Добірка наукової літератури з теми "Application en nomade"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Application en nomade".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Application en nomade"
Tomtosova, Elena Afanasevna, and Marina Sergeevna Yakushkina. "Creating an Upbringing Space by Nomadic Preschool Educational Organization." Siberian Pedagogical Journal, no. 5 (November 18, 2020): 20–34. http://dx.doi.org/10.15293/1813-4718.2005.02.
Повний текст джерелаKac, Eduardo. "Nomads." Leonardo 29, no. 4 (1996): 255. http://dx.doi.org/10.2307/1576300.
Повний текст джерелаCampanella, Mario, Serge Hoogendoorn, and Winnie Daamen. "The Nomad Model: Theory, Developments and Applications." Transportation Research Procedia 2 (2014): 462–67. http://dx.doi.org/10.1016/j.trpro.2014.09.061.
Повний текст джерелаKaddour, Mejdi, and Laurent Pautet. "MobileJMS: une solution globale d’adaptation des applications nomades." Annales Des Télécommunications 62, no. 3-4 (March 2007): 464–85. http://dx.doi.org/10.1007/bf03253270.
Повний текст джерелаGoodrich, Gregory. "NOMAD: A PRELIMINARY STUDY OF POSSIBLE REHABILITATION APPLICATIONS." Optometry and Vision Science 78, SUPPLEMENT (December 2001): 291. http://dx.doi.org/10.1097/00006324-200112001-00476.
Повний текст джерелаBourgeois, G., C. Brodeur, and A. C. Kushalappa. "Effet de la brûlure cercosporéenne, causée par le Cercospora carotae, sur le développement, la croissance et le rendement de la carotte." Phytoprotection 79, no. 1 (April 12, 2005): 9–19. http://dx.doi.org/10.7202/706131ar.
Повний текст джерелаSultangalieva, Gulmira, Ulzhan Tuleshova, and Paul W. Werth. "Nomadic Nobles: Pastoralism and Privilege in the Russian Empire." Slavic Review 81, no. 1 (2022): 77–96. http://dx.doi.org/10.1017/slr.2022.78.
Повний текст джерелаBurtner, Matthew, Steven Kemper, and David Topper. "Network Socio-Synthesis and Emergence in NOMADS." Organised Sound 17, no. 1 (February 14, 2012): 45–55. http://dx.doi.org/10.1017/s1355771811000501.
Повний текст джерелаEl Kalam, A. Abou, M. Maachaoui, N. Idboufker, H. Ait Lahcen, and A. Ait Ouahman. "A Secure Architecture for Nomadic User in IMS Network." International Journal of Mobile Computing and Multimedia Communications 4, no. 1 (January 2012): 1–17. http://dx.doi.org/10.4018/jmcmc.2012010101.
Повний текст джерелаKhan, Subayal, Jukka Saastamoinen, Jyrki Huusko, Juha-Pekka Soininen, and Jari Nurmi. "Application Workload Modelling via Run-Time Performance Statistics." International Journal of Embedded and Real-Time Communication Systems 4, no. 2 (April 2013): 1–35. http://dx.doi.org/10.4018/jertcs.2013040101.
Повний текст джерелаДисертації з теми "Application en nomade"
Saidi, Majdi. "Contribution à l'optimisation des systèmes hybrides de production énergétique à base de sources renouvelables." Electronic Thesis or Diss., Aix-Marseille, 2021. http://www.theses.fr/2021AIXM0627.
Повний текст джерелаThis thesis is a contribution to the optimal design of hybrid systems for energy production. The proposed work is organised in three parts. The first part is dedicated to an energy analysis at the level of the national electricity grid. The aim is to study the possibility of integrating sub-grids consisting of a set of producer-operators connected to the main grid. The aim is to strengthen the decentralisation of energy production, taking into account the specific needs and availability of renewable sources. To achieve this, the approach is to optimise the cost of the installation for the producer-operator and the subsidy rates provided by the supporting state, while avoiding financial speculation. The second part deals with the problem of sizing hybrid systems by optimal load adaptation, and the approach is carried out in two parts. In the first part, the load is modelled taking into account the specific constraints of the operation. Then, in the second part, an optimisation of the structure is carried out according to the available energy. To illustrate the relevance of the approach, an application to a concrete case of a company is performed. The third part is devoted to the specific case of a nomadic application. First, the different constraints characteristic of this type of application (energy security, design cost, etc.) are determined and the different optimisation problems associated with the specific objectives are defined. Then, a case study expressed as an optimisation problem of a multi-objective nature is stated. Finally, optimal solutions are identified through artificial intelligence tools and application
HATANAKA, Masayuki, Shuichiro YAMAMOTO, Shoichi SENDA, Junko HASHIMOTO, and Eikazu NIWANO. "Smart Card Information Sharing Platform towards Global Nomadic World." Institute of Electronics, Information and Communication Engineers, 2004. http://hdl.handle.net/2237/15022.
Повний текст джерелаPoulin, Guylaine. "Contribution au développement d'un générateur piézoélectrique pour applications nomades." Paris 11, 2004. http://www.theses.fr/2004PA112062.
Повний текст джерелаThe market of portable electronic devices has been strongly expanding for the last ten years, and their energy consumption has been decreasing in parallel. So the concept of harvesting mechanical energy in human environment arouses a renewed interest. In this context, we designed and tested a prototype piezoelectric generator harvesting the mechanical energy of voluntary human movements, in order to supply devices consuming between 10 microwatts and 1 milliwatt. The generator consists of three stages : a mechanical application device (mad) which transforms the human movement into a high amplitude constraint ; the piezoelectric device (pd), the parallel association of identical pzt ceramic bars working in compression ; the harvesting system (hs), an electronic circuit that converts the electrical energy in a suitable form to the targeted application. On the one hand, we modelled the pd working in 33 or 31 mode, at very low frequencies compared to the resonance frequency of the pd. With this quasi-static model, we estimated the electrical power delivered for a given constraint. On the other hand, we designed and produced two experimental devices in order to demonstrate the feasibility of the mad principle. With the second prototype, the pd delivers 13. 2 microwatts to a 100 kiloohms load, for a 55 hz and 2 n constraint on each piezoceramic. At last, we conceived an harvesting system, which increases the part of mechanical energy converted in electrical energy. This circuit has been elaborated especially for the sp, whose impedance and current level are specific. Moreover, the use of low consumption components is essential, with the aim to make an autonomous generator
Nikolinakou, Maria-Aikaterini 1976. "Application of the geostatistical program NOMAD-KRIBS to geoenvironmental problems." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/84241.
Повний текст джерелаIncludes bibliographical references (p. 117-120).
by Maria-Aikaterini Nikolinakou.
S.M.
Do, Tuan Anh. "Modélisation multiphysique des matériaux magnétoélectriques de seconde génération : application aux objets nomades connectés." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS486.
Повний текст джерелаMagnetoelectric materials (ME) are functional composite materials composed of piezoelectric and magnetostrictive phases that have the particularity of transforming magnetic energy into electrical energy through the mediation of mechanical energy. The ME effect can be characterized by a magnetoelectric coefficient (V/Oe). This particular property generates growing interests in the scientific research and more specifically in the application of new energy transducers, magnetic sensors or variable inductances. It is in this context that the L2E began since 2012 the development of multiphysics finite element codes to study the ME materials. This thesis is the development of a 3D model combining the existence models of piezoelectric and magnetostrictive for the investigation of ME behavior from three aspects: Modeling of laminate composite, taking into account the nonlinearity of magnetostrictive through a multiscale model and the effect of eddy currents in dynamic regime; Study of different ME composite structures and the influence of geometries parameters on the performance of this material; Application of the homogenization principle to analyze the magnetoelectric behavior of ME composites composed of granular nanoparticles type 0-3 or fiber composite type 1-3
Ceroi, Stéphan. "Ordres et géométrie plane : application au nombre de sauts." Montpellier 2, 2000. http://www.theses.fr/2000MON20114.
Повний текст джерелаRama, Jiten. "The design of a protocol for collaboration in a distributed repository - Nomad." Diss., Pretoria : [s.n.], 2007. http://upetd.up.ac.za/thesis/available/etd-07052007-093209.
Повний текст джерелаWicker, Nicolas. "Détermination du nombre de classes : application aux gènes et aux protéines." Université Louis Pasteur (Strasbourg) (1971-2008), 2002. http://www.theses.fr/2002STR13120.
Повний текст джерелаThis work deals with two different problems. The first problem is finding the best number of clusters in a set of points. We propose five methods which we compare with one another and with methods from the literature. Two of them,Secator and DPC produce good results on biological data, respectively on protein families and on genes' expression data. Secator is a rule finding the << elbow >> of the dissimilarity value curve produced by an ascending hierarchical method. The << elbow >> is found by clustering the dissimilarity values into two groups. DPC is based on a division test to decide if a group must be divided into two groups or not. This test compares the density of points inside the two groups and between them. If the first is significatively superior to the second then the group is divided. Another method is inspired by the BIC approximation of a mixture model likelihood. We propose an objective function to choose the best model which contains two terms, one is the model likelihood and the second depends on the percentage of misclassified points. The second problem is the decomposition of a protein into simple volumes. We have developped a heuristic to cut an object into subpieces using the skeleton of the object to find the regions presenting important curvature or pinches. Each subpiece is approximated by the smallest enclosing parallelepiped using two properties we have demonstrated. The developped program has been applied to protein structures to identify surface regions whose composition is biased
Helin, Heikki. "Supporting nomadic agent-based applications in the FIPA agent architecture." Helsinki : University of Helsinki, 2003. http://ethesis.helsinki.fi/julkaisut/mat/tieto/vk/helin/.
Повний текст джерелаFeyel, Frédéric. "Application du calcul parallèle aux modèles à grand nombre de variables internes /." Châtillon : ONERA, 1999. http://catalogue.bnf.fr/ark:/12148/cb370441906.
Повний текст джерелаКниги з теми "Application en nomade"
Lar, Mary. Principles and methods of teaching: Application to nomads. Jos, Nigeria: Fab Education Books, 1997.
Знайти повний текст джерелаWojtkowski, W. Gregory. Applications software programming with fourth-generation languages. Boston: Boyd & Fraser Pub. Co., 1990.
Знайти повний текст джерелаInternational, Conference on Systems Research Informatics and Cybernetics (14th 2002 Baden-Baden Germany). Advances in computer cybernetics: Nomadic computing for wireless applications ... Windsor, Ont: International Institute for Advanced Studies in Systems Research and Cybernetics, 2002.
Знайти повний текст джерелаSchroeder, M. R. Number theory in science communication: With applications in cryptography, physics, digital information, computing, and self similarity. 2nd ed. Berlin: Springer-Verlag, 1986.
Знайти повний текст джерелаNumber theory in science and communication: With applications in cryptography, physics, digital information, computing, and self-similarity. 5th ed. Berlin: Springer, 2009.
Знайти повний текст джерелаSchroeder, M. R. Number theory in science and communication: With applications in cryptography, physics, digital information, computing, and self-similarity. 2nd ed. Berlin: Springer-Verlag, 1986.
Знайти повний текст джерелаSchroeder, M. R. Number theory in science and communication: With applications in cryptography, physics, digital information, computing, and self-similarity. 3rd ed. Berlin: Springer, 1997.
Знайти повний текст джерелаSchroeder, M. R. Number theory in science and communication: With applications in cryptography, physics, digital information, computing, and self-similarity. 2nd ed. Berlin: Springer-Verlag, 1990.
Знайти повний текст джерелаOntario. Le curriculum de l'Ontario de la 1re à la 8e année: Français. Toronto, Ont: Imprimeur de la Reine, 2006.
Знайти повний текст джерелаOntario. Le curriculum de l'Ontario de la 1re à la 8e année: Éducation physique et santé. Toronto, Ont: Imprimeur de la Reine, 1998.
Знайти повний текст джерелаЧастини книг з теми "Application en nomade"
O’Brien, James, and Marc Shapiro. "An Application Framework for Nomadic, Collaborative Applications." In Distributed Applications and Interoperable Systems, 48–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11773887_4.
Повний текст джерелаBubendorfer, Kris, and John H. Hine. "Nomad: Application Participation in a Global Location Service." In Mobile Data Management, 294–306. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36389-0_20.
Повний текст джерелаHochreiner, Christoph, Michael Vögler, Johannes M. Schleicher, Christian Inzinger, Stefan Schulte, and Schahram Dustdar. "Nomadic Applications Traveling in the Fog." In Cloud Infrastructures, Services, and IoT Systems for Smart Cities, 151–61. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67636-4_17.
Повний текст джерелаSuri, Niranjan, Jeffrey M. Bradshaw, Maggie R. Breedy, Paul T. Groth, Gregory A. Hill, and Renia Jeffers. "Strong Mobility and Fine-Grained Resource Control in NOMADS." In Agent Systems, Mobile Agents, and Applications, 2–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-540-45347-5_2.
Повний текст джерелаGupta, Gunjan, and Robert Van Zyl. "NOMA-Based LPWA Networks." In Expert Clouds and Applications, 523–30. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2126-0_42.
Повний текст джерелаCinque, Marcello, Domenico Cotroneo, and Stefano Russo. "Mobility Management and Communication Support for Nomadic Applications." In Lecture Notes in Computer Science, 882–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11575771_55.
Повний текст джерелаPaal, Stefan, Reiner Kammüller, and Bernd Freisleben. "A Cross-Platform Application Environment for Nomadic Desktop Computing." In Object-Oriented and Internet-Based Technologies, 185–200. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30196-7_14.
Повний текст джерелаPaal, Stefan, Reiner Kammüller, and Bernd Freisleben. "Supporting Nomadic Desktop Computing Using an Internet Application Workbench." In On the Move to Meaningful Internet Systems 2004: OTM 2004 Workshops, 40–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30470-8_19.
Повний текст джерелаStefano, Campadello. "Dynamic Composition of Execution Environment for Adaptive Nomadic Applications." In Lecture Notes in Computer Science, 73–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44651-6_8.
Повний текст джерелаDiallo, Mamadou H., Michael August, Roger Hallman, Megan Kline, Henry Au, and Vic Beach. "CallForFire: A Mission-Critical Cloud-Based Application Built Using the Nomad Framework." In Financial Cryptography and Data Security, 319–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-53357-4_21.
Повний текст джерелаТези доповідей конференцій з теми "Application en nomade"
Shapiro, Marc, Antony Rowstron, and Anne-Marie Kermarrec. "Application-independent reconciliation for nomadic applications." In the 9th workshop. New York, New York, USA: ACM Press, 2000. http://dx.doi.org/10.1145/566726.566728.
Повний текст джерелаShafran, S. V., I. A. Kudryavtsev, V. M. Grechishnikov, and A. V. Arkhipov. "Application of IC NT1065 “Nomada”." In 2019 26th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS). IEEE, 2019. http://dx.doi.org/10.23919/icins.2019.8769426.
Повний текст джерелаGangishetty, Mahesh, Shaocong Hou, Qimin Quan, and Daniel N. Congreve. "High Efficiency Blue Perovskite Nanocrystal LEDs." In Novel Optical Materials and Applications. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/noma.2018.nom2d.2.
Повний текст джерелаAlfieri, C. G. E., D. Waldburger, J. Nürnberg, M. Golling, and U. Keller. "Quantum Dot Semiconductor Disk Lasers: Record Performance Depending on Growth Techniques." In Novel Optical Materials and Applications. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/noma.2018.nom2d.3.
Повний текст джерелаMelikov, Rustamzhon, Daniel Aaron Press, Baskaran Ganesh Kumar, Sadra Sadeghi, and Sedat Nizamoglu. "Radiative Energy Transfer in Color-conversion LEDs." In Novel Optical Materials and Applications. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/noma.2018.nom2d.4.
Повний текст джерелаMessner, Andreas, Christian Haffner, Wolfgang Heni, Ueli Koch, and Juerg Leuthold. "Pockels-Effect Materials for Plasmonic Modulators." In Novel Optical Materials and Applications. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/noma.2018.nom2d.5.
Повний текст джерелаBauer, Jens, Melanie Ulitschka, Frank Frost, Thomas Arnold, Lucas Alber, Markus Sondermann, and Gerd Leuchs. "Ultra-precision surface figuring of optical aluminium devices." In Novel Optical Materials and Applications. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/noma.2018.nom3d.3.
Повний текст джерелаGupta, Tapajyoti Das, Louis Martin-Monier, Arthur Le Bris, Wei Yan, Tùng Dang Nguyen, Alexis Page, Yunpeng Qu, and Fabien Sorin. "Template assisted dewetting of optical glasses for large area, flexible and stretchable all dielectric metasurfaces." In Novel Optical Materials and Applications. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/noma.2018.nom3d.4.
Повний текст джерелаSavo, Romolo, Romain Pierrat, Ulysse Najar, Rémi Carminati, Stefan Rotter, and Sylvain Gigan. "When the Structure Becomes Insignificant: Invariance of the Mean Path Length in Light-Scattering Media." In Novel Optical Materials and Applications. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/noma.2018.nom3d.5.
Повний текст джерелаRamos, M., V. Bharadwaj, B. Sotillo, G. Galzerano, B. Gholipour, S. M. Eaton, and C. Soci. "All-Optical Intra and Inter Neuronal Communication Protocol Platform." In Novel Optical Materials and Applications. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/noma.2018.nom3d.6.
Повний текст джерела