Добірка наукової літератури з теми "Anti-corrosive"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Anti-corrosive".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Anti-corrosive"

1

MATSUMOTO, Tsuyoshi, and Tsuyoshi MIYASHITA. "Anti-Corrosive Property using Coating." Journal of the Japan Society of Colour Material 91, no. 9 (September 20, 2018): 316–23. http://dx.doi.org/10.4011/shikizai.91.316.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Vorobyova, Victoria, Olena Chygyrynets’, Margarita Skiba, and Tatiana Overchenko. "Experimental and Theoretical Investigations of Anti-Corrosive Properties of Thymol." Chemistry & Chemical Technology 13, no. 2 (June 10, 2019): 261–68. http://dx.doi.org/10.23939/chcht13.02.261.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

NISHIKAWA, Toshio. "Anti-corrosive treatment for automobiles. Dacrotizing." Jitsumu Hyomen Gijutsu 32, no. 6 (1985): 272–79. http://dx.doi.org/10.4139/sfj1970.32.272.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Norton, Brian. "Facets of anti‐corrosive coating technology." Anti-Corrosion Methods and Materials 42, no. 6 (June 1995): 28–29. http://dx.doi.org/10.1108/eb007379.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhu, Li Juan, Chun Feng, Hong Jiang Ge, Ya Qiong Cao, Li Hong Han, and Bin Xie. "Research Progress on Anti-Corrosive Properties of Graphene Modified Coatings." Materials Science Forum 993 (May 2020): 1140–47. http://dx.doi.org/10.4028/www.scientific.net/msf.993.1140.

Повний текст джерела
Анотація:
Graphene modified coatings have attracted extensive attention in recent years due to their excellent corrosion resistance and broad application prospects in the field of anti-corrosion. However, large-scale applications of graphene coatings were seldom reported, which is mainly attributed to the lack of fundamental research on the anti-corrosive mechanism and the long-term service performance evaluation of graphene modified coatings in actual working conditions. In the present work, the influence of the characteristics of corrosive medium, the content of graphene, the structure and morphology of graphene and the external environmental conditions on the anti-corrosive performance of graphene modified coatings were systematically reviewed. The deficiencies in the research of anti-corrosive performance of graphene modified coatings were summarized. The future work were prospected for the anti-corrosive performance and applications of graphene modified coatings in oil and gas exploration.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Trivedi, Palak A., Preeti R. Parmar, and Parimal A. Parikh. "Spent FCC catalyst: Potential anti-corrosive and anti-biofouling material." Journal of Industrial and Engineering Chemistry 20, no. 4 (July 2014): 1388–96. http://dx.doi.org/10.1016/j.jiec.2013.07.023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

GOTO, Kenichi. "Outline of anti-corrosive treatment for automobiles." Jitsumu Hyomen Gijutsu 32, no. 6 (1985): 258–63. http://dx.doi.org/10.4139/sfj1970.32.258.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

FUKUCHI, Minoru. "Lead and Chromium Free Anti-Corrosive Pigments." Journal of the Japan Society of Colour Material 88, no. 4 (2015): 117–20. http://dx.doi.org/10.4011/shikizai.88.117.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Petkov, P., N. Benova, and D. Mincov. "Anti-Corrosive Properties of Spent Motor Oils." Key Engineering Materials 20-28 (January 1991): 729–34. http://dx.doi.org/10.4028/www.scientific.net/kem.20-28.729.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Johari, N. A., J. Alias, A. Zanurin, N. S. Mohamed, N. A. Alang, and M. Z. M. Zain. "Anti-corrosive coatings of magnesium: A review." Materials Today: Proceedings 48 (2022): 1842–48. http://dx.doi.org/10.1016/j.matpr.2021.09.192.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Anti-corrosive"

1

Woodcock, Christopher Paul. "A review and development of accelerated test methods for anti-corrosive organic coatings." Thesis, University of Northampton, 2007. http://nectar.northampton.ac.uk/2665/.

