Добірка наукової літератури з теми "Ants"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Ants".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Ants"

1

Karch, Jason, Michael J. Bround, Hadi Khalil, Michelle A. Sargent, Nadina Latchman, Naohiro Terada, Pablo M. Peixoto, and Jeffery D. Molkentin. "Inhibition of mitochondrial permeability transition by deletion of the ANT family and CypD." Science Advances 5, no. 8 (August 2019): eaaw4597. http://dx.doi.org/10.1126/sciadv.aaw4597.

Повний текст джерела
Анотація:
The mitochondrial permeability transition pore (MPTP) has resisted molecular identification. The original model of the MPTP that proposed the adenine nucleotide translocator (ANT) as the inner membrane pore-forming component was challenged when mitochondria from Ant1/2 double null mouse liver still had MPTP activity. Because mice express three Ant genes, we reinvestigated whether the ANTs comprise the MPTP. Liver mitochondria from Ant1, Ant2, and Ant4 deficient mice were highly refractory to Ca2+-induced MPTP formation, and when also given cyclosporine A (CsA), the MPTP was completely inhibited. Moreover, liver mitochondria from mice with quadruple deletion of Ant1, Ant2, Ant4, and Ppif (cyclophilin D, target of CsA) lacked Ca2+-induced MPTP formation. Inner-membrane patch clamping in mitochondria from Ant1, Ant2, and Ant4 triple null mouse embryonic fibroblasts showed a loss of MPTP activity. Our findings suggest a model for the MPTP consisting of two distinct molecular components: The ANTs and an unknown species requiring CypD.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Marshall, Alan. "Ants/Anti-Ants!" Metascience 14, no. 2 (August 2005): 209–11. http://dx.doi.org/10.1007/s11016-005-3295-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mathis, Kaitlyn A., and Neil D. Tsutsui. "Dead ant walking: a myrmecophilous beetle predator uses parasitoid host location cues to selectively prey on parasitized ants." Proceedings of the Royal Society B: Biological Sciences 283, no. 1836 (August 17, 2016): 20161281. http://dx.doi.org/10.1098/rspb.2016.1281.

Повний текст джерела
Анотація:
Myrmecophiles (i.e. organisms that associate with ants) use a variety of ecological niches and employ different strategies to survive encounters with ants. Because ants are typically excellent defenders, myrmecophiles may choose moments of weakness to take advantage of their ant associates. This hypothesis was studied in the rove beetle, Myrmedonota xipe , which associates with Azteca sericeasur ants in the presence of parasitoid flies. A combination of laboratory and field experiments show that M. xipe beetles selectively locate and prey upon parasitized ants. These parasitized ants are less aggressive towards beetles than healthy ants, allowing beetles to eat the parasitized ants alive without interruption. Moreover, behavioural assays and chemical analysis reveal that M. xipe are attracted to the ant's alarm pheromone, the same secretion used by the phorid fly parasitoids in host location. This strategy allows beetles access to an abundant but otherwise inaccessible resource, as A. sericeasur ants are typically highly aggressive. These results are the first, to our knowledge, to demonstrate a predator sharing cues with a parasitoid to gain access to an otherwise unavailable prey item. Furthermore, this work highlights the importance of studying ant–myrmecophile interactions beyond just their pairwise context.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Graham, Paul, and Thomas S. Collett. "View-based navigation in insects: how wood ants (Formica rufaL.) look at and are guided by extended landmarks." Journal of Experimental Biology 205, no. 16 (August 15, 2002): 2499–509. http://dx.doi.org/10.1242/jeb.205.16.2499.

Повний текст джерела
Анотація:
SUMMARYBees, wasps and ants learn landmarks as views from particular vantage points, storing the retinal positions of landmark edges. By moving so as to minimise the difference between their stored and current view, they can return to the vantage point from which a view was taken. We have examined what wood ants learn about a laterally placed, extended landmark, a wall, while walking parallel to it to reach a feeder and how they use this stored information to guide their path. Manipulation of the height of the wall and the ant's starting distance from it reveals that ants maintain a desired distance from the wall by keeping the image of the top of the wall at a particular retinal elevation. Ants can thus employ image matching both for returning to a place and for following a fixed route.Unlike many flying insects, an ant's direction of motion while walking is always along its longitudinal body axis and, perhaps for this reason, it favours its frontal retina for viewing discrete landmarks. We find that ants also use their frontal retina for viewing a laterally placed wall. On a coarse scale, the ant's path along the wall is straight, but on a finer scale it is roughly sinusoidal, allowing the ant to scan the surrounding landscape with its frontal retina. The ant's side-to-side scanning means that the wall is viewed with its frontal retina for phases of the scanning cycle throughout its trajectory. Details of the scanning pattern depend on the scene. Ants scan further to the side that is empty of the wall than to the side containing the wall, and they scan further into the wall side when the wall is of a lower apparent height. We conclude that frontal retina is employed for image storage and for path control.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Waxman, David. "Ants ordering ants to feed." Trends in Ecology & Evolution 17, no. 3 (March 2002): 103–4. http://dx.doi.org/10.1016/s0169-5347(01)02435-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wilson, Edward O. "Ants." Bulletin of the American Academy of Arts and Sciences 45, no. 3 (December 1991): 13. http://dx.doi.org/10.2307/3824337.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lord, Richard. "Ants." American Biology Teacher 80, no. 5 (May 1, 2018): 392. http://dx.doi.org/10.1525/abt.2018.80.5.392.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lapitskii, Viktor. "Ants." Index on Censorship 22, no. 10 (November 1993): 12–15. http://dx.doi.org/10.1080/03064229308535616.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Brown, Bill. "Ants." Appalachian Heritage 30, no. 3 (2002): 71. http://dx.doi.org/10.1353/aph.2002.0082.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Smith, Katherine. "Ants." Appalachian Heritage 33, no. 2 (2005): 104. http://dx.doi.org/10.1353/aph.2005.0109.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Ants"

1

Pettersson, Lars, and Johansson Christoffer Lundell. "Ant Colony Optimization - Optimal Number of Ants." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229764.

Повний текст джерела
Анотація:
The focus of this thesis paper is to study the impact the number of ants has on the found solution of the Ant Colony Optimization (ACO) metaheuristic when solving the Traveling Salesman Problem. The goal was to find out how the length of the computed tours change for different amounts of ants within a limited number of iterations. To study this, three well known versions of the ACO algorithm were implemented and tested: Min-Max Ant System (MMAS), Elitist Ant System (EliteAS) and Ranked Ant System (RankedAS). The results showed trends that were consistent over several test cases. EliteAS and RankedAS which both utilize specialist ants showed clear signs that the number of specialists had a large influence on the length of solutions. Meanwhile, normal ants did not affect the solutions as much. MMAS and EliteAS only had a small variation on the answer, with lower amount of ants being more favorable. On the other hand, RankedAS performed better by a large margin when working with five specialists and a number of ants equaling the number of cities in the problem.
Målet med denna rapport var att studera hur antalet myror som används av Ant Colony Optimization (ACO) påverkar resultatet vid lö- sandet av Traveling Salesman Problem (TSP). Hur ändras lösningens längd med olika antal myror, när antalet iterationer som får användas är begränsat? För att få fram ett svar på frågan implementerades och testades tre välkända ACO algoritmer: Min-Max Ant System (MMAS), Elitist Ant System (EliteAS) och Ranked Ant System (RankedAS). Efter implementering och utförlig testning så uppdagades trender som var konsistenta över flera testfall. För EliteAS och RankedAS, som bå- da förlitar sig på specialiserade myror, hade antalet specialister en stor påverkan på den funna längden. Normala myror hade istället en liten påverkan på slutresultatet. För MMAS och EliteAS så var skillnaden minimal, med en viss favör mot ett lägre antal myror. RankedAS hade en motsatt trend och hade bäst resultat med fem specialister och lika många normala myror som antalet städer i TSP instansen.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Riha, Joyce Marie. "Fire Ants." PDXScholar, 1996. https://pdxscholar.library.pdx.edu/open_access_etds/5150.

