Добірка наукової літератури з теми "Arbitrary bodies"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Arbitrary bodies".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Arbitrary bodies"

1

Cetto, A. M., and L. de la Peña. "Casimir effect for bodies of arbitrary size." Il Nuovo Cimento B 108, no. 4 (April 1993): 447–58. http://dx.doi.org/10.1007/bf02828725.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lachand-Robert†, Thomas, and Édouard Oudet. "Bodies of constant width in arbitrary dimension." Mathematische Nachrichten 280, no. 7 (May 2007): 740–50. http://dx.doi.org/10.1002/mana.200510512.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Davidovich, M. V. "Dispersion Interaction between Bodies of an Arbitrary Shape." Journal of Communications Technology and Electronics 67, no. 10 (October 2022): 1207–15. http://dx.doi.org/10.1134/s1064226922100011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tricarico, Pasquale. "Global gravity inversion of bodies with arbitrary shape." Geophysical Journal International 195, no. 1 (August 3, 2013): 260–75. http://dx.doi.org/10.1093/gji/ggt268.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sun, Xiuquan, Teng Lin, and J. Daniel Gezelter. "Langevin dynamics for rigid bodies of arbitrary shape." Journal of Chemical Physics 128, no. 23 (June 21, 2008): 234107. http://dx.doi.org/10.1063/1.2936991.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tran Van Nhieu, Michel, and Frédérique Ywanne. "Sound scattering by slender bodies of arbitrary shape." Journal of the Acoustical Society of America 95, no. 4 (April 1994): 1726–33. http://dx.doi.org/10.1121/1.408691.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Radha, R., and B. Sri Padmavati. "Stokes Flow Past Porous Bodies of Arbitrary Shape." Indian Journal of Pure and Applied Mathematics 51, no. 3 (September 2020): 1247–63. http://dx.doi.org/10.1007/s13226-020-0462-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Schnell, Uwe. "Lattice inequalities for convex bodies and arbitrary lattices." Monatshefte f�r Mathematik 116, no. 3-4 (September 1993): 331–37. http://dx.doi.org/10.1007/bf01301537.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ivanov, Ts, and R. Savova. "Stability of elastic bodies under an arbitrary load." International Applied Mechanics 29, no. 8 (August 1993): 610–13. http://dx.doi.org/10.1007/bf00847010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ma, Chien-Ching, and I.-Kuang Shen. "Boundary Weight Functions for Cracks in Three-Dimensional Finite Bodies." Journal of Mechanics 15, no. 1 (March 1999): 17–26. http://dx.doi.org/10.1017/s1727719100000289.

Повний текст джерела
Анотація:
ABSTRACTAn efficient boundary weight function method for the determination of mode I stress intensity factors in a three-dimensional cracked body with arbitrary shape and subjected to arbitrary loading is presented in this study. The functional form of the boundary weight functions are successfully demonstrated by using the least squares fitting procedure. Explicit boundary weight functions are presented for through cracks in rectangular finite bodies. If the stress distribution of a cut out rectangular cracked body from any arbitrary shape of cracked body subjected to arbitrary loading is determined, the mode I stress intensity factors for the cracked body can be obtained from the predetermined boundary weight functions by a simple integration. Comparison of the calculated results with some solutions by other workers from the literature confirms the efficiency and accuracy of the proposed boundary weight function method.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Arbitrary bodies"

1

NOBREGA, ALEXANDRE REGIS. "SEATTERING OF PLANE WAVES BY PERFECT-CONDUCTING TRIDIMENSIONAL BODIES WITH ARBITRARY SHAPES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1992. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=8822@1.

Повний текст джерела
Анотація:
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
O presente trabalho estuda a interação entre objetos condutores perfeitos tridimensionais, de formas arbitrárias e campos eletromagnéticos harmônicos no tempo incidentes sobre os mesmos. Pretende-se determinar os campos espalhados pelos objetos, caracterizados por uma malha de elementos de contorno planos e triangulares. Através de um tratamento numérico aproximado da Equação Integral do Campo Magnético, a densidade de corrente induzida na superfície do condutor perfeito é obtida. De posse deste resultado, determina-se o campo magnético espalhado (campo distante) e calcula-se a seção reta radar em várias direções. As vantagens e desvantagens da utilização do Método dos Momentos serão apontadas. Os resultados obtidos pelos mesmos serão comparados entre si e com aqueles disponíveis na literatura.
This work studies the interaction between tridimensional perfect conducting objects of arbitrary shapes and incident time-harmonic electromagnetic fields. The fields, scattered by these objects, are determined using a finite number of plane and triangular boundary elements. The induced current density on the boundary is obtained using the Magnetic Field Integral Equation, applied approximately in a numerical approach. With the result mentioned above, the scattered magnetic field (far-field) is determined and the Radar Cross Section is calculated. The advantages and disadvantages of the use of a numerical method (moment method) are pointed out and the results compared. With those in literature.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tekasakul, Perapong. "Rotatory oscillation of arbitrary axisymmetric bodies in a viscous fluid : numerical solutions /." free to MU campus, to others for purchase, 1996. http://wwwlib.umi.com/cr/mo/fullcit?p9823331.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gonc, L. Oktay. "Computation Of External Flow Around Rotating Bodies." Phd thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12605985/index.pdf.

Повний текст джерела
Анотація:
A three-dimensional, parallel, finite volume solver which uses Roe'
s upwind flux differencing scheme for spatial and Runge-Kutta explicit multistage time stepping scheme for temporal discretization on unstructured meshes is developed for the unsteady solution of external viscous flow around rotating bodies. The main aim of this study is to evaluate the aerodynamic dynamic stability derivative coefficients for rotating missile configurations. Arbitrary Lagrangian Eulerian (ALE) formulation is adapted to the solver for the simulation of the rotation of the body. Eigenvalues of the Euler equations in ALE form has been derived. Body rotation is simply performed by rotating the entire computational domain including the body of the projectile by means of rotation matrices. Spalart-Allmaras one-euqation turbulence model is implemented to the solver. The solver developed is first verified in 3-D for inviscid flow over two missile configurations. Then inviscid flow over a rotating missile is tested. Viscous flux computation algorithms and Spalarat-Allmaras turbulence model implementation are validated in 2-D by performing calculations for viscous flow over flat plate, NACA0012 airfoil and NLR 7301 airfoil with trailing edge flap. The ALE formulation is validated in 2-D on a rapidly pitching NACA0012 airfoil. Afterwards three-dimensional validation studies for viscous, laminar and turbulent flow calculations are performed on 3-D flat plate problem. At last, as a validation test case, unsteady laminar and turbulent viscous flow calculations over a spinning M910 projectile configuration are performed. Results are qualitatively in agreement with the analytical solutions, experimental measurements and previous studies for steady and unsteady flow calculations.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Housley, Paul. "Semi-empirical prediction of the normal aerodynamic loads on axisymmetric bodies of arbitrary profile in non-uniform flowfields." Thesis, University of Bristol, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.432733.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Andrew, Victoria. "Efficient numerical evaluation of the scattering of acoustic waves by arrays of cylinders and bodies of revolution of arbitrary cross section." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/efficient-numerical-evaluation-of-the-scattering-of-acoustic-waves-by-arrays-of-cylinders-and-bodies-of-revolution-of-arbitrary-cross-section(636d62f5-e93f-4ba9-b25f-e4816336b2d0).html.

Повний текст джерела
Анотація:
Wave scattering from periodic arrays is ubiquitous in applied mathematics, and has received a great deal of attention over the past century, not least due to the physical significance of understanding the reflection and transmission of plane waves from such arrays in the contexts of electromagnetic waves, acoustics, water waves and elasticity. The aim of the thesis is to develop an accurate and efficient numerical method to solve for the reflection and transmission of an acoustic plane wave from arrays of arbitrary shaped obstacles that have an axis of symmetry aligned in a direction perpendicular to the array. We are particularly interested in the difficult case when the characteristic length scale of the scatterers, and the periodic spacing of the array are of the same order of magnitude as the wavelength of the incident wave. It is shown that the boundary value problem for the infinite array can be reduced to an integral equation over a central representative cell containing a single scatterer, which can then be solved using the boundary element method. Particular attention is paid to the convergence of the resulting periodic Green's function. Using established methods to calculate the reflection and transmission coefficients, we develop a new method to increase the rate of convergence of the periodic Green's function in both two and three dimensions.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hashim, Sithy Aysha Fazlie. "Heat transfer between two arbitrary shaped bodies in the jump regime with one body enclosed inside the other : a numerical study /." free to MU campus, to others for purchase, 1999. http://wwwlib.umi.com/cr/mo/fullcit?p9953863.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bürger, Markus [Verfasser]. "An Immersed Boundary Method for Arbitrarily Shaped Lagrangian Bodies / Markus Bürger." Düren : Shaker, 2021. http://d-nb.info/1225654211/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pai, Ravindra. "Calculation of wave resistance and elevation of arbitrarily shaped bodies using the boundary integral element method." Thesis, This resource online, 1991. http://scholar.lib.vt.edu/theses/available/etd-10222009-125057/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mitchell, Jason W. "A Simplified Variation of Parameters Solution for the Motion of an Arbitrarily Torqued Mass Asymmetric Rigid Body." University of Cincinnati / OhioLINK, 2000. http://rave.ohiolink.edu/etdc/view?acc_num=ucin962392147.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mackenzie, Anne I. Rao S. M. "Paired pulse basis functions and triangular patch modeling for the method of moments calculation of electromagnetic scattering from three-dimensional, arbitrarily-shaped bodies." Auburn, Ala., 2008. http://hdl.handle.net/10415/1447.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Arbitrary bodies"

1

Konyukhov, Alexander. Computational Contact Mechanics: Geometrically Exact Theory for Arbitrary Shaped Bodies. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., ed. Calculation of water drop trajectories to and about arbitrary three-dimensional bodies lifting and nonlifting bodies in potential airflow. [Washington, DC]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch, ed. Calculation of water drop trajectories to and about arbitrary three-dimensional bodies lifting and nonlifting bodies in potential airflow. [Washington, DC]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Abdulhussain, T. H. The solution of the exterior Neumann problem for arbitrary shaped bodies with particular application to ellipsoids. Salford: University of Salford, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

(Organization), Human Rights Watch. Arbitrary killings by security forces: Submission to the investigative bodies on the November 28-29, 2008 violence in Jos, Plateau State, Nigeria. New York, NY: Human Rights Watch, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Center, Langley Research, ed. An alternative to unstructured grids for computing gas dynamic flows around arbitrarily complex two-dimensional bodies. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wave Scattering By Small Bodies Of Arbitrary Shapes. World Scientific Publishing Company, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Konyukhov, Alexander, and Karl Schweizerhof. Computational Contact Mechanics: Geometrically Exact Theory for Arbitrary Shaped Bodies. Springer, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Konyukhov, Alexander, and Karl Schweizerhof. Computational Contact Mechanics: Geometrically Exact Theory for Arbitrary Shaped Bodies. Springer, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Konyukhov, Alexander, and Karl Schweizerhof. Computational Contact Mechanics: Geometrically Exact Theory for Arbitrary Shaped Bodies. Springer, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Arbitrary bodies"

1

Huh, K. S., S. E. Widnall, and R. K. Agarwal. "Scattering of Sound by Rigid Bodies in Arbitrary Flows." In ICASE/NASA LaRC Series, 433–55. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4613-8342-0_26.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lagrange, J. L. "The Very Small Oscillations of an Arbitrary System of Bodies." In Analytical Mechanics, 253–305. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8903-1_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kioka, W. "Nonlinear Diffraction Loads upon Three-dimensional Bodies of Arbitrary Shape." In Nonlinear Water Waves, 239–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83331-1_27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lagrange, J. L. "The Motion of Constrained Bodies Which Interact in an Arbitrary Fashion." In Analytical Mechanics, 442–67. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8903-1_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yavorsky, N. I. "Laminar and Turbulent Wakes of Bodies of Arbitrary Shape in Uniform Flow." In Bluff-Body Wakes, Dynamics and Instabilities, 301–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-00414-2_66.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sansaturio, M. E., I. Vigo-Aguiar, and J. M. Ferrándiz. "Non—Integrability of the Motion of a Point Mass around a Planet of Arbitrary Shape." In The Dynamics of Small Bodies in the Solar System, 295–302. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9221-5_28.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Farias, Vera S. O., Wilton P. Silva, Cleide M. D. P. S. Silva, J. M. P. Q. Delgado, Severino R. Farias Neto, and A. G. Barbosa de Lima. "Transient Diffusion in Arbitrary Shape Porous Bodies: Numerical Analysis Using Boundary-Fitted Coordinates." In Advanced Structured Materials, 85–119. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30532-0_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Patel, Jitendra Kumar, and Ganesh Natarajan. "Volume-of-Solid Immersed Boundary Method for Free Surface Flows with Arbitrary Moving Rigid Bodies." In Fluid Mechanics and Fluid Power – Contemporary Research, 1181–92. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2743-4_112.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gol’nik, Edward, and Ivan Radchenko. "Numerical Methods of Statics and Dynamics of Contact Systems with Arbitrary Number of 3D Elastic Bodies." In Contact Mechanics, 271–74. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1983-6_37.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lagrange, J. L. "A General Formula of Dynamics for the Motion of a System of Bodies Moved by Arbitrary Forces." In Analytical Mechanics, 184–90. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8903-1_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Arbitrary bodies"

1

Xu, Yu-Lin. "Radiative interaction with arbitrary material bodies." In Frontiers in Optics. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/fio.2018.jw3a.57.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

JENN, A., and J. WILLIAMS. "Preliminary aerodynamic design of arbitrary cambered missile bodies." In 27th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-528.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

DREW, B., and A. JENN. "Pressure drag calculations on axisymmetric bodies of arbitrary moldline." In 28th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-280.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wang, Xiaomu, and R. O. Hansen. "Inversion for magnetic anomalies of arbitrary three‐dimensional bodies." In SEG Technical Program Expanded Abstracts 1988. Society of Exploration Geophysicists, 1988. http://dx.doi.org/10.1190/1.1892384.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ahuja, Vivek, and Roy Hartfield. "Application of the Distributed Singularities Concept to Arbitrary Aerodynamic Bodies." In 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-1072.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yovanovich, M., P. Teertstra, and J. Culham. "Modeling transient conduction from isothermal convex bodies of arbitrary shape." In 6th Joint Thermophysics and Heat Transfer Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-1976.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chen, Q., and D. R. Wilton. "Electromagnetic scattering by three-dimensional arbitrary complex material/conducting bodies." In International Symposium on Antennas and Propagation Society, Merging Technologies for the 90's. IEEE, 1990. http://dx.doi.org/10.1109/aps.1990.115179.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

DeWald, Adrian T., and Michael R. Hill. "Model for Predicting Laser Peening Residual Stresses in Arbitrary 3D Bodies." In ASME 2005 Pressure Vessels and Piping Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pvp2005-71795.

Повний текст джерела
Анотація:
This paper presents a methodology for predicting the residual stress resulting from laser peening treatment of arbitrary 3D bodies. The model consists of three basic steps. First, the inputs to the model are derived from residual stress measurements made on laser peened blocks of the pertinent material. The measured residual stress in the blocks consists of residual stress caused directly by laser peening and residual stress required for equilibrium. The laser peening induced residual stress is converted into an equivalent strain distribution that reproduces the stress state in an elastic model of the original body (called eigenstrain). Second, a finite element model representing the geometry of the actual part is constructed. Third, the laser peening induced eigenstrain is input into the finite element model at the locations where laser peening is to be applied (arbitrary coverage area). Solving for equilibrium provides a prediction for the residual stress resulting from laser peening treatment. The modeling procedure is verified using comparisons with residual stress measurements for specimens containing corner fillets of various sizes. The model predictions correlate well with the residual stress measurements over the range of conditions studied.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lian, Yongsheng, and William Henshaw. "A Framework for Interactions of Fluids and Rigid Bodies with Arbitrary Motions." In 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-710.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Nunes, Urbano Miguel, and Yiannis Demiris. "Online Unsupervised Learning of the 3D Kinematic Structure of Arbitrary Rigid Bodies." In 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2019. http://dx.doi.org/10.1109/iccv.2019.00391.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Arbitrary bodies"

1

Krishnaswamy and Wilkowski. L51474 Brittle Fracture Initiation of Heavy-Wall Components. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 1985. http://dx.doi.org/10.55274/r0010225.

Повний текст джерела
Анотація:
Pipeline valve bodies, fittings, flanges, and numerous other components are typically made of cast or forged low-alloy steels. The large wall thicknesses necessitated by the complex shapes of these components usually are not conducive to ductile fracture behavior. Nevertheless, there is a distinct need to have sufficient toughness in such components so that they will not be susceptible to catastrophic failure from defects that may remain after manufacturing and hydrostatic testing. The present practice for controlling toughness in such components consists of specifying arbitrary values of Charpy energy or percentage shear area at a given temperature to be determined on a coupon of the material made in a manner similar to the parent cast or forged component. These values are usually decided by agreement between the purchaser and manufacturer. This report describes experimental research aimed at correlating typical impact tests to more fundamental fracture mechanics tests using various available correlations and to predict full-scale fracture behavior of heavy-walled pipeline components using the fracture mechanics parameters obtained. The components examined in this research task are: (1) a 4-inch, 600 pound class valve, (2) a quarter section of a 24-inch Arctic grade valve, and (3) a 16-inch diameter by 0.75-inch wall, 45 degree elbow. Small-scale tests conducted on the 4-inch valve material were standard Charpy V-notch impact, precracked Charpy impact, precracked Charpy slow bend, dynamic tear, and three-point bend - J/COD tests. Only Charpy V-notch impact and J/COD tests were performed on the 24- inch Arctic Grade valve and the 16-inch elbow. This report describes a conservative approach to estimating failure stresses and tolerable flaw sizes to predict brittle fracture in heavy-wall components.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wilton, Donald R., and Stuart A. Long. Development of a Numerical Procedure to Treat Wires Attached to Arbitrarily Shaped Conducting Bodies. Fort Belvoir, VA: Defense Technical Information Center, April 1986. http://dx.doi.org/10.21236/ada169384.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії