltech.edu/CaltechETD:etd-11192007-092214.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gunawardena, Rohith. "Atmospheric methyl iodide." Full text open access at:, 1985. http://content.ohsu.edu/u?/etd,91.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kahnt, Ariane. "Semivolatile compounds from atmospheric monoterpene oxidation." Doctoral thesis, Universitätsbibliothek Leipzig, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-93492.

Повний текст джерела
Анотація:
This PhD thesis aims to improve the knowledge on the processes and chemical species in the gas- and particle-phases that are involved in the production of secondary organic aerosol (SOA) from monoterpene oxidation in the atmosphere. A denuder/filter technique that enabled the simultaneous sampling of gaseous and particulate compounds was applied in the present study. The sampling technique was comprehensively characterised and optimised using twelve atmospherically relevant carbonyl compounds. The present study improved the denuder coating procedure and the sampling performance. An additional coating with the derivatisation reagent, 2,4‑dinitrophenylhydrazine (DNPH), reduced the break-through potential (e.g., from 98% to 0.9% for methyl vinyl ketone) and the fraction of carbonyl compounds on the filter material (e.g., from 8.7% to 0% for acetone). Calibration experiments against an aerosol chamber were performed to reduce the relative standard deviation (RSD) of the calibration points in the denuder measurements. The RSDs were reduced by half for acetone, acetaldehyde, methyl vinyl ketone, glyoxal, benzaldehyde and campholenic aldehyde using a XAD‑4/DNPH denuder, and the quantification error was also reduced. This sampling technique was then applied to a series of α- and β-pinene ozonolysis experiments. The present study examined the influence of an OH radical scavenger (CO), and hence the HO2/RO2 ratio, on the SOA formation, product distribution and partitioning behaviour of selected oxidation products in conjunction with different seed particle acidities. It was shown that SOA yields increased by about 8% in α-pinene ozonolysis when CO and acidic seed particles co-existed, whereas only a marginal difference was observed (increase of 2%) for β-pinene compared to neutral seed particles. From the denuder/filter sample analysis, it was possible to tentatively identify a new compound from the α-pinene ozonolysis, i.e., terpenylic aldehyde. Gas- and particle-phase yields were estimated for the first time for this compound (i.e., 1% and 0.4%, respectively). The atmospheric relevance of terpenylic aldehyde was demonstrated based on ambient filter measurements and a possible formation pathway was suggested. Furthermore, the present study provided an additional explanation for enhanced SOA formation when acidic seed particles are used in monoterpene ozonolysis. It was demonstrated that the isomerisation of monoterpene oxides on acidic seed particles leads to the formation of highly reactive SOA precursors, whose subsequent reaction with ozone contributes significantly to SOA formation.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Arsene, Cecilia. "Atmospheric degradation mechanisms of organic sulphur compounds." [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=96417023X.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Grira, Asma. "Atmospheric degradation of oxygenated Volatile Organic Compounds." Thesis, Rennes 1, 2021. http://www.theses.fr/2021REN1S017.