Повний текст джерела
Анотація:
Loss is a fundamental part of the human experience, from the loss of security and innocence that comes with the necessary separation of child from parent to the ultimate loss of life. Along the way, there are the losses of jobs, of incomes, of homes; the losses of friendships, of family members, of lovers; the losses of direction, of control, of hope. As cognitive and caring beings, humans struggle to cope with these losses, to greater and lesser degrees of success. This is the theme at the heart of this thesis. Fire Ants is composed of ten short stories, fictive works, which differ in specific subject matter, yet deal unilaterally with issues of loss. Like the venomous creatures that threaten to eat B. D. Packard alive in the title story, life eats away at a number of characters in the collection who are deficient. The narrators in "Aftermath" and "Hues," for example, suffer psychological -- if not physical -- deaths. But not all of the characters lack coping mechanisms, unhealthy as they may sometimes be. As the stories unfold, some characters begin to gain small degrees of perspective and understanding, to learn that while life is full of loss, it is not always entirely bleak. As demonstrated in "Cross Creek," good exists, though it is not always where one might expect it. And life can be full despite loss, as depicted in "Stitches."
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Fellowes, John Robert. "Community composition of Hong Kong ants : spatial and seasonal patterns /." Thesis, Hong Kong : University of Hong Kong, 1996. http://sunzi.lib.hku.hk/hkuto/record.jsp?B18737110.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Umphrey, Gary John Carleton University Dissertation Biology. "Differentiation of sibling species in the ant genus Aphaenogaster; karyotypic, electrophoretic, and morphometric investigations of the Fulva-Rudis-Texana complex." Ottawa, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chong, Chee-Seng. "The distribution and ecology of ants in vineyards /." Connect to thesis, 2009. http://repository.unimelb.edu.au/10187/5744.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Paul, Jürgen. "The mouthparts of ants." [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=963149202.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Evison, Sophie Elizabeth Frances. "Foraging Organisation in Ants." Thesis, University of Sheffield, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.500109.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wystrach, Antoine. "Visual navigation in ants." Toulouse 3, 2011. http://thesesups.ups-tlse.fr/1707/.

Повний текст джерела
Анотація:
Les remarquables capacités de navigation des insectes nous prouvent à quel point ces " mini-cerveaux " peuvent produire des comportements admirablement robustes et efficaces dans des environnements complexes. En effet, être capable de naviguer de façon efficace et autonome dans un environnement parfois hostile (désert, forêt tropicale) sollicite l'intervention de nombreux processus cognitifs impliquant l'extraction, la mémorisation et le traitement de l'information spatiale préalables à une prise de décision locomotrice orientée dans l'espace. Lors de leurs excursions hors du nid, les insectes tels que les abeilles, guêpes ou fourmis, se fient à un processus d'intégration du trajet, mais également à des indices visuels qui leur permettent de mémoriser des routes et de retrouver certains sites alimentaires familiers et leur nid. L'étude des mécanismes d'intégration du trajet a fait l'objet de nombreux travaux, par contre, nos connaissances à propos de l'utilisation d'indices visuels sont beaucoup plus limitées et proviennent principalement d'études menées dans des environnements artificiellement simplifiés, dont les conclusions sont parfois difficilement transposables aux conditions naturelles. Cette thèse propose une approche intégrative, combinant 1- des études de terrains et de laboratoire conduites sur deux espèces de fourmis spécialistes de la navigation visuelle (Melophorus bagoti et Gigantiops destructor) et 2- des analyses de photos panoramiques prisent aux endroits où les fourmis naviguent qui permettent de quantifier objectivement l'information visuelle accessible à l'insecte. Les résultats convergents obtenus sur le terrain et au laboratoire permettent de montrer que, chez ces deux espèces, les fourmis ne fragmentent pas leur monde visuel en multiples objets indépendants, et donc ne mémorisent pas de 'repères visuels' ou de balises particuliers comme le ferait un être humain. En fait, l'efficacité de leur navigation émergerait de l'utilisation de paramètres visuels étendus sur l'ensemble de leur champ visuel panoramique, incluant repères proximaux comme distaux, sans les individualiser. Contre-intuitivement, de telles images panoramiques, même à basse résolution, fournissent une information spatiale précise et non ambiguë dans les environnements naturels. Plutôt qu'une focalisation sur des repères isolés, l'utilisation de vues dans leur globalité semble être plus efficace pour représenter la complexité des scènes naturelles et être mieux adaptée à la basse résolution du système visuel des insectes. Les photos panoramiques enregistrées peuvent également servir à l'élaboration de modèles navigationnels. Les prédictions de ces modèles sont ici directement comparées au comportement des fourmis, permettant ainsi de tester et d'améliorer les différentes hypothèses envisagées. Cette approche m'a conduit à la conclusion selon laquelle les fourmis utilisent leurs vues panoramiques de façons différentes suivant qu'elles se déplacent en terrain familier ou non. Par exemple, aligner son corps de manière à ce que la vue perçue reproduise au mieux l'information mémorisée est une stratégie très efficace pour naviguer le long d'une route bien connue ; mais n'est d'aucune efficacité si l'insecte se retrouve en territoire nouveau, écarté du chemin familier. Dans ces cas critiques, les fourmis semblent recourir à une seconde stratégie qui consiste à se déplacer vers les régions présentant une ligne d'horizon plus basse que celle mémorisée, ce qui généralement conduit vers le terrain familier. Afin de choisir parmi ces deux différentes stratégies, les fourmis semblent tout simplement se fier au degré de familiarisation avec le panorama perçu. Cette thèse soulève aussi la question de la nature de l'information visuelle mémorisée par les insectes. Le modèle du " snapshot " qui prédomine dans la littérature suppose que les fourmis mémorisent une séquence d'instantanés photographiques placés à différents points le long de leurs routes. A l'inverse, les résultats obtenus dans le présent travail montrent que l'information visuelle mémorisée au bout d'une route (15 mètres) modifie l'information mémorisée à l'autre extrémité de cette même route, ce qui suggère que la connaissance visuelle de l'ensemble de la route soit compactée en une seule et même représentation mémorisée. Cette hypothèse s'accorde aussi avec d'autres de nos résultats montrant que la mémoire visuelle ne s'acquiert pas instantanément, mais se développe et s'affine avec l'expérience répétée. Lorsqu'une fourmi navigue le long de sa route, ses récepteurs visuels sont stimulés de façon continue par une scène évoluant doucement et régulièrement au fur et à mesure du déplacement. Mémoriser un pattern général de stimulations, plutôt qu'une série de " snapshots " indépendants et très ressemblants les uns aux autres, constitue une hypothèse parcimonieuse. Cette hypothèse s'applique en outre particulièrement bien aux modèles en réseaux de neurones, suggérant sa pertinence biologique. Dans l'ensemble, cette thèse s'intéresse à la nature des perceptions et de la mémoire visuelle des fourmis, ainsi qu'à la manière dont elles sont intégrées et traitées afin de produire une réponse navigationnelle appropriée. Nos résultats sont aussi discutés dans le cadre de la cognition comparée. Insectes comme vertébrés ont résolu le même problème qui consiste à naviguer de façon efficace sur terre. A la lumière de la théorie de l'évolution de Darwin, il n'y a 'a priori' aucune raison de penser qu'il existe une forme de transition brutale entre les mécanismes cognitifs des différentes espèces animales. Le fossé marqué entre insectes et vertébrés au sein des sciences cognitives pourrait bien être dû à des approches différentes plutôt qu'à de vraies différences ontologiques. Historiquement, l'étude de la navigation de l'insecte a suivi une approche de type 'bottom-up' qui recherche comment des comportements apparemment complexes peuvent découler de mécanismes simples. Ces solutions parcimonieuses, comme celles explorées dans cette thèse, peuvent fournir de remarquables hypothèses de base pour expliquer la navigation chez d'autres espèces animales aux cerveaux et comportements apparemment plus complexes, contribuant ainsi à une véritable cognition comparée
