Зміст
Добірка наукової літератури з теми "Apprentissage profond – Réseaux neuronaux (informatique)"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Apprentissage profond – Réseaux neuronaux (informatique)".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Дисертації з теми "Apprentissage profond – Réseaux neuronaux (informatique)"
Haykal, Vanessa. "Modélisation des séries temporelles par apprentissage profond." Thesis, Tours, 2019. http://www.theses.fr/2019TOUR4019.
Повний текст джерелаTime series prediction is a problem that has been addressed for many years. In this thesis, we have been interested in methods resulting from deep learning. It is well known that if the relationships between the data are temporal, it is difficult to analyze and predict accurately due to non-linear trends and the existence of noise specifically in the financial and electrical series. From this context, we propose a new hybrid noise reduction architecture that models the recursive error series to improve predictions. The learning process fusessimultaneouslyaconvolutionalneuralnetwork(CNN)andarecurrentlongshort-term memory network (LSTM). This model is distinguished by its ability to capture globally a variety of hybrid properties, where it is able to extract local signal features, to learn long-term and non-linear dependencies, and to have a high noise resistance. The second contribution concerns the limitations of the global approaches because of the dynamic switching regimes in the signal. We present a local unsupervised modification with our previous architecture in order to adjust the results by adapting the Hidden Markov Model (HMM). Finally, we were also interested in multi-resolution techniques to improve the performance of the convolutional layers, notably by using the variational mode decomposition method (VMD)
Caron, Stéphane. "Détection d'anomalies basée sur les représentations latentes d'un autoencodeur variationnel." Master's thesis, Université Laval, 2021. http://hdl.handle.net/20.500.11794/69185.
Повний текст джерелаIn this master's thesis, we propose a methodology that aims to detect anomalies among complex data, such as images. In order to do that, we use a specific type of neural network called the varitionnal autoencoder (VAE). This non-supervised deep learning approach allows us to obtain a simple representation of our data on which we then use the Kullback-Leibler distance to discriminate between anomalies and "normal" observations. To determine if an image should be considered "abnormal", our approach is based on a proportion of observations to be filtered, which is easier and more intuitive to establish than applying a threshold based on the value of a distance metric. By using our methodology on real complex images, we can obtain superior anomaly detection performances in terms of area under the ROC curve (AUC),precision and recall compared to other non-supervised methods. Moreover, we demonstrate that the simplicity of our filtration level allows us to easily adapt the method to datasets having different levels of anomaly contamination.
Ostertag, Cécilia. "Analyse des pathologies neuro-dégénératives par apprentissage profond." Thesis, La Rochelle, 2022. http://www.theses.fr/2022LAROS003.
Повний текст джерелаMonitoring and predicting the cognitive state of a subject affected by a neuro-degenerative disorder is crucial to provide appropriate treatment as soon as possible. Thus, these patients are followed for several years, as part of longitudinal medical studies. During each visit, a large quantity of data is acquired : risk factors linked to the pathology, medical imagery (MRI or PET scans for example), cognitive tests results, sampling of molecules that have been identified as bio-markers, etc. These various modalities give information about the disease's progression, some of them are complementary and others can be redundant. Several deep learning models have been applied to bio-medical data, notably for organ segmentation or pathology diagnosis. This PhD is focused on the conception of a deep neural network model for cognitive decline prediction, using multimodal data, here both structural brain MRI images and clinical data. In this thesis we propose an architecture made of sub-modules tailored to each modality : 3D convolutional network for the brain MRI, and fully connected layers for the quantitative and qualitative clinical data. To predict the patient's evolution, this model takes as input data from two medical visits for each patient. These visits are compared using a siamese architecture. After training and validating this model with Alzheimer's disease as our use case, we look into knowledge transfer to other neuro-degenerative pathologies, and we use transfer learning to adapt our model to Parkinson's disease. Finally, we discuss the choices we made to take into account the temporal aspect of our problem, both during the ground truth creation using the long-term evolution of a cognitive score, and for the choice of using pairs of visits as input instead of longer sequences
Mercier, Jean-Philippe. "Deep learning for object detection in robotic grasping contexts." Doctoral thesis, Université Laval, 2021. http://hdl.handle.net/20.500.11794/69801.
Повний текст джерелаIn the last decade, deep convolutional neural networks became a standard for computer vision applications. As opposed to classical methods which are based on rules and hand-designed features, neural networks are optimized and learned directly from a set of labeled training data specific for a given task. In practice, both obtaining sufficient labeled training data and interpreting network outputs can be problematic. Additionnally, a neural network has to be retrained for new tasks or new sets of objects. Overall, while they perform really well, deployment of deep neural network approaches can be challenging. In this thesis, we propose strategies aiming at solving or getting around these limitations for object detection. First, we propose a cascade approach in which a neural network is used as a prefilter to a template matching approach, allowing an increased performance while keeping the interpretability of the matching method. Secondly, we propose another cascade approach in which a weakly-supervised network generates object-specific heatmaps that can be used to infer their position in an image. This approach simplifies the training process and decreases the number of required training images to get state-of-the-art performances. Finally, we propose a neural network architecture and a training procedure allowing detection of objects that were not seen during training, thus removing the need to retrain networks for new objects.
Boussaha, Basma El Amel. "Response selection for end-to-end retrieval-based dialogue systems." Thesis, Nantes, 2019. http://www.theses.fr/2019NANT4080.
Повний текст джерелаThe increasing need of human assistance pushed researchers to develop automatic, smart and tireless dialogue systems that can converse with humans in natural language to be either their virtual assistant or their chat companion. The industry of dialogue systems has been very popular in the last decade and many systems from industry and academia have been developed. In this thesis, we study retrieval-based dialogue systems which aim to find the most appropriate response to the conversation among a set of predefined responses. The main challenge of these systems is to understand the conversation and identify the elements that describe the problem and the solution which are usually implicit. Most of the recent approaches are based on deep learning techniques which can automatically capture implicit information. However these approaches are either complex or domain dependent. We propose a simple, end-to-end and efficient retrieval-based dialogue system that first matches the response with the history of the conversation on the sequence-level and then we extend the system to multiple levels while keeping the architecture simple and domain independent. We perform several analyzes to determine possible improvements
Katranji, Mehdi. "Apprentissage profond de la mobilité des personnes." Thesis, Bourgogne Franche-Comté, 2019. http://www.theses.fr/2019UBFCA024.
Повний текст джерелаKnowledge of mobility is a major challenge for authorities mobility organisers and urban planning. Due to the lack of formal definition of human mobility, the term "people's mobility" will be used in this book. This topic will be introduced by a description of the ecosystem by considering these actors and applications.The creation of a learning model has prerequisites: an understanding of the typologies of the available data sets, their strengths and weaknesses. This state of the art in mobility knowledge is based on the four-step model that has existed and been used since 1970, ending with the renewal of the methodologies of recent years.Our models of people's mobility are then presented. Their common point is the emphasis on the individual, unlike traditional approaches that take the locality as a reference. The models we propose are based on the fact that the intake of individuals' decisions is based on their perception of the environment.This finished book on the study of the deep learning methods of Boltzmann machines restricted. After a state of the art of this family of models, we are looking for strategies to make these models viable in the application world. This last chapter is our contribution main theoretical, by improving robustness and performance of these models
Sablayrolles, Alexandre. "Mémorisation et apprentissage de structures d'indexation avec les réseaux de neurones." Thesis, Université Grenoble Alpes, 2020. https://thares.univ-grenoble-alpes.fr/2020GRALM044.pdf.
Повний текст джерелаMachine learning systems, and in particular deep neural networks, aretrained on large quantities of data. In computer vision for instance, convolutionalneural networks used for image classification, scene recognition,and object detection, are trained on datasets which size ranges from tensof thousands to billions of samples. Deep parametric models have a largecapacity, often in the order of magnitude of the number of datapoints.In this thesis, we are interested in the memorization aspect of neuralnetworks, under two complementary angles: explicit memorization,i.e. memorization of all samples of a set, and implicit memorization,that happens inadvertently while training models. Considering explicitmemorization, we build a neural network to perform approximate setmembership, and show that the capacity of such a neural network scaleslinearly with the number of data points. Given such a linear scaling, weresort to another construction for set membership, in which we build aneural network to produce compact codes, and perform nearest neighborsearch among the compact codes, thereby separating “distribution learning”(the neural network) from storing samples (the compact codes), theformer being independent of the number of samples and the latter scalinglinearly with a small constant. This nearest neighbor system performs amore generic task, and can be plugged in to perform set membership.In the second part of this thesis, we analyze the “unintended” memorizationthat happens during training, and assess if a particular data pointwas used to train a model (membership inference). We perform empiricalmembership inference on large networks, on both individual and groupsof samples. We derive the Bayes-optimal membership inference, andconstruct several approximations that lead to state-of-the-art results inmembership attacks. Finally, we design a new technique, radioactive data,that slightly modifies datasets such that any model trained on them bearsan identifiable mark
Groueix, Thibault. "Learning 3D Generation and Matching." Thesis, Paris Est, 2020. http://www.theses.fr/2020PESC1024.
Повний текст джерелаThe goal of this thesis is to develop deep learning approaches to model and analyse 3D shapes. Progress in this field could democratize artistic creation of 3D assets which currently requires time and expert skills with technical software.We focus on the design of deep learning solutions for two particular tasks, key to many 3D modeling applications: single-view reconstruction and shape matching.A single-view reconstruction (SVR) method takes as input a single image and predicts the physical world which produced that image. SVR dates back to the early days of computer vision. In particular, in the 1960s, Lawrence G. Roberts proposed to align simple 3D primitives to the input image under the assumption that the physical world is made of cuboids. Another approach proposed by Berthold Horn in the 1970s is to decompose the input image in intrinsic images and use those to predict the depth of every input pixel.Since several configurations of shapes, texture and illumination can explain the same image, both approaches need to form assumptions on the distribution of images and 3D shapes to resolve the ambiguity. In this thesis, we learn these assumptions from large-scale datasets instead of manually designing them. Learning allows us to perform complete object reconstruction, including parts which are not visible in the input image.Shape matching aims at finding correspondences between 3D objects. Solving this task requires both a local and global understanding of 3D shapes which is hard to achieve explicitly. Instead we train neural networks on large-scale datasets to solve this task and capture this knowledge implicitly through their internal parameters.Shape matching supports many 3D modeling applications such as attribute transfer, automatic rigging for animation, or mesh editing.The first technical contribution of this thesis is a new parametric representation of 3D surfaces modeled by neural networks.The choice of data representation is a critical aspect of any 3D reconstruction algorithm. Until recently, most of the approaches in deep 3D model generation were predicting volumetric voxel grids or point clouds, which are discrete representations. Instead, we present an alternative approach that predicts a parametric surface deformation ie a mapping from a template to a target geometry. To demonstrate the benefits of such a representation, we train a deep encoder-decoder for single-view reconstruction using our new representation. Our approach, dubbed AtlasNet, is the first deep single-view reconstruction approach able to reconstruct meshes from images without relying on an independent post-processing, and can do it at arbitrary resolution without memory issues. A more detailed analysis of AtlasNet reveals it also generalizes better to categories it has not been trained on than other deep 3D generation approaches.Our second main contribution is a novel shape matching approach purely based on reconstruction via deformations. We show that the quality of the shape reconstructions is critical to obtain good correspondences, and therefore introduce a test-time optimization scheme to refine the learned deformations. For humans and other deformable shape categories deviating by a near-isometry, our approach can leverage a shape template and isometric regularization of the surface deformations. As category exhibiting non-isometric variations, such as chairs, do not have a clear template, we learn how to deform any shape into any other and leverage cycle-consistency constraints to learn meaningful correspondences. Our reconstruction-for-matching strategy operates directly on point clouds, is robust to many types of perturbations, and outperforms the state of the art by 15% on dense matching of real human scans
Asselin, Louis-Philippe. "Une approche d'apprentissage profond pour l’estimation de l'apparence des matériaux à partir d’images." Master's thesis, Université Laval, 2021. http://hdl.handle.net/20.500.11794/69186.
Повний текст джерелаCohen-Hadria, Alice. "Estimation de descriptions musicales et sonores par apprentissage profond." Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS607.
Повний текст джерелаIn Music Information Retrieval (MIR) and voice processing, the use of machine learning tools has become in the last few years more and more standard. Especially, many state-of-the-art systems now rely on the use of Neural Networks.In this thesis, we propose a wide overview of four different MIR and voice processing tasks, using systems built with neural networks. More precisely, we will use convolutional neural networks, an image designed class neural networks. The first task presented is music structure estimation. For this task, we will show how the choice of input representation can be critical, when using convolutional neural networks. The second task is singing voice detection. We will present how to use a voice detection system to automatically align lyrics and audio tracks.With this alignment mechanism, we have created the largest synchronized audio and speech data set, called DALI. Singing voice separation is the third task. For this task, we will present a data augmentation strategy, a way to significantly increase the size of a training set. Finally, we tackle voice anonymization. We will present an anonymization method that both obfuscate content and mask the speaker identity, while preserving the acoustic scene
Книги з теми "Apprentissage profond – Réseaux neuronaux (informatique)"
Rojas, Raúl. Neural networks: A systematic introduction. Berlin: Springer-Verlag, 1996.
Знайти повний текст джерелаThomas, Schiex, ed. Intelligence artificielle et informatique théorique. Toulouse: Cépaduès-éd., 1994.
Знайти повний текст джерелаSøren, Brunak, ed. Bioinformatics: The machine learning approach. 2nd ed. Cambridge, Mass: MIT Press, 2001.
Знайти повний текст джерелаE, Nicholson Ann, ed. Bayesian artificial intelligence. 2nd ed. Boca Raton, FL: CRC Press, 2011.
Знайти повний текст джерелаDeep Learning: A Practitioner's Approach. O'Reilly Media, 2017.
Знайти повний текст джерелаKorb, Kevin B., and Ann E. Nicholson. Bayesian Artificial Intelligence. Taylor & Francis Group, 2003.
Знайти повний текст джерелаBayesian Artificial Intelligence. Taylor & Francis Group, 2023.
Знайти повний текст джерелаApplied Deep Learning and Computer Vision for Self-Driving Cars: Build Autonomous Vehicles Using Deep Neural Networks and Behavior-Cloning Techniques. Packt Publishing, Limited, 2020.
Знайти повний текст джерелаFundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms. O'Reilly Media, 2017.
Знайти повний текст джерелаBayesian Networks and Decision Graphs (Information Science and Statistics). Springer, 2007.
Знайти повний текст джерела