Добірка наукової літератури з теми "Apprentissage de la similarité"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Apprentissage de la similarité".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Apprentissage de la similarité"
Thibaut, Jean-Pierre. "Similarité et catégorisation." L'année psychologique 97, no. 4 (1997): 701–36. http://dx.doi.org/10.3406/psy.1997.28989.
Повний текст джерелаBernier, Paul. "Fonctionnalisme et similarité phénoménale." Philosophiques 27, no. 1 (October 2, 2002): 99–114. http://dx.doi.org/10.7202/004902ar.
Повний текст джерелаRosales Sequeiros, Xose. "Degrees of Acceptability in Literary Translation." Babel. Revue internationale de la traduction / International Journal of Translation 44, no. 1 (January 1, 1998): 1–14. http://dx.doi.org/10.1075/babel.44.1.01ros.
Повний текст джерелаBischoff, Thomas. "Apprentissage." Revue Médicale Suisse 18, no. 767 (2022): 210–11. http://dx.doi.org/10.53738/revmed.2022.18.767.210a.
Повний текст джерелаBèzes, Christophe, and Maria Mercanti-Guérin. "La similarité en marketing : périmètre, mesure et champs d’application." Recherche et Applications en Marketing (French Edition) 32, no. 1 (July 8, 2016): 86–109. http://dx.doi.org/10.1177/0767370116653551.
Повний текст джерелаBonardi, Alain, and Francis Rousseaux. "Similarité en intension versus similarité en extension. A la croisée de l'informatique et du théâtre." Revue d'intelligence artificielle 19, no. 1-2 (April 1, 2005): 281–88. http://dx.doi.org/10.3166/ria.19.281-288.
Повний текст джерелаMoreau, Clément, Thomas Devogele, and Laurent Etienne. "Calcul de similarité sémantique entre trajectoires." Revue Internationale de Géomatique 29, no. 1 (January 2019): 107–27. http://dx.doi.org/10.3166/rig.2019.00077.
Повний текст джерелаHarris, Ruth. "D’un apprentissage passif à un apprentissage actif." Recherche et pratiques pédagogiques en langues de spécialité - Cahiers de l'APLIUT 13, no. 4 (1994): 20–30. http://dx.doi.org/10.3406/apliu.1994.3368.
Повний текст джерелаCONDAMINES, ANNE. "Expression de la méronymie dans les petites annonces immobilières: comparaison français/anglais/espagnol." Journal of French Language Studies 19, no. 1 (March 2009): 3–23. http://dx.doi.org/10.1017/s0959269508003554.
Повний текст джерелаHanna, Pierre, Pascal Ferraro, Matthias Robine, and Julien Allali. "Recherche de documents musicaux par similarité mélodique." Document numérique 11, no. 3-4 (December 30, 2008): 107–25. http://dx.doi.org/10.3166/dn.11.3-4.107-125.
Повний текст джерелаДисертації з теми "Apprentissage de la similarité"
Risser-Maroix, Olivier. "Similarité visuelle et apprentissage de représentations." Electronic Thesis or Diss., Université Paris Cité, 2022. http://www.theses.fr/2022UNIP7327.
Повний текст джерелаThe objective of this CIFRE thesis is to develop an image search engine, based on computer vision, to assist customs officers. Indeed, we observe, paradoxically, an increase in security threats (terrorism, trafficking, etc.) coupled with a decrease in the number of customs officers. The images of cargoes acquired by X-ray scanners already allow the inspection of a load without requiring the opening and complete search of a controlled load. By automatically proposing similar images, such a search engine would help the customs officer in his decision making when faced with infrequent or suspicious visual signatures of products. Thanks to the development of modern artificial intelligence (AI) techniques, our era is undergoing great changes: AI is transforming all sectors of the economy. Some see this advent of "robotization" as the dehumanization of the workforce, or even its replacement. However, reducing the use of AI to the simple search for productivity gains would be reductive. In reality, AI could allow to increase the work capacity of humans and not to compete with them in order to replace them. It is in this context, the birth of Augmented Intelligence, that this thesis takes place. This manuscript devoted to the question of visual similarity is divided into two parts. Two practical cases where the collaboration between Man and AI is beneficial are proposed. In the first part, the problem of learning representations for the retrieval of similar images is still under investigation. After implementing a first system similar to those proposed by the state of the art, one of the main limitations is pointed out: the semantic bias. Indeed, the main contemporary methods use image datasets coupled with semantic labels only. The literature considers that two images are similar if they share the same label. This vision of the notion of similarity, however fundamental in AI, is reductive. It will therefore be questioned in the light of work in cognitive psychology in order to propose an improvement: the taking into account of visual similarity. This new definition allows a better synergy between the customs officer and the machine. This work is the subject of scientific publications and a patent. In the second part, after having identified the key components allowing to improve the performances of thepreviously proposed system, an approach mixing empirical and theoretical research is proposed. This secondcase, augmented intelligence, is inspired by recent developments in mathematics and physics. First applied tothe understanding of an important hyperparameter (temperature), then to a larger task (classification), theproposed method provides an intuition on the importance and role of factors correlated to the studied variable(e.g. hyperparameter, score, etc.). The processing chain thus set up has demonstrated its efficiency byproviding a highly explainable solution in line with decades of research in machine learning. These findings willallow the improvement of previously developed solutions
Grimal, Clément. "Apprentissage de co-similarités pour la classification automatique de données monovues et multivues." Thesis, Grenoble, 2012. http://www.theses.fr/2012GRENM092/document.
Повний текст джерелаMachine learning consists in conceiving computer programs capable of learning from their environment, or from data. Different kind of learning exist, depending on what the program is learning, or in which context it learns, which naturally forms different tasks. Similarity measures play a predominant role in most of these tasks, which is the reason why this thesis focus on their study. More specifically, we are focusing on data clustering, a so called non supervised learning task, in which the goal of the program is to organize a set of objects into several clusters, in such a way that similar objects are grouped together. In many applications, these objects (documents for instance) are described by their links to other types of objects (words for instance), that can be clustered as well. This case is referred to as co-clustering, and in this thesis we study and improve the co-similarity algorithm XSim. We demonstrate that these improvements enable the algorithm to outperform the state of the art methods. Additionally, it is frequent that these objects are linked to more than one other type of objects, the data that describe these multiple relations between these various types of objects are called multiview. Classical methods are generally not able to consider and use all the information contained in these data. For this reason, we present in this thesis a new multiview similarity algorithm called MVSim, that can be considered as a multiview extension of the XSim algorithm. We demonstrate that this method outperforms state of the art multiview methods, as well as classical approaches, thus validating the interest of the multiview aspect. Finally, we also describe how to use the MVSim algorithm to cluster large-scale single-view data, by first splitting it in multiple subsets. We demonstrate that this approach allows to significantly reduce the running time and the memory footprint of the method, while slightly lowering the quality of the obtained clustering compared to a straightforward approach with no splitting
Boutin, Luc. "Biomimétisme, génération de trajectoires pour la robotique humanoïde à partir de mouvements humains." Poitiers, 2009. http://theses.edel.univ-poitiers.fr/theses/2009/Boutin-Luc/2009-Boutin-Luc-These.pdf.
Повний текст джерелаThe true reproduction of human locomotion is a topical issue on humanoid robots. The goal of this work is to define a process to imitate the human motion with humanoid robots. In the first part, the motion capture techniques are presented. The measurement protocol adopted is exposed and the calculation of joint angles. An adaptation of three existing algorithms is proposed to detect the contact events during complex movements. The method is valided by measurements on thirty healthy subjects. The second part deals with the generation of humanoid trajectories imitating the human motion. Once the problem and the imitation process are defined, the balance criterion of walking robots is presented. Using data from human motion capture, the reference trajectories of the feet and ZMP are defined. These paths are modified to avoid collision between feet, particularly in the case of executing a slalom. Finally an inverse kinematics algorithm developed for this problem is used to determine the joint angles associated with the robot reference trajectories of the feet and ZMP. Several applications on robots HOAP-3 and HRP-2 are presented. The trajectories are validated according to the robot balance through dynamic simulations of the computed motion, and respecting the limits of actuators
Grimal, Clement. "Apprentissage de co-similarités pour la classification automatique de données monovues et multivues." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00819840.
Повний текст джерелаBoyer, Laurent. "Apprentissage probabiliste de similarités d'édition." Phd thesis, Université Jean Monnet - Saint-Etienne, 2011. http://tel.archives-ouvertes.fr/tel-00718835.
Повний текст джерелаVogel, Robin. "Similarity ranking for biometrics : theory and practice." Electronic Thesis or Diss., Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAT031.
Повний текст джерелаThe rapid growth in population, combined with the increased mobility of people has created a need for sophisticated identity management systems.For this purpose, biometrics refers to the identification of individuals using behavioral or biological characteristics. The most popular approaches, i.e. fingerprint, iris or face recognition, are all based on computer vision methods. The adoption of deep convolutional networks, enabled by general purpose computing on graphics processing units, made the recent advances incomputer vision possible. These advances have led to drastic improvements for conventional biometric methods, which boosted their adoption in practical settings, and stirred up public debate about these technologies. In this respect, biometric systems providers face many challenges when learning those networks.In this thesis, we consider those challenges from the angle of statistical learning theory, which leads us to propose or sketch practical solutions. First, we answer to the proliferation of papers on similarity learningfor deep neural networks that optimize objective functions that are disconnected with the natural ranking aim sought out in biometrics. Precisely, we introduce the notion of similarity ranking, by highlighting the relationship between bipartite ranking and the requirements for similarities that are well suited to biometric identification. We then extend the theory of bipartite ranking to this new problem, by adapting it to the specificities of pairwise learning, particularly those regarding its computational cost. Usual objective functions optimize for predictive performance, but recentwork has underlined the necessity to consider other aspects when training a biometric system, such as dataset bias, prediction robustness or notions of fairness. The thesis tackles all of those three examplesby proposing their careful statistical analysis, as well as practical methods that provide the necessary tools to biometric systems manufacturers to address those issues, without jeopardizing the performance of their algorithms
Philippeau, Jérémy. "Apprentissage de similarités pour l'aide à l'organisation de contenus audiovisuels." Toulouse 3, 2009. http://thesesups.ups-tlse.fr/564/.
Повний текст джерелаIn the perspective of new usages in the field of the access to audiovisual archives, we have created a semi-automatic system that helps a user to organize audiovisual contents while performing tasks of classification, characterization, identification and ranking. To do so, we propose to use a new vocabulary, different from the one already available in INA documentary notices, to answer needs which can not be easily defined with words. We have conceived a graphical interface based on graph formalism designed to express an organisational task. The digital similarity is a good tool in respect with the handled elements which are informational objects shown on the computer screen and the automatically extracted audio and video low-level features. We have made the choice to estimate the similarity between those elements with a predictive process through a statistical model. Among the numerous existing models, the statistical prediction based on the univaried regression and on support vectors has been chosen. H)
Qamar, Ali Mustafa. "Mesures de similarité et cosinus généralisé : une approche d'apprentissage supervisé fondée sur les k plus proches voisins." Phd thesis, Université de Grenoble, 2010. http://tel.archives-ouvertes.fr/tel-00591988.
Повний текст джерелаAseervatham, Sujeevan. "Apprentissage à base de Noyaux Sémantiques pour le Traitement de Données Textuelles." Phd thesis, Université Paris-Nord - Paris XIII, 2007. http://tel.archives-ouvertes.fr/tel-00274627.
Повний текст джерелаDans le cadre de cette thèse, nous nous intéressons principalement à deux axes.
Le premier axe porte sur l'étude des problématiques liées au traitement de données textuelles structurées par des approches à base de noyaux. Nous présentons, dans ce contexte, un noyau sémantique pour les documents structurés en sections notamment sous le format XML. Le noyau tire ses informations sémantiques à partir d'une source de connaissances externe, à savoir un thésaurus. Notre noyau a été testé sur un corpus de documents médicaux avec le thésaurus médical UMLS. Il a été classé, lors d'un challenge international de catégorisation de documents médicaux, parmi les 10 méthodes les plus performantes sur 44.
Le second axe porte sur l'étude des concepts latents extraits par des méthodes statistiques telles que l'analyse sémantique latente (LSA). Nous présentons, dans une première partie, des noyaux exploitant des concepts linguistiques provenant d'une source externe et des concepts statistiques issus de la LSA. Nous montrons qu'un noyau intégrant les deux types de concepts permet d'améliorer les performances. Puis, dans un deuxième temps, nous présentons un noyau utilisant des LSA locaux afin d'extraire des concepts latents permettant d'obtenir une représentation plus fine des documents.
Qamar, Ali Mustafa. "Mesures de similarité et cosinus généralisé : une approche d'apprentissage supervisé fondée sur les k plus proches voisins." Phd thesis, Grenoble, 2010. http://www.theses.fr/2010GRENM083.
Повний текст джерелаAlmost all machine learning problems depend heavily on the metric used. Many works have proved that it is a far better approach to learn the metric structure from the data rather than assuming a simple geometry based on the identity matrix. This has paved the way for a new research theme called metric learning. Most of the works in this domain have based their approaches on distance learning only. However some other works have shown that similarity should be preferred over distance metrics while dealing with textual datasets as well as with non-textual ones. Being able to efficiently learn appropriate similarity measures, as opposed to distances, is thus of high importance for various collections. If several works have partially addressed this problem for different applications, no previous work is known which has fully addressed it in the context of learning similarity metrics for kNN classification. This is exactly the focus of the current study. In the case of information filtering systems where the aim is to filter an incoming stream of documents into a set of predefined topics with little supervision, cosine based category specific thresholds can be learned. Learning such thresholds can be seen as a first step towards learning a complete similarity measure. This strategy was used to develop Online and Batch algorithms for information filtering during the INFILE (Information Filtering) track of the CLEF (Cross Language Evaluation Forum) campaign during the years 2008 and 2009. However, provided enough supervised information is available, as is the case in classification settings, it is usually beneficial to learn a complete metric as opposed to learning thresholds. To this end, we developed numerous algorithms for learning complete similarity metrics for kNN classification. An unconstrained similarity learning algorithm called SiLA is developed in which case the normalization is independent of the similarity matrix. SiLA encompasses, among others, the standard cosine measure, as well as the Dice and Jaccard coefficients. SiLA is an extension of the voted perceptron algorithm and allows to learn different types of similarity functions (based on diagonal, symmetric or asymmetric matrices). We then compare SiLA with RELIEF, a well known feature re-weighting algorithm. It has recently been suggested by Sun and Wu that RELIEF can be seen as a distance metric learning algorithm optimizing a cost function which is an approximation of the 0-1 loss. We show here that this approximation is loose, and propose a stricter version closer to the the 0-1 loss, leading to a new, and better, RELIEF-based algorithm for classification. We then focus on a direct extension of the cosine similarity measure, defined as a normalized scalar product in a projected space. The associated algorithm is called generalized Cosine simiLarity Algorithm (gCosLA). All of the algorithms are tested on many different datasets. A statistical test, the s-test, is employed to assess whether the results are significantly different. GCosLA performed statistically much better than SiLA on many of the datasets. Furthermore, SiLA and gCosLA were compared with many state of the art algorithms, illustrating their well-foundedness
Книги з теми "Apprentissage de la similarité"
Gaspar, Lorand. Apprentissage. [Paris]: Deyrolle, 1994.
Знайти повний текст джерелаMichel, Récopé, ed. L' apprentissage. Paris: Ed. Revue EP.S, 2001.
Знайти повний текст джерелаDreyfus, Ge rard. Apprentissage statistique. 3rd ed. Paris: Eyrolles, 2008.
Знайти повний текст джерелаCordier, Françoise. Apprentissage et mémoire. Paris: Armand Colin, 2005.
Знайти повний текст джерелаPléty, Robert. L' apprentissage coopérant. Bron: ARCI, 1996.
Знайти повний текст джерелаMichèle, Kail, Fayol Michel 1947-, and Hickmann Maya, eds. Apprentissage des langues. Paris: CNRS, 2009.
Знайти повний текст джерелаGoupil, Georgette. L 'apprentissage cognitif. Laval, Qué: Université du Québec, 1996.
Знайти повний текст джерелаScheinert, David. L' apprentissage inutile. Bruxelles: Société de commercialisation des Editions J. Antoine, 1985.
Знайти повний текст джерелаAnnie, Guédez. Compagnonnage et apprentissage. Paris: Presses universitaires de France, 1994.
Знайти повний текст джерелаBerbaum, Jean. Apprentissage et formation. 4th ed. Paris: Presses universitaires de France, 1994.
Знайти повний текст джерелаЧастини книг з теми "Apprentissage de la similarité"
Hartmann, Werner, Michael Näf, and Raimond Reichert. "Apprentissage par la découverte." In Enseigner l’informatique, 95–103. Paris: Springer Paris, 2012. http://dx.doi.org/10.1007/978-2-8178-0262-6_16.
Повний текст джерелаGaté, Jean-Pierre. "Apprentissage." In L'ABC de la VAE, 79–80. Érès, 2009. http://dx.doi.org/10.3917/eres.bouti.2009.01.0079.
Повний текст джерелаde Maillard, Jacques. "Apprentissage." In Dictionnaire des politiques publiques, 62–68. Presses de Sciences Po, 2019. http://dx.doi.org/10.3917/scpo.bouss.2019.01.0062.
Повний текст джерелаde Maillard, Jacques. "Apprentissage." In Dictionnaire des politiques publiques, 68–75. Presses de Sciences Po, 2014. http://dx.doi.org/10.3917/scpo.bouss.2014.01.0068.
Повний текст джерелаde Maillard, Jacques. "Apprentissage." In Dictionnaire des politiques publiques, 68–75. Presses de Sciences Po, 2010. http://dx.doi.org/10.3917/scpo.bouss.2010.01.0068.
Повний текст джерелаJeanguiot, Nicole. "Apprentissage." In Les concepts en sciences infirmières, 72–74. Association de Recherche en Soins Infirmiers, 2012. http://dx.doi.org/10.3917/arsi.forma.2012.01.0072.
Повний текст джерела"Calcul de l’indice de similarité (SIM)." In Le contrôle parlementaire des finances publiques dans les pays de la francophonie, 139–41. Les Presses de l’Université de Laval, 2019. http://dx.doi.org/10.1515/9782763737997-013.
Повний текст джерелаBrien, Robert. "Apprentissage collaboratif :." In Collaborer pour apprendre et faire apprendre, 55–74. Presses de l'Université du Québec, 2003. http://dx.doi.org/10.2307/j.ctv18pgvgg.7.
Повний текст джерелаDurocher, Éric. "Apprentissage collaboratif." In Repères contemporains pour l’éducation aux sciences et à la technologie, 7–14. Presses de l'Université Laval, 2020. http://dx.doi.org/10.2307/j.ctv1h0p2jg.4.
Повний текст джерелаBattistelli, Adalgisa. "Apprentissage organisationnel." In Psychologie du Travail et des Organisations : 110 notions clés, 63–66. Dunod, 2019. http://dx.doi.org/10.3917/dunod.valle.2019.01.0063.
Повний текст джерелаТези доповідей конференцій з теми "Apprentissage de la similarité"
Delisle, Sylvain, Sylvain Létourneau, and Stan Matwin. "Expérimentation en apprentissage d'heuristiques pour l'analyse syntaxique." In the 17th international conference. Morristown, NJ, USA: Association for Computational Linguistics, 1998. http://dx.doi.org/10.3115/980451.980896.
Повний текст джерелаDelisle, Sylvain, Sylvain Létourneau, and Stan Matwin. "Expérimentation en apprentissage d'heuristiques pour l'analyse syntaxique." In the 36th annual meeting. Morristown, NJ, USA: Association for Computational Linguistics, 1998. http://dx.doi.org/10.3115/980845.980896.
Повний текст джерелаFourcade, A. "Apprentissage profond : un troisième oeil pour les praticiens." In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206601014.
Повний текст джерелаVillard, Marie-Aline. "Commentaire de la postface de Mouvements d’Henri Michaux : déplacement, (dés)apprentissage, écart." In Penser le mouvement. Fabula, 2015. http://dx.doi.org/10.58282/colloques.2593.
Повний текст джерелаGresse, Adrien, Richard Dufour, Vincent Labatut, Mickael Rouvier, and Jean-François Bonastre. "Mesure de similarité fondée sur des réseaux de neurones siamois pour le doublage de voix." In XXXIIe Journées d’Études sur la Parole. ISCA: ISCA, 2018. http://dx.doi.org/10.21437/jep.2018-2.
Повний текст джерелаPreiss, R., and M. Gabrea. "Modelisation du canal telephonique pstn et apprentissage multireferences en reconnaissance robuste de la parole." In 2006 Canadian Conference on Electrical and Computer Engineering. IEEE, 2006. http://dx.doi.org/10.1109/ccece.2006.277295.
Повний текст джерелаMarin, Brigitte, and Jacques Crinon. "Approches des genres dans l'enseignement apprentissage de la production verbale écrite à l'école élémentaire française." In 2ème Congrès Mondial de Linguistique Française. Les Ulis, France: EDP Sciences, 2010. http://dx.doi.org/10.1051/cmlf/2010207.
Повний текст джерелаGuan, Qianwen, and Pierrick Philippe. "Influence de la similarité acoustique entre L1 et L2 dans la production des voyelles anglaises par les natifs français." In XXXIVe Journées d'Études sur la Parole -- JEP 2022. ISCA: ISCA, 2022. http://dx.doi.org/10.21437/jep.2022-85.
Повний текст джерелаCHTIOUI, Researcher Jamila. "HOW CAN STUDY GROUPS BE MADE EFFECTIVE AT UNIVERSITY?" In IV. International research Scientific Congress of Humanities and Social Sciences. Rimar Academy, 2023. http://dx.doi.org/10.47832/ist.con4-2.
Повний текст джерелаMarnet, Béatrice. "Les expressions idiomatiques et l’approche actionnelle – L'apprentissage du français langue étrangère à travers les unités phraséologiques qui ont pour thème l'eau." In XXV Coloquio AFUE. Palabras e imaginarios del agua. Valencia: Universitat Politècnica València, 2016. http://dx.doi.org/10.4995/xxvcoloquioafue.2016.3799.
Повний текст джерелаЗвіти організацій з теми "Apprentissage de la similarité"
Lopes, Helena. La Dimension Apprentissage de la Relation de Travail. DINÂMIA'CET-IUL, 1995. http://dx.doi.org/10.7749/dinamiacet-iul.wp.1995.04.
Повний текст джерелаMelloni, Gian. Le leadership des autorités locales en matière d'assainissement et d'hygiène : expériences et apprentissage de l'Afrique de l'Ouest. Institute of Development Studies (IDS), January 2022. http://dx.doi.org/10.19088/slh.2022.002.
Повний текст джерелаChambers, Robert, Naomi Vernon, and Jamie Myers. L’apprentissage rapide par l’action pour la programmation de l’assainissement et l’hygiène. The Sanitation Learning Hub, Institute of Development Studies, September 2020. http://dx.doi.org/10.19088/slh.2020.010.
Повний текст джерелаMotulsky, Aude, Jean Noel Nikiema, Philippe Després, Alexandre Castonguay, Martin Cousineau, Joé T. Martineau, Cécile Petitgand, and Catherine Régis. Promesses de l’IA en santé - Fiche 2. Observatoire international sur les impacts sociétaux de l’intelligence artificielle et du numérique, March 2022. http://dx.doi.org/10.61737/votf6751.
Повний текст джерелаBrinkerhoff, Derick W., Sarah Frazer, and Lisa McGregor. S'adapter pour apprendre et apprendre pour s'adapter : conseils pratiques tirés de projets de développement internationaux. RTI Press, January 2018. http://dx.doi.org/10.3768/rtipress.2018.pb.0015.1801.fr.
Повний текст джерела