Navigating efficiently in the outside world requires many cognitive abilities like extracting, memorising, and processing information. The remarkable navigational abilities of insects are an existence proof of how small brains can produce exquisitely efficient, robust behaviour in complex environments. During their foraging trips, insects, like ants or bees, are known to rely on both path integration and learnt visual cues to recapitulate a route or reach familiar places like the nest. The strategy of path integration is well understood, but much less is known about how insects acquire and use visual information. Field studies give good descriptions of visually guided routes, but our understanding of the underlying mechanisms comes mainly from simplified laboratory conditions using artificial, geometrically simple landmarks. My thesis proposes an integrative approach that combines 1- field and lab experiments on two visually guided ant species (Melophorus bagoti and Gigantiops destructor) and 2- an analysis of panoramic pictures recorded along the animal's route. The use of panoramic pictures allows an objective quantification of the visual information available to the animal. Results from both species, in the lab and the field, converged, showing that ants do not segregate their visual world into objects, such as landmarks or discrete features, as a human observers might assume. Instead, efficient navigation seems to arise from the use of cues widespread on the ants' panoramic visual field, encompassing both proximal and distal objects together. Such relatively unprocessed panoramic views, even at low resolution, provide remarkably unambiguous spatial information in natural environment. Using such a simple but efficient panoramic visual input, rather than focusing on isolated landmarks, seems an appropriate strategy to cope with the complexity of natural scenes and the poor resolution of insects' eyes. Also, panoramic pictures can serve as a basis for running analytical models of navigation. The predictions of these models can be directly compared with the actual behaviour of real ants, allowing the iterative tuning and testing of different hypotheses. This integrative approach led me to the conclusion that ants do not rely on a single navigational technique, but might switch between strategies according to whether they are on or off their familiar terrain. For example, ants can recapitulate robustly a familiar route by simply aligning their body in a way that the current view matches best their memory. However, this strategy becomes ineffective when displaced away from the familiar route. In such a case, ants appear to head instead towards the regions where the skyline appears lower than the height recorded in their memory, which generally leads them closer to a familiar location. How ants choose between strategies at a given time might be simply based on the degree of familiarity of the panoramic scene currently perceived. Finally, this thesis raises questions about the nature of ant memories. Past studies proposed that ants memorise a succession of discrete 2D 'snapshots' of their surroundings. Contrastingly, results obtained here show that knowledge from the end of a foraging route (15 m) impacts strongly on the behaviour at the beginning of the route, suggesting that the visual knowledge of a whole foraging route may be compacted into a single holistic memory. Accordingly, repetitive training on the exact same route clearly affects the ants' behaviour, suggesting that the memorised information is processed and not 'obtained at once'. While navigating along their familiar route, ants' visual system is continually stimulated by a slowly evolving scene, and learning a general pattern of stimulation rather than storing independent but very similar snapshots appears a reasonable hypothesis to explain navigation on a natural scale; such learning works remarkably well with neural networks. Nonetheless, what the precise nature of ants' visual memories is and how elaborated they are remain wide open question. Overall, my thesis tackles the nature of ants' perception and memory as well as how both are processed together to output an appropriate navigational response. These results are discussed in the light of comparative cognition. Both vertebrates and insects have resolved the same problem of navigating efficiently in the world. In light of Darwin's theory of evolution, there is no a priori reason to think that there is a clear division between cognitive mechanisms of different species. The actual gap between insect and vertebrate cognitive sciences may result more from different approaches rather than real differences. Research on insect navigation has been approached with a bottom-up philosophy, one that examines how simple mechanisms can produce seemingly complex behaviour. Such parsimonious solutions, like the ones explored in the present thesis, can provide useful baseline hypotheses for navigation in other larger-brained animals, and thus contribute to a more truly comparative cognition
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gunawardene, Nihara. "Arid zone ant communities of Western Australia." Thesis, Curtin University, 2003. http://hdl.handle.net/20.500.11937/1178.

Повний текст джерела
Анотація:
This thesis is prepared in three parts; the first part is a study of the ant species of the southern Carnarvon Basin, which was undertaken in order to determine the patterns of ant species distribution in this arid zone area. The distribution patterns were looked at in terms of biogeographical regions and they demonstrated the transitional nature of this particular area. Recommendations to alter the border between the South-west Province and the Eremaean Province were supported. The next chapter of this thesis analysed ant species from long unburnt and burnt areas of three main vegetation types (two Triodia species grasslands and Acacia aneura woodlands) in the Gibson Desert Nature Reserve. This study was carried out to observe the recovery of ant populations after fire. The results provided further evidence that invertebrates are measurably impacted by fire in the arid zone. The final chapter is a comparison of these two arid zone studies with six other ant community studies from throughout Western Australia. It demonstrated the uniqueness of some arid zone sites as well as related each study to each other according to their ant communities.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bass, Melanie. "Studies on the ant-fungus mutualism in leafcutting ants, Formicidae: Attini." Thesis, Bangor University, 1993. https://research.bangor.ac.uk/portal/en/theses/studies-on-the-antfungus-mutualism-in-leafcutting-ants-formicidae-attini(6c621edd-c450-4ebb-9c3d-c85057070727).html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Ants"

1

Reasoner, Charles. Ants, ants, ants. New York: Price Stern Sloan, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sally, Morgan. Ants. Mankato, Minn: QEB Pub., 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Morgan, Sally. Ants. Laguna Hills, CA: QEB Pub., 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Stewart, Melissa. Ants! Washington, D.C: National Geographic, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Murray, Julie. Ants. Edina, Minn: ABDO Pub. Co., 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Butterworth, Christine. Ants. Basingstoke: Macmillan Education, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Halfmann, Janet. Ants. Mankato, Minn: Smart Apple Media, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Trueit, Trudi Strain. Ants. New York: Marshall Cavendish Benchmark, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Trueit, Trudi Strain. Ants. New York: Cavendish Square, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Andrea, Jaretzki, and Wright Group/McGraw-Hill, eds. Ants. Chicago, IL: Wright Group/McGraw-Hill, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Ants"

1

Sudd, John H., and Nigel R. Franks. "Ants Exploiting Ants." In The Behavioural Ecology of Ants, 137–60. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3123-7_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Robinson, William H. "Ants." In Urban Entomology, 261–84. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0437-1_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hangay, George, Severiano F. Gayubo, Marjorie A. Hoy, Marta Goula, Allen Sanborn, Wendell L. Morrill, Gerd GÄde, et al. "Ants." In Encyclopedia of Entomology, 185. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6359-6_10273.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Moraru, Gail Miriam, and Jerome Goddard. "Ants." In The Goddard Guide to Arthropods of Medical Importance, Seventh Edition, 81–88. 7th edition. | Boca Raton, Florida : CRC Press, [2019] | Preceded by Physician’s guide to arthropods of medical importance / Jerome Goddard. 6th ed. 2013.: CRC Press, 2019. http://dx.doi.org/10.1201/b22250-10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dhang, Partho, Philip Koehler, Roberto Pereira, and Daniel D. Dye, II. "Ants." In Key questions in urban pest management: a study and revision guide, 77–84. Wallingford: CABI, 2022. http://dx.doi.org/10.1079/9781800620179.0010.

Повний текст джерела
Анотація:
Abstract This book chapter discusses ants. Because ants live in large nests that can house many thousands to millions of individuals, their collective effect is certainly what causes greatest concern as a force that may destroy or consume large quantities of food or other materials important to humans. In nature, ants perform beneficial functions, preying on pests, aerating soils, moving soil nutrients, and decomposing organic matter, but in urban environments, they can be considered as one of the most destructive urban pests. Ants belong to the order Hymenoptera which also includes bees and wasps, and, like many other hymenopterans, they are social insects with colony duties divided among different castes. Although most ants can bite with their jaws, the ones that cause greater concern are the ones that sting, using a modified ovipositor to inflict pain. Emphasis should be on excluding ants from buildings and eliminating food and water sources. Ants undergo complete metamorphosis, having egg, larval, pupal, and adult stages. Ant management requires diligent effort and the combined use of mechanical, cultural, sanitation, and chemical methods of control.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hölldobler, Bert, and Edward O. Wilson. "Weaver Ants." In The Ants, 618–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-662-10306-7_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hölldobler, Bert, and Edward O. Wilson. "The Importance of Ants." In The Ants, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-662-10306-7_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hölldobler, Bert, and Edward O. Wilson. "Foraging Strategies, Territory, and Population Regulation." In The Ants, 378–418. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-662-10306-7_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hölldobler, Bert, and Edward O. Wilson. "The Organization of Species Communities." In The Ants, 419–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-662-10306-7_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hölldobler, Bert, and Edward O. Wilson. "Symbioses among Ant Species." In The Ants, 436–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-662-10306-7_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Ants"

1

Karim, Muhammad Rezaul, and Conor Ryan. "Sensitive ants are sensible ants." In the fourteenth international conference. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2330163.2330271.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sadeghi, Zahra, and Mohammad Teshnehlab. "Ant colony clustering by expert ants." In 2008 11th International Conference on Computer and Information Technology (ICCIT). IEEE, 2008. http://dx.doi.org/10.1109/iccitechn.2008.4803115.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Abdelbar, Ashraf M. "Stubborn ants." In 2008 IEEE Swarm Intelligence Symposium (SIS). IEEE, 2008. http://dx.doi.org/10.1109/sis.2008.4668307.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Shah, Sameena, R. Kothari, and Suresh Chandra. "Debugging ants: How ants find the shortest route." In 2011 8th International Conference on Information, Communications & Signal Processing (ICICS 2011). IEEE, 2011. http://dx.doi.org/10.1109/icics.2011.6174275.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

"ANTS 2018 Committees." In 2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). IEEE, 2018. http://dx.doi.org/10.1109/ants.2018.8710037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

"ANTS 2018 Program." In 2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). IEEE, 2018. http://dx.doi.org/10.1109/ants.2018.8710167.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Shuhua Gu and Xia Zhang. "An improved ant colony algorithm with soldier ants." In The 2015 11th International Conference on Natural Computation. IEEE, 2015. http://dx.doi.org/10.1109/icnc.2015.7377991.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

"[Front matter]." In 2018 IEEE Nanotechnology Symposium (ANTS). IEEE, 2018. http://dx.doi.org/10.1109/nanotech.2018.8653575.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mohammed, Mahmood Uddin, Athiya Nizam, and Masud H. Chowdhury. "Double-Gate FDSOI Based SRAM Bitcell Circuit Designs with Different Back-Gate Biasing Configurations." In 2018 IEEE Nanotechnology Symposium (ANTS). IEEE, 2018. http://dx.doi.org/10.1109/nanotech.2018.8653555.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ahmed, Farid Uddin, Zarin Tasnim Sandhie, Mahmood Uddin Mohammed, Abdul Hamid Bin Yousuf, and Masud Chowdhury. "Energy Efficient FDSOI and FinFET based Power Gating Circuit Using Data Retention Transistor." In 2018 IEEE Nanotechnology Symposium (ANTS). IEEE, 2018. http://dx.doi.org/10.1109/nanotech.2018.8653556.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Ants"