Повний текст джерела
Анотація:
Les composés organiques volatils oxygénés (COVO), principalement émis par des sources biogènes, jouent un rôle majeur dans la chimie de l'atmosphère, le changement climatique, l'environnement et la santé. Il a été récemment démontré que ces émissions augmentent en cas de stress biotique et/ou abiotique. Les COVO biogéniques peuvent subir une variété de réactions, tant chimiques que photolytiques, et ils sont impliqués dans la formation d'Aérosols Organiques Secondaires (AOS). Ces composés ont été détectés dans diverses régions, mais il y a très peu d’informations sur leurs processus de dégradation sous conditions troposphériques. La compréhension des mécanismes d'oxydation de ces espèces est d'un intérêt fondamental et fournit des données cruciales pour les modèles atmosphériques qui sont utilisés par les responsables politiques pour formuler et décider des stratégies d'amélioration de la qualité de l'air. Cette thèse vise à améliorer les connaissances actuelles sur le comportement de ces COVO, pour une meilleure compréhension de leur impact sur la chimie atmosphérique. Dans ce travail, nous avons présenté une étude détaillée de la dégradation atmosphérique des aldéhydes insaturés en C5-C7 et des alcools insaturés en C5-C8 par ozone, l’atome Cl et le radical OH. Les principaux objectifs étaient de mieux comprendre le mécanisme de réaction et de mettre en évidence leur potentiel à former des AOS. Pour atteindre ces objectifs, nous nous sommes concentrés sur quatres volets : (i) détermination du spectre IR et UV des aldéhydes insaturés en C5-C7, (ii) détermination de la constante de vitesse pour les systèmes COVO + Oxydant étudiés à température ambiante, (iii) identification et quantification des produits en phase gazeuse, (iv) détermination des rendements en AOS. Les études sur les produits ont été menées avec et sans ajout d'un piégeur des radicaux OH. Les expériences ont été réalisées dans huit réacteurs différents, statiques (chambres) ou dynamiques (flux), et diverses techniques analytiques ont été utilisées pour étudier les produits de réaction (FTIR, GC-FID/MS, SPME-GC/MS, HPLC, PTR-ToF-MS, SIFT-MS, PLP-LIF) et la formation de SOA (SMPS, FMPS)
Oxygenated Volatile Organic Compounds (OVOCs), mainly released from biogenic sources, play a major role in atmospheric chemistry, climate change, environment, and health. These emissions have been recently shown to increase in the case of biotic and/or abiotic stresses. Biogenic OVOCs may undergo a wide variety of reactions, both chemical and photolytic, and they contribute in the formation of Secondary Organic Aerosols (SOAs). These compounds have been detected in various areas, but little is known about their degradation processes under tropospheric conditions. Understanding the oxidation mechanisms of these species is of fundamental interest and yields crucial data for atmospheric models used by policymakers in formulating and deciding strategies for improving air quality. This dissertation aims to improve the current knowledge of those OVOCs behaviors to better understand their impact on atmospheric chemistry. This work reports a detailed study of the atmospheric degradation of C5-C7 unsaturated aldehydes and C5-C8 unsaturated alcohols by ozone, Cl atom, and OH radical. The main objectives were to better understand the reaction mechanism and to feature the SOA formation potential. To achieve these objectives, we focused on four topics: (i) determination of IR and UV spectrum of C5-C7 unsaturated aldehydes, (ii) determination of the rate constant for the studied OVOCs + Oxidant at room temperature, (iii) identification and quantification of the gas-phase products, (iv) determination of the SOA yields. The product studies were investigated both with and without adding an OH radical scavenger. Experiments were performed in eight different static (chambers) or dynamic (flow) reactors, and various analytical techniques were used to investigate the reaction products (FTIR, GC-FID/MS, SPME-GC/MS, HPLC, PTR-ToF-MS, SIFT-MS, PLP-LIF) and SOA formation (SMPS, FMPS)
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Han, Dawei. "Atmospheric Hydrocarbon Analysis." PDXScholar, 1993. https://pdxscholar.library.pdx.edu/open_access_etds/4588.

Повний текст джерела
Анотація:
This treatise studied two correlated important issues in atmospheric chemistry: real-time monitoring of ambient air and removal mechanisms of atmospheric hydrocarbons. An analytical system was designed for the purpose of identification and measurement of sub-ppb level hydrocarbons of different reactivities in air samples. This analytical system was then applied to a series of smog-chamber studies which simulated the removal of reactive hydrocarbons from the atmosphere by reaction with hydroxyl radicals. Six representative atmospheric hydrocarbons ( hexane, octane, toluene, m-xylene, a-xylene and mesitylene) were selected for these experiments. The experimental data indicated that the decay of atmospheric hydrocarbons under laboratory conditions is entirely due to reaction with hydroxyl radicals. The conclusion drawn from a time-resolved plume study that aromatic molecules decay much faster than could be accounted for solely by reaction with hydroxyl radicals was not verified; this indicates a difference between laboratory study and the study in the real atmosphere, and some physical factors besides chemical mechanism might take a more significant role in removing aromatics faster from the atmosphere.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Connell, Richenda K. "Tropospheric degradation of halogenated compounds." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.320615.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sengupta, Kamalika. "Climate impacts of atmospheric low volatility organic compounds." Thesis, University of Leeds, 2017. http://etheses.whiterose.ac.uk/20146/.

Повний текст джерела
Анотація:
There exist huge gaps in the knowledge of how cloud-aerosol interaction affects climate. Consequently global models estimating the radiative forcing by anthropogenic aerosols show considerable discrepancy. Especially challenging to quantify is the role of volatile organic compounds in forming aerosol particles which can act as cloud condensation nuclei. Volatile organic compounds are emitted into the atmosphere in large quantities by biogenic and anthropogenic sources. In the atmosphere they undergo chemical oxidation reactions and typically produce products that are highly oxygenated and have lower volatility. Volatility of these highly oxygenated molecules span a wide range and determine the ease with which they transfer to the aerosol phase - either via participation in new particle formation or by contributing to the growth of bigger particles. The extent to which the highly oxygenated molecules contribute to new particle formation or their subsequent growth impacts the number concentration of cloud condensation nuclei in the atmosphere. Hence to accurately estimate cloud condensation nuclei, global models need to take into account the role of highly oxygenated molecules of varying volatility in modulating the atmospheric aerosol size distribution. In this thesis a new nucleation parameterisation based solely on highly oxygenated species of extremely low volatility is added to the model and its impact on the estimated cloud albedo effect is assessed. The nucleation mechanism is based on the findings of the CLOUD Experiment at CERN. The implementation of this new parameterisation reduces previous model estimates of cloud albedo forcing through its impact on the pre-industrial atmosphere. The thesis then goes on to introduce a new secondary aerosol formation scheme from highly oxygenated organic molecules based on the understanding of recent scientific advancements and assesses the effect of implementing the scheme on the estimated cloud albedo effect. Results show highly oxygenated molecules of semi-volatile nature play a significant role in determining the number concentration of cloud relevant particles. Although their higher volatility renders them incapable of new particle formation, their atmospheric abundance and contribution to the growth of particles which are relatively larger, provide an efficient pathway for producing cloud condensation nuclei in the atmosphere. Further, an ensemble of simulations are produced and analysed to explore a 6-D parameter space based on pre-defined uncertainty ranges of these highly oxygenated molecules. The work identifies plausible and implausible regions within the 6-D space, based on model-observation comparison against three model outputs - number concentration of all particles, number concentration of CCN-relevant sized particles and organic aerosol concentration. The work provides a top-down estimate of yields of highly oxygenated molecules (that contribute to SOA formation) based on model skill score against ground-based observations. Such yields are typically based on laboratory experiments and is broadly considered to be an important reason behind the failure of global models to estimate realistic mass of secondary organic aerosols produced in the atmosphere. The work particularly highlights the importance of simulating cluster growth from low-volatility organic compounds to account for atmospheric cloud droplets.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ligocki, Mary Peterson. "The scavenging of atmospheric trace organic compounds by rain /." Full text open access at:, 1986. http://content.ohsu.edu/u?/etd,101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Price, Benjamin Suresh John. "The atmospheric consequences of the photolysis of carbonyl compounds." Thesis, University of Leeds, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.522964.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Atmospheric Compounds"

1

Claire, Granier, Artaxo Netto Paulo Eduardo, and Reeves Claire E, eds. Emissions of atmospheric trace compounds. Boston: Kluwer Academic Publishers, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Granier, Claire, Paulo Artaxo, and Claire E. Reeves, eds. Emissions of Atmospheric Trace Compounds. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2167-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

T, Hawkins Donald, and Claxton Larry D, eds. Atmospheric chemical compounds: Sources, occurrence, and bioassay. Orlando: Academic Press, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nielsen, Ole J. Atmospheric Chemistry of Organic Sulfur and Nitrogen Compounds. Roskilde, Denmark: Riso National Laboratory, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Alain, Tressaud, ed. Fluorine and the environment: Atmospheric chemistry, emissions, & lithosphere. Amsterdam: Elsevier, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Alain, Tressaud, ed. Fluorine and the environment: Atmospheric chemistry, emissions, & lithosphere. Amsterdam: Elsevier, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Steinheimer, T. R. Trace organic compounds in wet atmospheric deposition: An overview. Denver, Colo: Dept. of the Interior, U.S. Geological Survey, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

A, Lane Douglas, ed. Gas and particle phase measurements of atmospheric organic compounds. Australia: Gordon and Breach, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Surkova, Galina. Atmospheric chemistry. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1079840.

Повний текст джерела
Анотація:
The textbook contains material corresponding to the course of lectures on atmospheric chemistry prepared for students studying meteorology and climatology. The basic concepts of atmospheric chemistry are given, its gaseous components, as well as aerosols and chemical processes related to their life cycles, which are important from the point of view of the formation of the radiation, temperature and dynamic regime of the atmosphere, as well as its pollution, are considered. The main regularities of the transport of impurities in the atmosphere and the role of processes of different spatial and temporal scales in this process are presented. The concept of approaches of varying degrees of complexity used to model the transport of matter in the atmosphere, taking into account its chemical transformations, is presented. The processes in the gaseous and liquid phases that affect the chemical composition and acidity of clouds and precipitation are described. Modern methods of using information about the concentration and state of chemical compounds, including their radioactive and stable isotopes, to obtain information about the meteorological regime of the atmosphere in the present and past are considered. Meets the requirements of the federal state educational standards of higher education of the latest generation. For students of higher educational institutions studying in the field of training "Hydrometeorology".
Стилі APA, Harvard, Vancouver, ISO та ін.
10

1923-, Calvert Jack G., ed. The Mechanisms of atmospheric oxidation of aromatic hydrocarbons. Oxford: Oxford University Press, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Atmospheric Compounds"

1

Lavrinenko, R. "Nitrogen Compounds in Atmospheric Precipitation." In Acid Reign ’95?, 2149–54. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-007-0864-8_46.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wahner, Andreas, Franz Rohrer, Dieter H. Ehhalt, Elliot Atlas, and Brian Ridley. "Global Measurements of Photochemically Active Compounds." In Global Atmospheric-Biospheric Chemistry, 205–22. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2524-0_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Haase, Karl B., and Eurybiades Busenberg. "Groundwater Dating with Atmospheric Halogenated Compounds." In Encyclopedia of Scientific Dating Methods, 1–17. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-6326-5_257-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Haase, Karl B., and Eurybiades Busenberg. "Groundwater Dating with Atmospheric Halogenated Compounds." In Encyclopedia of Scientific Dating Methods, 308–17. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-007-6304-3_257.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shen, Huizhong. "Global Atmospheric Emissions of PAH Compounds." In Springer Theses, 85–119. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49680-0_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Huie, Robert E., and Barna Laszlo. "The Atmospheric Chemistry of Iodine Compounds." In ACS Symposium Series, 31–40. Washington, DC: American Chemical Society, 1997. http://dx.doi.org/10.1021/bk-1995-0611.ch004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Penner, Joyce E., Cynthia S. Atherton, and Thomas E. Graedel. "Global Emissions and Models of Photochemically Active Compounds." In Global Atmospheric-Biospheric Chemistry, 223–47. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2524-0_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Atlas, E. L., S. M. Li, L. J. Standley, and R. A. Hites. "Natural and Anthropogenic Organic Compounds in the Global Atmosphere." In Global Atmospheric Chemical Change, 313–81. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1864-4_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Atlas, E. L., S. M. Li, L. J. Standley, and R. A. Hites. "Natural and Anthropogenic Organic Compounds in the Global Atmosphere." In Global Atmospheric Chemical Change, 313–81. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-3714-8_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Visscher, Pieter T. "Microbial Turn-over of Volatile Sulfur Compounds." In Microbiology of Atmospheric Trace Gases, 227–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61096-7_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Atmospheric Compounds"

1

Fehsenfeld, Fred C. "Trace species in the atmosphere: air quality problems and measurement requirements and validation." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.wz1.

Повний текст джерела
Анотація:
There is evidence that air quality on a global scale is threatened by the systematic change in the atmospheric concentration of a variety of trace compounds. These compounds range from those that are not chemically reactive in the lower atmosphere (troposphere), such as the chlorofluoromethanes (CFM), to very reactive compounds, such as the oxides of nitrogen (NO x ) and the nonmethane hydrocarbons (NMHC). Although all the compounds cause significant problems concerning air quality on a regional or even global scale, the type of data required to obtain the necessary information concerning their atmospheric distribution depends strongly on the chemical reactivity (lifetime) of the compounds in the atmosphere. To monitor the concentrations of and understand the processes involving these compounds, very sensitive and/or precise measurement techniques are required. Specifically, these techniques may be required to detect less than one part per billion of the compound of interest or have a precision of one part in 104. The air quality problems associated with these compounds are outlined and the instrument needs and requirements for the measurement of the compounds are briefly discussed. Finally, the current approach to the validation of measurement techniques is described.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Vazquez, Gabriel J. "Optical remote sensing of atmospheric compounds." In Second Iberoamerican Meeting on Optics, edited by Daniel Malacara-Hernandez, Sofia E. Acosta-Ortiz, Ramon Rodriguez-Vera, Zacarias Malacara, and Arquimedes A. Morales. SPIE, 1996. http://dx.doi.org/10.1117/12.231038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Henley, Michael V., William R. Bradley, Sheryl E. Wyatt, G. M. Graziano, and J. R. Wells. "Atmospheric transformation of volatile organic compounds." In AeroSense 2000, edited by Patrick J. Gardner. SPIE, 2000. http://dx.doi.org/10.1117/12.394076.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nieminen, Tuomo, Alessandro Franchin, Katrianne Lehtipalo, Siegfried Schobesberger, Nina Sarnela, Tuija Jokinen, Jonathan Duplissy, Mikko Sipilä, Markku Kulmala, and CLOUD Collaboration. "Contribution of oxidized organic compounds to nanoparticle growth." In NUCLEATION AND ATMOSPHERIC AEROSOLS: 19th International Conference. AIP, 2013. http://dx.doi.org/10.1063/1.4803278.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Campbell, Michael, W. X. Peng, Kenneth W. D. Ledingham, A. Marshall, and Raghunandan P. Singhal. "Detection of atmospheric NOx gases and volatile organic compounds." In European Symposium on Optics for Environmental and Public Safety, edited by Ramon P. DePaula and John W. Berthold III. SPIE, 1995. http://dx.doi.org/10.1117/12.221691.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Harrison, J. J., N. D. C. Allen, and P. F. Bernath. "Atmospheric Chemistry Experiment (ACE): Detecting Organic Compounds from Orbit." In Fourier Transform Spectroscopy. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/fts.2011.fmb3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Evtyugina, M., T. Nunes, C. Alves, and M. C. Marques. "Atmospheric volatile organic compounds in a Portuguese mountain region." In AIR POLLUTION 2007. Southampton, UK: WIT Press, 2007. http://dx.doi.org/10.2495/air070451.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nakao, Shunsuke, and Sonia Kreidenweis. "Cloud nucleating activities of water-soluble semi-volatile organic compounds." In NUCLEATION AND ATMOSPHERIC AEROSOLS: 19th International Conference. AIP, 2013. http://dx.doi.org/10.1063/1.4803398.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Terpugova, Svetlana A., Mikhail V. Panchenko, Elena P. Yausheva, Dmitry G. Chernov, Vasily V. Pol'kin, Victor V. Pol'kin, Valerii S. Kozlov, and Vladimir P. Shmargunov. "Relations between the aerosol condensation activity and the content of compounds of different volatility in its composition." In 26th International Symposium on Atmospheric and Ocean Optics, Atmospheric Physics, edited by Gennadii G. Matvienko and Oleg A. Romanovskii. SPIE, 2020. http://dx.doi.org/10.1117/12.2575062.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Vandyukov, E. A., Yu S. Demchuk, and Suren O. Mirumyants. "Laboratory investigations of optical properties of complex organic compounds in interests of studying the interstellar medium." In Ninth Joint International symposium on Atmospheric and Ocean Optics/ Atmospheric Physics, edited by Gennadii G. Matvienko and Vladimir P. Lukin. SPIE, 2003. http://dx.doi.org/10.1117/12.497175.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Atmospheric Compounds"

1

Roger Atkinson and Janet Arey. Studies of the Atmospheric Chemsitry of Energy-Related Volatile Organic Compounds and of their Atmospheric Reaction Products. Office of Scientific and Technical Information (OSTI), April 2007. http://dx.doi.org/10.2172/902099.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Midey, Anthony. Ion-Molecular Reactions With Organic and Atmospheric Compounds from 150-1400K. Fort Belvoir, VA: Defense Technical Information Center, June 2000. http://dx.doi.org/10.21236/ada405891.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Piffath, Ronald J. Infrared Spectroscopic Observations on the Fate of Organophosphorus Compounds Exposed to Atmospheric Moisture. Part I. G-Agents and Related Compounds. Fort Belvoir, VA: Defense Technical Information Center, July 2003. http://dx.doi.org/10.21236/ada422058.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Robinson, J. M., B. F. Henson, M. K. Dubey, J. L. Casson, M. S. Johal, and K. R. Wilson. Heterogeneous processing of bromine compounds by atmospheric aerosols: Relation to the ozone budget. Office of Scientific and Technical Information (OSTI), November 1998. http://dx.doi.org/10.2172/676906.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Smith, James N. Final Report. "Collaborative Project. Contributions of organic compounds to the growth of freshly nucleated atmospheric nanoparticles". Office of Scientific and Technical Information (OSTI), December 2015. http://dx.doi.org/10.2172/1233413.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Smith, James, and Jeff Pierce. Collaborative Project: Contributions of organic compounds to the growth of freshly nucleated atmospheric nanoparticles. Final Report. Office of Scientific and Technical Information (OSTI), August 2018. http://dx.doi.org/10.2172/1466047.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pierce, Jeffrey. Final Report: Collaborative Project: Contributions of organic compounds to the growth of freshly nucleated atmospheric nanoparticles. Office of Scientific and Technical Information (OSTI), August 2018. http://dx.doi.org/10.2172/1466224.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Carter, W., D. Luo, I. Malkina, and J. Pierce. Environmental Chamber Studies of Atmospheric Reactivities of Volatile Organic Compounds: Effects of Varying Chamber and Light Source. Office of Scientific and Technical Information (OSTI), May 1995. http://dx.doi.org/10.2172/57153.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Jarosch, T. R., J. S. Haselow, J. Rossabi, S. A. Burdick, R. Raymond, J. E. Young, and K. H. Lombard. Final Report on Testing of Off-Gas Treatment Technologies for Abatement of Atmospheric Emissions of Chlorinated Volatile Organic Compounds. Office of Scientific and Technical Information (OSTI), January 1995. http://dx.doi.org/10.2172/67669.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Haselow, J. S., T. R. Jarosch, J. Rossabi, S. Burdick, and K. Lombard. Interim report on testing of off-gas treatment technologies for abatement of atmospheric emissions of chlorinated volatile organic compounds. Office of Scientific and Technical Information (OSTI), December 1993. http://dx.doi.org/10.2172/10132259.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії