Добірка наукової літератури з теми "Artificial intelligence (ML/DL)"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Artificial intelligence (ML/DL)".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Artificial intelligence (ML/DL)"
Pelayes, David Eduardo, Jose A. Mendoza, and Anibal Martin Folgar. "Artificial intelligence use in diabetes." Latin American Journal of Ophthalmology 5 (December 10, 2022): 6. http://dx.doi.org/10.25259/lajo_4_2022.
Повний текст джерелаGokcekuyu, Yasemin, Fatih Ekinci, Mehmet Serdar Guzel, Koray Acici, Sahin Aydin, and Tunc Asuroglu. "Artificial Intelligence in Biomaterials: A Comprehensive Review." Applied Sciences 14, no. 15 (July 28, 2024): 6590. http://dx.doi.org/10.3390/app14156590.
Повний текст джерелаDrikakis, Dimitris, and Filippos Sofos. "Can Artificial Intelligence Accelerate Fluid Mechanics Research?" Fluids 8, no. 7 (July 19, 2023): 212. http://dx.doi.org/10.3390/fluids8070212.
Повний текст джерелаZhang, Shengzhe. "Artificial Intelligence and Applications in Structural and Material Engineering." Highlights in Science, Engineering and Technology 75 (December 28, 2023): 240–45. http://dx.doi.org/10.54097/9qknfc57.
Повний текст джерелаAFTAB, Ifra, Mohammad DOWAJY, Kristof KAPITANY, and Tamas LOVAS. "Artificial Intelligence (AI) – based strategies for point cloud data and digital twins." Nova Geodesia 3, no. 3 (August 19, 2023): 138. http://dx.doi.org/10.55779/ng33138.
Повний текст джерелаIadanza, Ernesto, Rachele Fabbri, Džana Bašić-ČiČak, Amedeo Amedei, and Jasminka Hasic Telalovic. "Gut microbiota and artificial intelligence approaches: A scoping review." Health and Technology 10, no. 6 (October 26, 2020): 1343–58. http://dx.doi.org/10.1007/s12553-020-00486-7.
Повний текст джерелаChoudhary, Laxmi, and Jitendra Singh Choudhary. "Deep Learning Meets Machine Learning: A Synergistic Approach towards Artificial Intelligence." Journal of Scientific Research and Reports 30, no. 11 (November 16, 2024): 865–75. http://dx.doi.org/10.9734/jsrr/2024/v30i112614.
Повний текст джерелаGayatri, T., G. Srinivasu, D. M. K. Chaitanya, and V. K. Sharma. "A Review on Optimization Techniques of Antennas Using AI and ML / DL Algorithms." International Journal of Advances in Microwave Technology 07, no. 02 (2022): 288–95. http://dx.doi.org/10.32452/ijamt.2022.288295.
Повний текст джерелаEl-den, B. M. El, and Marwa M. Eid. "Watermarking Models and Artificial Intelligence." Journal of Artificial Intelligence and Metaheuristics 1, no. 2 (2022): 24–30. http://dx.doi.org/10.54216/jaim.010203.
Повний текст джерелаKuhn, Stefan, Rômulo Pereira de Jesus, and Ricardo Moreira Borges. "Nuclear Magnetic Resonance and Artificial Intelligence." Encyclopedia 4, no. 4 (October 18, 2024): 1568–80. http://dx.doi.org/10.3390/encyclopedia4040102.
Повний текст джерелаДисертації з теми "Artificial intelligence (ML/DL)"
Laguili, Oumaima. "Smart management of combined electric water heaters and self-consumption photovoltaic solar panels (SmartECS)." Electronic Thesis or Diss., Perpignan, 2024. https://theses-public.univ-perp.fr/2024PERP0045.pdf.
Повний текст джерелаWhile the building sector is increasingly energy efficient, the needs in domestic hot water (DHW) is increasing, especially in newer homes. Therefore, improvement of efficiency in the production of DHW, a better understanding of the needs in DHW, and user involvement in the decision-making process are necessary. The project deals with the development of algorithms for the smart control of combined electric water heaters and self-consumption photovoltaic solar panels. A model-based predictive control strategy will be developed and implemented, leveraging machine learning tools. The strategy will be generalized to multi-water heater systems, sharing photovoltaic solar production, through the development of a distributed and hierarchical control approach. An experiment will make it possible to assess the conditions of acceptability of the developed solution and the impact of information on decision-making
Giuliani, Luca. "Extending the Moving Targets Method for Injecting Constraints in Machine Learning." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23885/.
Повний текст джерелаLundin, Lowe. "Artificial Intelligence for Data Center Power Consumption Optimisation." Thesis, Uppsala universitet, Avdelningen för systemteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-447627.
Повний текст джерелаKarlsson, Frida. "The opportunities of applying Artificial Intelligence in strategic sourcing." Thesis, KTH, Industriell ekonomi och organisation (Inst.), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281306.
Повний текст джерелаArtificiell Intelligens har blivit allt viktigare ur ett affärsperspektiv. När det gäller strategiskt inköp har tekniken inte undersökts lika mycket tidigare. Hursomhelst, 67% av alla tillfrågade CPO:er i en enkät ansåg att AI är en av deras topprioriteringar de kommande tio åren. AI kan exempelvis identifiera mönster, förutspå priser samt ge support inom beslutsfattning. En kvalitativ fallstudie har utförts i en strategisk inköpsfunktion hos ett globalt industriföretag där syftet har varit att undersöka hur tillämpbart AI är i strategiskt inköp hos Case-Företaget. För att uppnå syftet med denna studie har det varit viktigt att förstå vad den strategiska inköpsprocessen omfattas av samt vad AI-teknologi är och vad den är kapabel till inom strategiskt inköp. Därför har litteraturstudien gjorts för att undersöka hur man använt AI inom strategiskt inköp tidigare och vilka fördelar som finns. Baserat på empirisk datainsamling kombinerat med litteratur har nyckelområden för att applicera AI inom strategiskt inköp föreslagits inkluderat forecasting, spendanalys & besparingsspårning, riskhantering av leverantörer, leverantörsidentifikation och val, RFQ-processen, förhandlingsprocessen, kontrakthantering samt uppföljning av leverantörsprestation. Dessa nyckelområden har följt det ramverk som skapats i litteraturstudien samtidigt som nya faktorer har identifierats och lagts till då de ansetts som viktiga. För att tillämpa AI i strategiska inköpsprocessen måste Case-Företaget överväga andra aspekter än var i inköpsprocessen de kan dra nytta av AI mest. Faktorer som utmaningar och risker, beredskap och mognad samt faktorer som ansetts viktiga att beakta för att möjliggöra en implementering har identifierats. För att bedöma hur mogen och redo den strategiska inköpsfunktionen hos Case-Företaget är för en implementering har några av de tidigare digitala projekten inklusive AI-teknik kartlagts och analyserats. Det har emellertid konstaterats att det kan vara fördelaktigt för strategiskt inköp att börja med ett mindre användningsområde och sedan skala upp det. Eftersom strategiska inköpsfunktionen har implementerat en spendanalys plattform kan det vara en bra start att utvärdera det projektet och sedan tillämpa AI ovanpå den befintliga lösningen. Andra faktorer att beakta är att försäkra datakvalitet och säkerhet, involvera ledningen samt lyfta vilka fördelar AI kan ge i form av ökad effektivitet och kostnadsbesparingar. Därtill är det viktigt att inkludera hela strategiska inköps-funktionen samt att inte endast beakta den tekniska aspekten utan också mjuka faktorer så som change management och agila metoder.
Djaidja, Taki Eddine Toufik. "Advancing the Security of 5G and Beyond Vehicular Networks through AI/DL." Electronic Thesis or Diss., Bourgogne Franche-Comté, 2024. http://www.theses.fr/2024UBFCK009.
Повний текст джерелаThe emergence of Fifth Generation (5G) and Vehicle-to-Everything (V2X) networks has ushered in an era of unparalleled connectivity and associated services. These networks facilitate seamless interactions among vehicles, infrastructure, and more, providing a range of services through network slices, each tailored to specific requirements. Future generations are even expected to bring further advancements to these networks. However, this remarkable progress also exposes them to a myriad of security threats, many of which current measures struggle to detect and mitigate effectively. This underscores the need for advanced intrusion detection mechanisms to ensure the integrity, confidentiality, and availability of data and services.One area of increasing interest in both academia and industry spheres is Artificial Intelligence (AI), particularly its application in addressing cybersecurity threats. Notably, neural networks (NNs) have demonstrated promise in this context, although AI-based solutions do come with inherent challenges. These challenges can be summarized as concerns about effectiveness and efficiency. The former pertains to the need for Intrusion Detection Systems (IDSs) to accurately detect threats, while the latter involves achieving time efficiency and early threat detection.This dissertation represents the culmination of our research findings on investigating the aforementioned challenges of AI-based IDSs in 5G systems in general and 5G-V2X in particular. We initiated our investigation by conducting a comprehensive review of the existing literature. Throughout this thesis, we explore the utilization of Fuzzy Inference Systems (FISs) and NNs, with a specific emphasis on the latter. We leveraged state-of-the-art NN learning, referred to as Deep Learning (DL), including the incorporation of recurrent neural networks and attention mechanisms. These techniques are innovatively harnessed to making significant progress in addressing the concerns of enhancing the effectiveness and efficiency of IDSs. Moreover, our research delves into additional challenges related to data privacy when employing DL-based IDSs. We achieve this by leveraging and experimenting state-of-the-art federated learning (FL) algorithms
Nystad, Marcus, and Lukas Lindblom. "Artificial Intelligence in the Pulp and Paper Industry : Current State and Future Trends." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279574.
Повний текст джерелаFramgångarna inom Artificiell Intelligens (AI) har fått stor uppmärksamhet de senaste åren och ökad medvetenhet har lett till stora fördelar för samhället liksom nya möjligheter för industrier som tar vara på dessa nya teknologier. Pappers- och massa industrin genomgår en av de mest omfattande transformationerna mot Industri 4.0. Integreringen av AI-teknologi i industrins tillverkningsprocesser has visat stor potential, men också osäkerhet kring vilken riktning företag är på väg mot. Denna studie är en undersökning av den svenska pappers- och massaindustrin, i samarbete med IBM, som syftar till att minska gapet mellan akademin och framstegen företag inom industrin tar. Mer specifikt är denna uppsats en kombinerad fallstudie av det nuvarande läget, barriärerna till AI-teknik i den svenska pappers- och massa industrin, de framtida trenderna och förväntningarna på AI och metoderna företag använder för att stötta AI-initiativ. Semi-strukturerade intervjuer genomfördes med 11 deltagare från tre olika perspektiv och datan var tematiskt kodad. Vår analys visar att användning av AI varierar och företag experimenterar huvudsakligen med omogen teknik. Flera trender och områden med potential för framtiden identifierades och det visades att digital innovationshantering är högt ansedd. Vi sammanfattar med att det finns flera barriärer som hindrar fortsatt användning av AI. Fortsatt arbete med AI-tekniken kommer leda till stora fördelar på lång sikt inom områden som prediktivt underhåll och fortsatt processoptimering. Flera åtgärder för att stötta AI-initiativ var identifierade och diskuterades. Vi uppmuntrar industrin att genomföra lämpliga åtgärder i det fortsatta arbetet mot AI-integration och uppmuntrar fortsatt forskning inom potentiella omstruktureringar inom FoU.
Hanski, Jari, and Kaan Baris Biçak. "An Evaluation of the Unity Machine Learning Agents Toolkit in Dense and Sparse Reward Video Game Environments." Thesis, Uppsala universitet, Institutionen för speldesign, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-444982.
Повний текст джерелаKlingvall, Emelie. "Artificiell intelligens som ett beslutsstöd inom mammografi : En kvalitativ studie om radiologers perspektiv på icke-tekniska utmaningar." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-18768.
Повний текст джерелаArtificial intelligence (AI) has become more commonly used to support people when making decisions. Machine learning (ML) is a sub-area of AI that has become more frequently used in health care. Patient data is increasing in healthcare and an AI system can help to process this increased amount of data, which further can develop a decision support that can help doctors. AI technology is becoming more common to use in radiology and specifically in mammography, as a decision support. The usage of AI technology in mammography has many benefits, but there are also challenges that are not connected to technology.Non-technical challenges are important to consider and review in order to generate a successful practice. The purpose of this thesis is therefore to review non-technical challenges when using AI as a decision support in mammography from a radiological perspective. Radiologists with experience in mammography were interviewed in order to increase knowledge about their views on the usage.The results identified and developed the non-technical challenges based on themes: responsibility, human abilities, acceptance, education/knowledge and collaboration. The study also found indications within these themes that there are non-technical challenges with associated aspects that are more prominent than others. This study emphasizes and increases the knowledge of radiologists views on the usage of AI and contributes to future research for all the actors involved. Future research can address these non-technical challenges even before the technology is implemented to reduce the risk of complications.
Bengtsson, Theodor, and Jonas Hägerlöf. "Stora mängder användardata för produktutveckling : Möjligheter och utmaningar vid integrering av stora mängder användardata i produktutvecklingsprocesser." Thesis, KTH, Integrerad produktutveckling, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297966.
Повний текст джерелаThe technology development has contributed to an increased amount of user data companies have access to and is expected to continue to increase. Companies that integrate user data into their product development processes are expected to gain competitive advantages. The purpose of the work is to investigate opportunities and challenges when integrating large amounts of user data. By answering two questions, the study determines the purpose of the work, where the consequences for decision making also are addressed. The work process began with a literature study that formed the basis for both the problematization and the purpose that identifies a gap in the research about user data in product development processes. The literature study created a broader understanding of the subject. The empirical part consisted of a qualitative semistructured interview study with four participating companies and an equal number of respondents with knowledge in the field. Coding of the material identified areas among the respondents which contributed within sights that were processed to contribute to the research area.The results highlight opportunities and challenges companies face when integrating large amounts of user data into product development processes. The study highlights the user as central to product development, where increased data enables complex data analysis. Efficient analysis of data enables faster iteration processes and repetitive jobs can be replaced by more stimulating. In addition, the basis for decision-making becomes more extensive and can generate new strategies and designs for offers. The study also determines that increased data places demands on companies, where the relevance of the data is important and processes for handling must be able to define the relevant data. Furthermore, companies need to mature in the role of integrating user data. In order to ensure the safe basis for decisionmaking from user data, qualitative and quantitative analyses should be promoted to work together to confirm each other’s identified patterns. The integration of large amounts of user data into product development processes is determined by this study to require the acquisition of competence in order to ensure relevance in data management processes by defining which data to collect. With successful integration, companies that integrate user data achieve competitive advantages and capitalization opportunities that are long-term beneficial.
Pouy, Léo. "OpenNas : un cadre adaptable de recherche automatique d'architecture neuronale." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG089.
Повний текст джерелаWhen creating a neural network, the "fine-tuning" stage is essential. During this fine-tuning, the neural network developer must adjust the hyperparameters and the architecture of the network so that it meets the targets. This is a time-consuming and tedious phase, and requires experience on the part of the developer. So, to make it easier to create neural networks, there is a discipline called Automatic Machine Learning (Auto-ML), which seeks to automate the creation of Machine Learning. This thesis is part of this Auto-ML approach and proposes a method for creating and optimizing neural network architectures (Neural Architecture Search, NAS). To this end, a new search space based on block imbrication has been formalized. This space makes it possible to create a neural network from elementary blocks connected in series or in parallel to form compound blocks which can themselves be connected to form an even more complex network. The advantage of this search space is that it can be easily customized to influence the NAS for specific architectures (VGG, Inception, ResNet, etc.) and control the optimization time. Moreover, it is not constrained to any particular optimization algorithm. In this thesis, the formalization of the search space is first described, along with encoding techniques to represent a network from the search space by a natural number (or a list of natural numbers). Optimization strategies applicable to this search space are then proposed. Finally, neural architecture search experiments on different datasets and with different objectives using the developed tool (named OpenNas) are presented
Книги з теми "Artificial intelligence (ML/DL)"
Hartanto, Ronny. A Hybrid Deliberative Layer for Robotic Agents: Fusing DL Reasoning with HTN Planning in Autonomous Robots. Berlin, Heidelberg: Springer-Verlag GmbH Berlin Heidelberg, 2011.
Знайти повний текст джерелаMukherjee, Sudipta. ML. NET Revealed: Simple Tools for Applying Machine Learning to Your Applications. Apress L. P., 2020.
Знайти повний текст джерелаMajumder, Abhilash. Deep Reinforcement Learning in Unity: With Unity ML Toolkit. Apress L. P., 2020.
Знайти повний текст джерелаArtificial Intelligence (AI) and Machine Learning (ML) in Human Health and Healthcare. MDPI, 2022. http://dx.doi.org/10.3390/books978-3-0365-3741-2.
Повний текст джерелаKshirsagar, Ameya, Jainam Panchal, and Manan Shah. Applications of Artificial Intelligence (AI) and Machine Learning (ML) in the Petroleum Industry. Taylor & Francis Group, 2022.
Знайти повний текст джерелаKshirsagar, Ameya, Jainam Panchal, and Manan Shah. Applications of Artificial Intelligence (AI) and Machine Learning (ML) in the Petroleum Industry. Taylor & Francis Group, 2022.
Знайти повний текст джерелаKshirsagar, Ameya, Jainam Panchal, and Manan Shah. Applications of Artificial Intelligence (AI) and Machine Learning (ML) in the Petroleum Industry. CRC Press LLC, 2022.
Знайти повний текст джерелаKshirsagar, Ameya, Jainam Panchal, and Manan Shah. Applications of Artificial Intelligence (AI) and Machine Learning (ML) in the Petroleum Industry. CRC Press LLC, 2022.
Знайти повний текст джерелаApplications of Artificial Intelligence (AI) and Machine Learning (ML) in the Petroleum Industry. Taylor & Francis Group, 2022.
Знайти повний текст джерелаRahman, Mahmudur, ed. Artificial Intelligence (AI) and Machine Learning (ML) in Medical Imaging Informatics towards Diagnostic Decision Making. MDPI, 2023. http://dx.doi.org/10.3390/books978-3-0365-8129-3.
Повний текст джерелаЧастини книг з теми "Artificial intelligence (ML/DL)"
Rajendran, Sindhu, Alen Aji John, B. Suhas, and B. Sahana. "Role of ML and DL in Detecting Fraudulent Transactions." In Artificial Intelligence for Societal Issues, 59–82. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-12419-8_4.
Повний текст джерелаWittenberg, Thomas, Thomas Lang, Thomas Eixelberger, and Roland Grube. "Acquisition of Semantics for Machine-Learning and Deep-Learning based Applications." In Unlocking Artificial Intelligence, 153–75. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-64832-8_8.
Повний текст джерелаGadri, Said, and Erich Neuhold. "Building Best Predictive Models Using ML and DL Approaches to Categorize Fashion Clothes." In Artificial Intelligence and Soft Computing, 90–102. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61401-0_9.
Повний текст джерелаDas, Priya, and Sohail Saif. "Intrusion Detection in IoT-Based Healthcare Using ML and DL Approaches: A Case Study." In Artificial Intelligence and Cyber Security in Industry 4.0, 271–94. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2115-7_12.
Повний текст джерелаKotios, Dimitrios, Georgios Makridis, Silvio Walser, Dimosthenis Kyriazis, and Vittorio Monferrino. "Personalized Finance Management for SMEs." In Big Data and Artificial Intelligence in Digital Finance, 215–32. Cham: Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-030-94590-9_12.
Повний текст джерелаTrocin, Cristina, Jan Gunnar Skogås, Thomas Langø, and Gabriel Hanssen Kiss. "Operating Room of the Future (FOR) Digital Healthcare Transformation in the Age of Artificial Intelligence." In Digital Transformation in Norwegian Enterprises, 151–72. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05276-7_9.
Повний текст джерелаParkash, Surya, Ravinder Singh, and Shubham Badola. "Assessing Landslide Disaster Risk Reduction and Resilience: Case Studies and Insights, India." In Progress in Landslide Research and Technology, 323–39. Cham: Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-72736-8_22.
Повний текст джерелаGuérin, Eric, Orhun Aydin, and Ali Mahdavi-Amiri. "Artificial Intelligence." In Manual of Digital Earth, 357–85. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9915-3_10.
Повний текст джерелаPop, Emilia-Loredana, and Augusta Raţiu. "Human-Computer Interaction in Artificial Intelligence with Applications in Healthcare: A Review." In Frontiers in Artificial Intelligence and Applications. IOS Press, 2024. http://dx.doi.org/10.3233/faia241213.
Повний текст джерелаAndrae, Silvio. "The Use of Artificial Intelligence to Curb Deforestation in the Brazilian Rainforest." In Artificial Intelligence and Data Science for Sustainability, 81–122. IGI Global, 2025. https://doi.org/10.4018/979-8-3693-6829-9.ch004.
Повний текст джерелаТези доповідей конференцій з теми "Artificial intelligence (ML/DL)"
Muniraj, Inbarasan. "Investigating the efficacy of deep learning networks for 3D imaging and processing." In 3D Image Acquisition and Display: Technology, Perception and Applications, DW1H.4. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/3d.2024.dw1h.4.
Повний текст джерелаKommineni, Sivaram, Sanvitha Muddana, and Rajiv Senapati. "Explainable Artificial Intelligence based ML Models for Heart Disease Prediction." In 2024 3rd International Conference on Computational Modelling, Simulation and Optimization (ICCMSO), 160–64. IEEE, 2024. http://dx.doi.org/10.1109/iccmso61761.2024.00042.
Повний текст джерелаGrisez, Laure, Shreshtha Sharma, and Paolo Pileggi. "ML-Based Virtual Sensing for Groundwater Monitoring in the Netherlands." In 17th International Conference on Agents and Artificial Intelligence, 175–84. SCITEPRESS - Science and Technology Publications, 2025. https://doi.org/10.5220/0013101100003890.
Повний текст джерелаDai, Yuyang, and Yilin Yan. "Volatility Forecasting: Can ML Beat Multivariate HAR Models?" In 2024 5th International Conference on Electronic Communication and Artificial Intelligence (ICECAI), 32–37. IEEE, 2024. http://dx.doi.org/10.1109/icecai62591.2024.10674893.
Повний текст джерелаWiesbrock, Hans-Werner, and Jurgen Groβmann. "Outline of an Independent Systematic Blackbox Test for ML-based Systems." In 2024 IEEE International Conference on Artificial Intelligence Testing (AITest), 1–10. IEEE, 2024. http://dx.doi.org/10.1109/aitest62860.2024.00009.
Повний текст джерелаTalpini, Jacopo, Nicolò Civiero, Fabio Sartori, and Marco Savi. "A Federated Approach to Enhance Calibration of Distributed ML-Based Intrusion Detection Systems." In 17th International Conference on Agents and Artificial Intelligence, 840–48. SCITEPRESS - Science and Technology Publications, 2025. https://doi.org/10.5220/0013376600003890.
Повний текст джерелаGrube, Nicolas, Mozhdeh Massah, Michael Tebbe, Paul Wancura, Hans-Werner Wiesbrock, Jürgen Grossmann, and Sami Kharma. "On a Systematic Test of ML-Based Systems: Experiments on Test Statistics." In 2024 IEEE International Conference on Artificial Intelligence Testing (AITest), 11–20. IEEE, 2024. http://dx.doi.org/10.1109/aitest62860.2024.00010.
Повний текст джерелаDu, Hebing, Chunling Wu, Pan He, and Hongyang Li. "TCAE-DL-RGCN Based Detection of Twitter Robots." In 2024 IEEE 7th International Conference on Big Data and Artificial Intelligence (BDAI), 193–98. IEEE, 2024. http://dx.doi.org/10.1109/bdai62182.2024.10692365.
Повний текст джерелаAllam, Aly, and Benaoumeur Senouci. "Platform Based DL Applications Design: Autonomous Vehicles Case Study." In 2025 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), 0901–4. IEEE, 2025. https://doi.org/10.1109/icaiic64266.2025.10920817.
Повний текст джерелаPamidimukkala, Jaanaki Swaroop, Tarun Teja P, Suman Paul K, Divya Sri Kosaraju, and Naveenkumar Mahamkali. "Comparative Study of ML Techniques for Classification of Crop Pests." In 2024 4th International Conference on Artificial Intelligence and Signal Processing (AISP), 1–5. IEEE, 2024. https://doi.org/10.1109/aisp61711.2024.10870737.
Повний текст джерелаЗвіти організацій з теми "Artificial intelligence (ML/DL)"
Alhasson, Haifa F., and Shuaa S. Alharbi. New Trends in image-based Diabetic Foot Ucler Diagnosis Using Machine Learning Approaches: A Systematic Review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, November 2022. http://dx.doi.org/10.37766/inplasy2022.11.0128.
Повний текст джерелаJOSI, Editor. Artificial Intelligence and Machine Learning: Transforming Industrial Optimization. Industrial Engineering Department, Faculty of Engineering, Universitas Andalas, March 2025. https://doi.org/10.25077/03032025.
Повний текст джерелаBacci, Marcelo Rodrigues, Catarina Viggiani Bicudo Minczuk, and Fernando Luiz Affonso Fonseca. A systematic review of artificial intelligence models for acute kidney injury prediction. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, March 2023. http://dx.doi.org/10.37766/inplasy2023.3.0025.
Повний текст джерелаAlharbi, Shuaa S., and Haifa F. Alhasson. Toward the Identification of Applications of Artificial Intelligence for Dental Image Detection: Systematic Review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, November 2022. http://dx.doi.org/10.37766/inplasy2022.11.0023.
Повний текст джерелаRamuhalli, Pradeep, Alex Huning, Askin Guler Yigitoglu, and Abhinav Saxena. Status Report on Regulatory Criteria Applicable to the Use of Artificial Intelligence (AI) and Machine Learning (ML). Office of Scientific and Technical Information (OSTI), September 2023. http://dx.doi.org/10.2172/2007715.
Повний текст джерелаNiles, Kenneth, Emily Leathers, Joe Tom, Chandler Armstrong, Osama Ennasr, Brandon Dodd, Theresa Coumbe, et al. Leveraging artificial intelligence and machine learning (AI/ML) for levee culvert Inspections in USACE Flood Control Systems (FCS). Engineer Research and Development Center (U.S.), September 2024. http://dx.doi.org/10.21079/11681/49210.
Повний текст джерелаRodriguez, Simon, Tim Hwang, and Rebecca Gelles. Comparing Corporate and University Publication Activity in AI/ML. Center for Security and Emerging Technology, January 2021. http://dx.doi.org/10.51593/20200067.
Повний текст джерелаChristie, Lorna. Interpretable machine learning. Parliamentary Office of Science and Technology, October 2020. http://dx.doi.org/10.58248/pn633.
Повний текст джерелаPasupuleti, Murali Krishna. Mathematical Modeling for Machine Learning: Theory, Simulation, and Scientific Computing. National Education Services, March 2025. https://doi.org/10.62311/nesx/rriv125.
Повний текст джерелаPasupuleti, Murali Krishna. AI-Driven Automation: Transforming Industry 5.0 withMachine Learning and Advanced Technologies. National Education Services, March 2025. https://doi.org/10.62311/nesx/rr225.
Повний текст джерела