1

Riha, Joyce. Fire Ants. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.7026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hart, Taylor. Making the First Transgenic Ants. Asimov Press, February 2024. http://dx.doi.org/10.62211/762hd-9tp3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Deitloff, Jennifer M., Nicole A. Freidenfelds, and Tracy Langkilde. Lessons from Lizards: Adaptation to Introduced Ants. American Museum of Natural History, 2023. http://dx.doi.org/10.5531/cbc.ncep.0001.

Повний текст джерела
Анотація:
The fence lizard and fire ant ecological system provides an excellent real-world case study for students to examine the impacts of nuisance introduced species on native organisms, with particular emphasis on the topic of adaptation. In this exercise, students are tasked with making predictions, analyzing real scientific data, and applying critical-thinking strategies to interpret their results. A reflection component at the end of the exercise involves the creation of a concept map to synthesize and integrate ideas from the lesson within the broader context of natural selection.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nicole Elise Fischer, Nicole Elise Fischer. Neural mechanisms of behavioral variation in Temnothorax ants. Experiment, July 2013. http://dx.doi.org/10.18258/0892.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Latty, Tanya. Ants show the way to beating traffic jams. Edited by Chris Bartlett. Monash University, February 2023. http://dx.doi.org/10.54377/9ec4-3954.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dominic-Savio, Patrick, Jien-Chung Lo, and Donald W. Tufts. Fault Tolerant Features and Experiments of ANTS Distributed Real-Time System. ANTS: An Approach for High-Performance and Ultra-Dependability. Fort Belvoir, VA: Defense Technical Information Center, January 1995. http://dx.doi.org/10.21236/ada290133.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jones, Graham, Diane Fraser, Urvashi Lallu, and Sarah-Jayne Fenwick. Perceptions and Impacts: An Observational Pilot Study of the Effects of Argentine Ants on Honey Bees in New Zealand. Unitec ePress, May 2016. http://dx.doi.org/10.34074/pibs.rs12016.

Повний текст джерела
Анотація:
The Argentine ant (Linepithema humile) is an invasive species first identified in New Zealand in 1990. It is an aggressive tramp species that can form very large ‘super colonies’ extending over vast areas and has been reported to rob honey and predate honey bees in hives. This pilot study sought to establish, from a circulated survey of beekeepers, which ant species were present in their hives and what awareness the beekeepers had of the potential impact of Argentine ants. In addition, a simple method of quantifying the effects of the Argentine ant on brood abundance was trialled in the field. Results indicate that several species of ant are commonly found in hives and that surveyed beekeepers generally regard ants as passive occupiers. A percentage cover estimate of brood cover in frames may be a simple way of measuring ant impact when comparing hives uninfected by ants.Photographic evidence is presented as further indication that L. humile foraged within the hive and actively fed on both honey and emerging brood.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Karen Robles, Karen Robles. Helping the tropics fight climate change with army ants. Experiment, May 2023. http://dx.doi.org/10.18258/50943.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hurst, Erik. Grasshoppers, Ants, and Pre-Retirement Wealth: A Test of Permanent Income. Cambridge, MA: National Bureau of Economic Research, November 2003. http://dx.doi.org/10.3386/w10098.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Barnett, J. P., D. A. Streett, and S. R. Blomquist. Town ants: the beginning of John Moser’s remarkable search for knowledge. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station, 2016. http://dx.doi.org/10.2737/srs-gtr-182.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії