Добірка наукової літератури з теми "Artificial Neural Network-based modeling"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Artificial Neural Network-based modeling".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Artificial Neural Network-based modeling"
Zhang, Ji, Sheng Chang, Hao Wang, Jin He, and Qi Jun Huang. "Artificial Neural Network Based CNTFETs Modeling." Applied Mechanics and Materials 667 (October 2014): 390–95. http://dx.doi.org/10.4028/www.scientific.net/amm.667.390.
Повний текст джерелаHiyama, T., M. Tokieda, W. Hubbi, and H. Andou. "Artificial neural network based dynamic load modeling." IEEE Transactions on Power Systems 12, no. 4 (1997): 1576–83. http://dx.doi.org/10.1109/59.627861.
Повний текст джерелаWang, Jun, Feng Qin Yu, and Feng He Wu. "Cutting Data Modeling Based on Artificial Neural Network." Key Engineering Materials 620 (August 2014): 544–49. http://dx.doi.org/10.4028/www.scientific.net/kem.620.544.
Повний текст джерелаFaghri, Ardeshir, and Sandeep Aneja. "Artificial Neural Network–Based Approach to Modeling Trip Production." Transportation Research Record: Journal of the Transportation Research Board 1556, no. 1 (January 1996): 131–36. http://dx.doi.org/10.1177/0361198196155600115.
Повний текст джерелаLongfei, Tang, Xu Zhihong, and Bala Venkatesh. "Contactor Modeling Technology Based on an Artificial Neural Network." IEEE Transactions on Magnetics 54, no. 2 (February 2018): 1–8. http://dx.doi.org/10.1109/tmag.2017.2767555.
Повний текст джерелаPanahi, Shirin, Zainab Aram, Sajad Jafari, Jun Ma, and J. C. Sprott. "Modeling of epilepsy based on chaotic artificial neural network." Chaos, Solitons & Fractals 105 (December 2017): 150–56. http://dx.doi.org/10.1016/j.chaos.2017.10.028.
Повний текст джерелаRai, Raveendra K., and B. S. Mathur. "Event-based Sediment Yield Modeling using Artificial Neural Network." Water Resources Management 22, no. 4 (May 4, 2007): 423–41. http://dx.doi.org/10.1007/s11269-007-9170-3.
Повний текст джерелаXie, Shuai, Wenyan Wu, Sebastian Mooser, Q. J. Wang, Rory Nathan, and Yuefei Huang. "Artificial neural network based hybrid modeling approach for flood inundation modeling." Journal of Hydrology 592 (January 2021): 125605. http://dx.doi.org/10.1016/j.jhydrol.2020.125605.
Повний текст джерелаHASEENA, H., PAUL K. JOSEPH, and ABRAHAM T. MATHEW. "ARTIFICIAL NEURAL NETWORK BASED ECG ARRHYTHMIA CLASSIFICATION." Journal of Mechanics in Medicine and Biology 09, no. 04 (December 2009): 507–25. http://dx.doi.org/10.1142/s0219519409003103.
Повний текст джерелаÇelik, Şenol. "MODELING AVOCADO PRODUCTION IN MEXICO WITH ARTIFICIAL NEURAL NETWORKS." Engineering and Technology Journal 07, no. 10 (October 31, 2022): 1605–9. http://dx.doi.org/10.47191/etj/v7i10.08.
Повний текст джерелаДисертації з теми "Artificial Neural Network-based modeling"
Brunger, Clifford A. "Artificial neural network modeling of damaged aircraft." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1994. http://handle.dtic.mil/100.2/ADA283227.
Повний текст джерелаSaptoro, Agus. "An integrated approach to artificial neural network based process modelling." Thesis, Curtin University, 2010. http://hdl.handle.net/20.500.11937/2484.
Повний текст джерелаAjayi, Toluwaleke. "Modeling Discharge and Water Chemistry Using Artificial Neural Network." Ohio University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1620167556121952.
Повний текст джерелаRothrock, Ling. "Modeling skilled decision-making using artificial neural network and genetic-based machine learning techniques." Thesis, Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/25084.
Повний текст джерелаByrne, Brian James. "An evaluation of artificial neural network modeling for manpower analysis." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1993. http://handle.dtic.mil/100.2/ADA273001.
Повний текст джерелаThesis advisor(s): George W. Thomas ; Timothy P. Hill. "September 1993." Includes bibliographical references. Also available online,
FALCIONELLI, NICOLA. "From Symbolic Artificial Intelligence to Neural Networks Universality with Event-based Modeling." Doctoral thesis, Università Politecnica delle Marche, 2020. http://hdl.handle.net/11566/274620.
Повний текст джерелаRepresenting knowledge, modeling human reasoning, and understanding thought processes have always been central parts of intellectual activities, since the first attempts by greek philosophers. It is not just by chance that, as soon as computers started to spread, remarkable scientists and mathematicians such as John McCarthy, Marvin Minsky and Claude Shannon started creating Artificially Intelligent systems with a symbolic oriented perspective. Even though this has been a partially forced path due to the very limited computing capabilities at the time, it marked the beginning of what is now known as Classical (or Symbolic) Artificial Intelligence, or essentially, a set of techniques for implementing "intelligent" behaviours by means of logic formalisms and theorem proving. Classical AI techniques are indeed very direct and human-centered processes, which find their strenghts on straightforward human interpretability and knowledge reusability. On the contrary, they suffer of computability problems when applied to real world tasks, mostly due to search space combinatorial explosion (especially when reasoning with time), and undecidability. However, the ever-increasing capabilites of computer hardware opened new possibilities for other more statistical-oriented methods to grow, such as Neural Networks. Even if the theory behind these methods was long known, it was only in recent years that they managed to achieve significant breakthroughs, and to surpass Classical AI techniques on many tasks. At the moment, the main hurdles of such statistical AI techniques are represented by the high energy consumption and the lack of easy ways for humans to understand the process that led to a particular result. Summing up, Classical and Statistical AI techniques can be seen as two faces of the same coin: if a domain presents structured information, little uncertainty, and clear decision processes, then Classical AI might be the right tool, or otherwise, when the information is less structured, has more uncertainty, ambiguity and clear decision processes cannot be identified, then Statistical AI should be chosen. The main purpose of this thesis is thus (i) to show capabilities and limits of current (Classical and Statistical) Artificial Intelligence techniques in both structured and unstructured domains, and (ii) to demostrate how event-based modeling can tackle some of their critical issues, providing new potential connections and novel perspectives.
FLECK, JULIA LIMA. "ARTIFICIAL NEURAL NETWORK MODELING FOR QUALITY INFERENCE OF A POLYMERIZATION PROCESS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2008. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=12980@1.
Повний текст джерелаO presente trabalho apresenta o desenvolvimento de um modelo neural para a inferência da qualidade do polietileno de baixa densidade (PEBD) a partir dos valores das variáveis de processo do sistema reacional. Para tal, fez- se uso de dados operacionais de uma empresa petroquímica, cujo pré-processamento incluiu a seleção de variáveis, limpeza e normalização dos dados selecionados e preparação dos padrões. A capacidade de inferência do modelo neural desenvolvido neste estudo foi comparada com a de dois modelos fenomenológicos existentes. Para tal, utilizou-se como medida de desempenho o valor do erro médio absoluto percentual dos modelos, tendo como referência valores experimentais do índice de fluidez. Neste contexto, o modelo neural apresentou-se como uma eficiente ferramenta de modelagem da qualidade do sistema reacional de produção do PEBD.
This work comprises the development of a neural network- based model for quality inference of low density polyethylene (LDPE). Plant data corresponding to the process variables of a petrochemical company`s LDPE reactor were used for model development. The data were preprocessed in the following manner: first, the most relevant process variables were selected, then data were conditioned and normalized. The neural network- based model was able to accurately predict the value of the polymer melt index as a function of the process variables. This model`s performance was compared with that of two mechanistic models developed from first principles. The comparison was made through the models` mean absolute percentage error, which was calculated with respect to experimental values of the melt index. The results obtained confirm the neural network model`s ability to infer values of quality-related measurements of the LDPE reactor.
Li, Tan. "Tire-Pavement Interaction Noise (TPIN) Modeling Using Artificial Neural Network (ANN)." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/87417.
Повний текст джерелаPHD
Bhanot, Nishant. "Artificial Neural Networks based Modeling and Analysis of Semi-Active Damper System." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/78295.
Повний текст джерелаMaster of Science
Kvale, David Thomas. "Artificial Neural Network-Based Approaches for Modeling the Radiated Emissions from Printed Circuit Board Structures and Shields." University of Toledo / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1280698960.
Повний текст джерелаКниги з теми "Artificial Neural Network-based modeling"
Artificial neural network modeling of water and wastewater treatment processes. Hauppauge, N.Y: Nova Science Publishers, 2010.
Знайти повний текст джерелаKhataee, A. R. Artificial neural network modeling of water and wastewater treatment processes. Hauppauge, N.Y: Nova Science Publishers, 2010.
Знайти повний текст джерелаGuan, Biing T. Modeling training site vegetation coverage probability with a random optimization procedure: An artificial neural network approach. [Champaign, IL]: US Army Corps of Engineers, Construction Engineering Research Laboratories, 1998.
Знайти повний текст джерелаShanmuganathan, Subana, and Sandhya Samarasinghe, eds. Artificial Neural Network Modelling. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28495-8.
Повний текст джерелаS, Mohan. Artificial neural network modelling. Roorkee: Indian National Committee on Hydrology, 2007.
Знайти повний текст джерелаNational Hydrology Symposium (4th 1993 Cardiff, Wales). Rainfall-runoff modeling as a problem in artificial intelligence: experience with a neural network. Fourth National Hydrology Symposium: (held at) University of Wales College of Cardiff 13-16th September 1993. (London?): British Hydrological Society, 1993.
Знайти повний текст джерелаThrun, Sebastian. Explanation-Based Neural Network Learning: A Lifelong Learning Approach. Boston, MA: Springer US, 1996.
Знайти повний текст джерелаThrun, Sebastian. Explanation-based neural network learning: A lifelong learning approach. Boston: Kluwer Academic Publishers, 1996.
Знайти повний текст джерелаWhite, Roger. The artificial intelligence of urban dynamics: Neural network modelling of urban structure. [Toronto]: Centre for Urban and Community Studies, University of Toronto, 1989.
Знайти повний текст джерелаDaniel, Sarit. Wavelet based artificial neural network and entropy detection techniques for a chaosmaker. Ottawa: National Library of Canada, 2002.
Знайти повний текст джерелаЧастини книг з теми "Artificial Neural Network-based modeling"
Božnar, Marija Zlata, and Primož Mlakar. "Artificial Neural Network-Based Environmental Models." In Air Pollution Modeling and Its Application XIV, 483–92. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/0-306-47460-3_49.
Повний текст джерелаBelkhode, Pramod, Sarika Modak, Vinod Ganvir, and Anand Shende. "Artificial Neural Network Simulation." In Mathematical Modeling and Simulation, 63–85. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003132127-7.
Повний текст джерелаRao, Ming, Qijun Xia, and Yiqun Ying. "Modeling via Artificial Neural Network." In Modeling and Advanced Control for Process Industries, 245–63. London: Springer London, 1994. http://dx.doi.org/10.1007/978-1-4471-2094-0_9.
Повний текст джерелаXiong, Wangping, Jianqiang Du, Qinglong Shu, and Yi Zhao. "Artificial Neural Network Based Modeling of Glucose Metabolism." In Advances in Computer Science, Intelligent System and Environment, 623–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23756-0_100.
Повний текст джерелаBataineh, Mohammad, Timothy Marler, and Karim Abdel-Malek. "Artificial Neural Network-Based Prediction of Human Posture." In Digital Human Modeling and Applications in Health, Safety, Ergonomics, and Risk Management. Human Body Modeling and Ergonomics, 305–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39182-8_36.
Повний текст джерелаAziz, Kashif, Ataur Rahman, and Asaad Shamseldin. "Development of Artificial Intelligence Based Regional Flood Estimation Techniques for Eastern Australia." In Artificial Neural Network Modelling, 307–23. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28495-8_13.
Повний текст джерелаSeptiawan, Reza, Arief Rufiyanto, Sardjono Trihatmo, Budi Sulistya, Erik Madyo Putro, and Subana Shanmuganathan. "Artificial Neural Network (ANN) Pricing Model for Natural Rubber Products Based on Climate Dependencies." In Artificial Neural Network Modelling, 423–42. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28495-8_20.
Повний текст джерелаAl-Yousef, Ali, and Sandhya Samarasinghe. "Improved Ultrasound Based Computer Aided Diagnosis System for Breast Cancer Incorporating a New Feature of Mass Central Regularity Degree (CRD)." In Artificial Neural Network Modelling, 213–33. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28495-8_10.
Повний текст джерелаLemetre, Christophe, Lee J. Lancashire, Robert C. Rees, and Graham R. Ball. "Artificial Neural Network Based Algorithm for Biomolecular Interactions Modeling." In Lecture Notes in Computer Science, 877–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02478-8_110.
Повний текст джерелаDutta, Pijush, Souvik Pal, Asok Kumar, and Korhan Cengiz. "A Practical Approach to Neural Network Models." In Artificial Intelligence for Cognitive Modeling, 43–72. Boca Raton: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003216001-4.
Повний текст джерелаТези доповідей конференцій з теми "Artificial Neural Network-based modeling"
Sousa, Miguel Angelo de Abreu de, and Thiago Felipe de Jesus Torres. "Modeling of Pain on a FPGA-based Neural Network." In Artificial Intelligence and Applications. Calgary,AB,Canada: ACTAPRESS, 2013. http://dx.doi.org/10.2316/p.2013.793-034.
Повний текст джерелаKaracor, Mevlut, Kadir Yilmaz, and Feriha Erfan Kuyumcu. "Modeling MCSRM with artificial neural network." In 2007 International Aegean Conference on Electrical Machines and Power Electronics (ACEMP) and Electromotion '07. IEEE, 2007. http://dx.doi.org/10.1109/acemp.2007.4510569.
Повний текст джерелаHiyama, T., N. Suzuki, H. Karino, Kwang Yun Lee, and H. Andou. "Artificial neural network based modeling of governor-turbine system." In IEEE Power Engineering Society. 1999 Winter Meeting (Cat. No.99CH36233). IEEE, 1999. http://dx.doi.org/10.1109/pesw.1999.747437.
Повний текст джерелаA . K., Prakash, Amol Patil, and Kalyani U. "Artificial Neural Network Based Driver Modeling for Vehicle Systems." In 8th SAEINDIA International Mobility Conference & Exposition and Commercial Vehicle Engineering Congress 2013 (SIMCOMVEC). 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2013. http://dx.doi.org/10.4271/2013-01-2860.
Повний текст джерелаHuang, Jiarong, Guangqin Gao, Xianyu Meng, and Yuxiu Guan. "Modeling stand density index based on artificial neural network." In 2010 Sixth International Conference on Natural Computation (ICNC). IEEE, 2010. http://dx.doi.org/10.1109/icnc.2010.5584350.
Повний текст джерелаGupta, Subham, Achyut Paudel, Mishal Thapa, Sameer B. Mulani, and Robert Walters. "Adaptive Sampling-Based Artificial Neural Network for Surrogate Modeling." In AIAA SCITECH 2022 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2022. http://dx.doi.org/10.2514/6.2022-0805.
Повний текст джерелаYurshin, V. G. "Artificial Neural Network Architecture Tuning Algorithm." In International Workshop “Hybrid methods of modeling and optimization in complex systems”. European Publisher, 2023. http://dx.doi.org/10.15405/epct.23021.29.
Повний текст джерелаWang, Yongqing, Huawei Shen, Shenghua Liu, Jinhua Gao, and Xueqi Cheng. "Cascade Dynamics Modeling with Attention-based Recurrent Neural Network." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/416.
Повний текст джерелаThoeurn, Muy, Ardyono Priyadi, Anang Tjahjono, and Mauridhi Hery Purnomo. "Overcurrent relay modeling using artificial neural network." In 2017 International Electrical Engineering Congress (iEECON). IEEE, 2017. http://dx.doi.org/10.1109/ieecon.2017.8075794.
Повний текст джерелаSapounaki, Maria, and Athanasios Kakarountas. "A High-Performance Neuron for Artificial Neural Network based on Izhikevich model." In 2019 29th International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS). IEEE, 2019. http://dx.doi.org/10.1109/patmos.2019.8862154.
Повний текст джерелаЗвіти організацій з теми "Artificial Neural Network-based modeling"
Hsieh, Bernard B., and Charles L. Bartos. Riverflow/River Stage Prediction for Military Applications Using Artificial Neural Network Modeling. Fort Belvoir, VA: Defense Technical Information Center, August 2000. http://dx.doi.org/10.21236/ada382991.
Повний текст джерелаMarkova, Oksana, Serhiy Semerikov та Maiia Popel. СoCalc as a Learning Tool for Neural Network Simulation in the Special Course “Foundations of Mathematic Informatics”. Sun SITE Central Europe, травень 2018. http://dx.doi.org/10.31812/0564/2250.
Повний текст джерелаYaroshchuk, Svitlana O., Nonna N. Shapovalova, Andrii M. Striuk, Olena H. Rybalchenko, Iryna O. Dotsenko, and Svitlana V. Bilashenko. Credit scoring model for microfinance organizations. [б. в.], February 2020. http://dx.doi.org/10.31812/123456789/3683.
Повний текст джерелаFix, Edward L. Neural Network Based Human Performance Modeling. Fort Belvoir, VA: Defense Technical Information Center, August 1990. http://dx.doi.org/10.21236/ada229822.
Повний текст джерелаBhatikar, S. R., R. L. Mahajan, K. Wipke, and V. Johnson. Neural Network Based Energy Storage System Modeling for Hybrid Electric Vehicles. Office of Scientific and Technical Information (OSTI), August 1999. http://dx.doi.org/10.2172/935117.
Повний текст джерелаAl-Qadi, Imad, Jaime Hernandez, Angeli Jayme, Mojtaba Ziyadi, Erman Gungor, Seunggu Kang, John Harvey, et al. The Impact of Wide-Base Tires on Pavement—A National Study. Illinois Center for Transportation, October 2021. http://dx.doi.org/10.36501/0197-9191/21-035.
Повний текст джерелаSemerikov, Serhiy, Hanna Kucherova, and Dmytro Ocheretin. Neural Network Analytics and Forecasting the Country's Business Climate in Conditions of the Coronavirus Disease (Covid-19). Stylos, December 2020. http://dx.doi.org/10.31812/123456789/4133.
Повний текст джерелаSemerikov, Serhiy, Hanna Kucherova, Vita Los, and Dmytro Ocheretin. Neural Network Analytics and Forecasting the Country's Business Climate in Conditions of the Coronavirus Disease (COVID-19). CEUR Workshop Proceedings, April 2021. http://dx.doi.org/10.31812//123456789/4364.
Повний текст джерелаSemerikov, Serhiy, Illia Teplytskyi, Yuliia Yechkalo, Oksana Markova, Vladimir Soloviev, and Arnold Kiv. Computer Simulation of Neural Networks Using Spreadsheets: Dr. Anderson, Welcome Back. [б. в.], June 2019. http://dx.doi.org/10.31812/123456789/3178.
Повний текст джерелаEngel, Bernard, Yael Edan, James Simon, Hanoch Pasternak, and Shimon Edelman. Neural Networks for Quality Sorting of Agricultural Produce. United States Department of Agriculture, July 1996. http://dx.doi.org/10.32747/1996.7613033.bard.
Повний текст джерела