Повний текст джерела
Анотація:
To enable improvements in the development of anti-corrosive coatings quick methods of evaluation are required and several are available which are both qualitative and quantitative. This investigation reviews both types of method, the first in the form of traditional salt spray exposure and the second in the form of electrochemical techniques. The emphasis in the experimental work reported here is on the Electrochemical Noise Measurement (ENM). ENM has been used to monitor coatings under immersion conditions, the aim being to assist a paint company develop a set of more environmentally friendly coatings. The immersion test has also incorporated a temperature cycle which proved effective at separating ‘good’ coatings within a short timeframe. Results showed good correlation between ENM and salt spray testing. Work is also reported which was done with the aim of making the ENM method more practically useful. The standard configuration (‘Bridge’) requires two separate specimens which is unattractive for site work. The Single Substrate (SS) arrangement was developed to get around this problem but this still requires the metal to be connected to the measuring instrument. This is avoided in the most recent development which needs No Connection to Substrate (NOCS). Results are given for immersed samples monitored using the ENM NOCS arrangement and compared with the standard ‘Bridge’ method and DC resistance. Results are also presented using sets of different electrodes (platinum, calomel and silver/silver chloride). This preliminary work has shown that the NOCS method holds great promise. In the laboratory Electrochemical Impedance Spectroscopy (EIS) is also commonly employed to assess the performance of anti-corrosive coatings. Concluding this work a comparison of the ENM and EIS techniques was undertaken on a set of laboratory samples. Results showed that both methods had the ability to rank the performance of coatings. However ENM’s advantages (as outlined above) were confirmed
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Miranda, Joana Maia. "Synthesis, characterization and performance evaluation of nanostructured additives with anti-corrosive properties in reinforced concrete." Master's thesis, Universidade de Aveiro, 2017. http://hdl.handle.net/10773/22520.

Повний текст джерела
Анотація:
Mestrado em Engenharia Química
Este trabalho tem como objetivo aplicar hidróxidos duplos lamelares (LDHs) intercalados com inibidores de corrosão em betão armado por forma a proteger as estruturas de aço da corrosão e aumentar a longevidade do mesmo. Para tal, foram sintetizados LDH-NO3 e LDH-NO2. A partir da suspensão de LDH-NO3, procedeu-se à intercalação com iões citrato e tartarato. Todas as amostras foram caracterizadas utilizando técnicas como espetroscopia de FT-IR, X-RD, potencial zeta, DLS, SEM/TEM e ICP. Realizaram-se estudos de libertação, colocando, em agitação, alíquotas de soluções aquosas de cloreto de sódio (NaCl) às concentrações de 5, 50 e 500 mM com LDH em pó. Recolheram-se alíquotas durante um mês e analisaram-se as amostras por cromatografia líquida (HPLC), para determinar as concentrações dos inibidores em solução ao longo do tempo. Procedeu-se, ainda, a estudos de impedância eletroquímica para avaliação do desempenho dos materiais na prevenção do ataque corrosivo ao aço. Para tal, expôs-se uma placa de aço a suspensões de diferentes concentrações de espécie agressiva (ião cloreto) com LDHs e mediram-se os valores de impedância ao longo do tempo. Com este trabalho conseguiu-se avaliar o desempenho anticorrosivo de diferentes aniões, além dos já conhecidos, e perceber quais trariam vantagens com o seu uso. Observou-se que nas suspensões com maior concentração de espécie agressiva, a libertação de inibidor foi superior. Através dos espetros de FT-IR e imagens de SEM/TEM, depreendeu-se que a encapsulação decorreu com sucesso. Apesar de não se ter tido oportunidade de testar o desempenho dos materiais encapsulados, seria um ponto vantajoso no desenvolvimento do trabalho.
This work consisted in the preparation and characterization of layered double hydroxides (LDHs) intercalated with corrosion inhibitors with the purpose of including them in concrete, to protect steel from corrosion and increase concrete’s longevity. LDH-NO3 and LDH-NO2 were synthesized and, using, LDH-NO3 suspension, intercalation with citrate and tartrate ions was performed. All samples were characterized using FT-IR spectroscopy, X-RD, Zeta potential measurements, DLS, SEM/TEM and ICP. Release studies were performed, mixing NaCl solution at different concentrations (5, 50, 500 mM) with each LDH sample. Several aliquots were collected over a month and analysed by HPLC to determine the concentration of inhibitors released over time. Electrochemical impedance studies were performed to evaluate the performance of LDHs intercalated with inhibitors against steel corrosion. Thus, a carbon steel board was exposed to a suspension with the aggressive specie (chloride ion) at different concentrations and LDHs. Impedance data was collected over time. Therefore, it was possible to analyse the pertinence of the inclusion of the tested materials into concrete’s mixture, when comparing their action against the corrosive process. It was verified that for suspensions with higher concentrations in aggressive specie, the release of the inhibitor was superior. Through FT-IR spectra and SEM/TEM images, it was concluded that the encapsulation occurred successfully. Even though the performance of the functionalized materials was not tested, it would be advantageous for the on-going development of the work.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Haase, Martin F. "Modification of nanoparticle surfaces for emulsion stabilization and encapsulation of active molecules for anti-corrosive coatings." Phd thesis, Universität Potsdam, 2011. http://opus.kobv.de/ubp/volltexte/2011/5541/.

Повний текст джерела
Анотація:
Within this work, three physicochemical methods for the hydrophobization of initially hydrophilic solid particles are investigated. The modified particles are then used for the stabilization of oil-in-water (o/w) emulsions. For all introduced methods electrostatic interactions between strongly or weakly charged groups in the system are es-sential. (i) Short chain alkylammonium bromides (C4 – C12) adsorb on oppositely charged solid particles. Macroscopic contact angle measurements of water droplets under air and hexane on flat silica surfaces in dependency of the surface charge density and alkylchain-length allow the calculation of the surface energy and give insights into the emulsification properties of solid particles modified with alkyltrimethylammonium bromides. The measure-ments show an increase of the contact angle with increasing surface charge density, due to the enhanced adsorp-tion of the oppositely charged alkylammonium bromides. Contact angles are higher for longer alkylchain lengths. The surface energy calculations show that in particular the surface-hexane or surface-air interfacial en-ergy is being lowered upon alkylammonium adsorption, while a significant increase of the surface-water interfa-cial energy occurs only at long alkyl chain lengths and high surface charge densities. (ii) The thickness and the charge density of an adsorbed weak polyelectrolyte layer (e.g. PMAA, PAH) influence the wettability of nanoparticles (e.g. alumina, silica, see Scheme 1(b)). Furthermore, the isoelectric point and the pH range of colloidal stability of particle-polyelectrolyte composites depend on the thickness of the weak polye-lectrolyte layer. Silica nanoparticles with adsorbed PAH and alumina nanoparticles with adsorbed PMAA be-come interfacially active and thus able to stabilize o/w emulsions when the degree of dissociation of the polye-lectrolyte layer is below 80 %. The average droplet size after emulsification of dodecane in water depends on the thickness and the degree of dissociation of the adsorbed PE-layer. The visualization of the particle-stabilized o/w emulsions by cryogenic SEM shows that for colloidally stable alumina-PMAA composites the oil-water interface is covered with a closely packed monolayer of particles, while for the colloidally unstable case closely packed aggregated particles deposit on the interface. (iii) By emulsifying a mixture of the corrosion inhibitor 8-hydroxyquinoline (8-HQ) and styrene with silica nanoparticles a highly stable o/w emulsion can be obtained in a narrow pH window. The amphoteric character of 8-HQ enables a pH dependent electrostatic interaction with silica nanoparticles, which can render them interfa-cially active. Depending on the concentration and the degree of dissociation of 8-HQ the adsorption onto silica results from electrostatic or aromatic interactions between 8-HQ and the particle-surface. At intermediate amounts of adsorbed 8-HQ the oil wettability of the particles becomes sufficient for stabilizing o/w emulsions. Cryogenic SEM visualization shows that the particles arrange then in a closely packed shell consisting of partly of aggregated domains on the droplet interface. For further increasing amounts of adsorbed 8-HQ the oil wet-tability is reduced again and the particles ability to stabilize emulsions decreases. By the addition of hexadecane to the oil phase the size of the droplets can be reduced down to 200 nm by in-creasing the silica mass fraction. Subsequent polymerization produces corrosion inhibitor filled (20 wt-%) poly-styrene-silica composite particles. The measurement of the release of 8-hydroxyquinoline shows a rapid increase of 8-hydroxyquinoline in a stirred aqueous solution indicating the release of the total content in less than 5 min-utes. The method is extended for the encapsulation of other organic corrosion inhibitors. The silica-polymer-inhibitor composite particles are then dispersed in a water based alkyd emulsion, and the dispersion is used to coat flat aluminium substrates. After drying and cross-linking the polmer-film Confocal Laser Scanning Micros-copy is employed revealing a homogeneous distribution of the particles in the film. Electrochemical Impedance Spectroscopy in aqueous electrolyte solutions shows that films with aggregated particle domains degrade with time and don’t provide long-term corrosion protection of the substrate. However, films with highly dispersed particles have high barrier properties for corrosive species. The comparison of films containing silica-polystyrene composite particles with and without 8-hydroxyquinoline shows higher electrochemical impedances when the inhibitor is present in the film. By applying the Scanning Vibrating Electrode Technique the localized corrosion rate in the fractured area of scratched polymer films containing the silica-polymer-inhibitor composite particles is studied. Electrochemical corrosion cannot be suppressed but the rate is lowered when inhibitor filled composite particles are present in the film. By depositing six polyelectrolyte layers on particle stabilized emulsion droplets their surface morphology changes significantly as shown by SEM visualization. When the oil wettability of the outer polyelectrolyte layer increases, the polyelectrolyte coated droplets can act as emulsion stabilizers themselves by attaching onto bigger oil droplets in a closely packed arrangement. In the presence of 3 mM LaCl3 8-HQ hydrophobized silica particles aggregate strongly on the oil-water inter-face. The application of an ultrasonic field can remove two dimensional shell-compartments from the droplet surface, which are then found in the aqueous bulk phase. Their size ranges up to 1/4th of the spherical particle shell.
Im Rahmen dieser Arbeit wurden drei Oberflächenmodifikationen zur Hydrophobierung von ursprünglich hydrophilen Feststoffpartikeln entwickelt. Die so modifizierten Partikel werden dann zur Stabilisierung von Öl-in-Wasser Emulsionen verwendet. Für sämtliche entwickelte Methoden sind elektrostatische Wechselwirkungen zwischen stark oder schwach dissoziierten chemischen Gruppen essentiell. (i) Kurzkettige Alkyltrimethylammonium Bromide (C4-C12) adsorbieren auf entgegengesetzt geladenen Partikeln. Makroskopische Kontaktwinkelmessungen von Wasser Tropfen in Luft und Hexan auf flachen Siliziumoxid Oberflächen mit variabler Oberflächenladungsdichte und Alkylkettenlänge ermöglichen die Berechnung der Oberflächenenergie und geben Einblicke in die Emulgationseigenschaften von so modifizierten Feststoffpartikeln. Die Messungen zeigen einen Anstieg des Kontakwinkels mit steigender Oberflächenladungsdichte, bedingt durch die verstärkte Adsorption von entgegengesetzt geladenen Alkyltrimethylammonium Bromiden. Die Kontaktwinkel sind zudem größer für längerkettige Alkyltrimethylammonium Bromide. Die Berechnungen der Oberflächenenergie zeigen, dass besonders die Feststoff-Hexan oder Feststoff-Luft Grenzflächenenergie durch die Adsorption verringert wird, wohingegen die Feststoff-Wasser Oberflächenenergie nur bei längeren Alkylkettenlängen und hohen Oberflächenladungsdichten signifikant ansteigt. (ii) Die Schichtdicke und Ladungsdichte von adsorbierten schwachen Polyelektrolyten (z.B. PMAA, PAH) beeinflusst die Benetzbarkeit von Nanopartikeln (z.B. Aluminiumoxid, Siliziumoxid). Der isoelektrische Punkt und der pH Bereich für kolloidale Stabilität solcher Polyelektrolyt modifizierter Partikel hängt von der Dicke der Polyelektrolytschicht ab. Siliziumoxid und Aluminiumoxid Nanopartikel mit adsorbierten PAH bzw. PMAA werden Grenzflächenaktiv und dadurch befähigt Öl-in-Wasser Emulsionen zu stabilisieren, wenn der Dissoziationsgrad der Polyelektrolytschicht geringer als 80 % ist. Die durchschnittliche Tropfengröße von Dodecan-in-Wasser Emulsionen ist abhängig von der Polyelektrolytschichtdicke und dem Dissoziationsgrad. Die Visualisierung von Partikel stabilisierten Öl-in-Wasser Emulsionen durch kryogene REM zeigt, dass im Falle von kolloidal stabilen Aluminiumoxid-PMAA Partikeln die Öl-Tröpfchen mit einer dichtgepackten Partikelhülle belegt sind, während für kolloidal destabilisierte Partikel eine Hülle aus aggregierten Partikeln gefunden wird. (iii) Durch das Emulgieren einer Lösung des Korrosionsinhibitors 8-Hydroxychinolins (8HQ) in Styrol mit Siliziumoxid Nanopartikeln können stabile Öl-in-Wasser Emulsionen in einem pH Fenster von 4 - 6 hergestellt werden. Der amphoterische Charakter von 8HQ ermöglicht eine pH abhängige elektrostatische Wechselwirkung mit den Siliziumdioxid Nanopartikeln, welche diese Grenzflächenaktiv werden lässt. In Abhängigkeit der Konzentration und des Dissoziationsgrads von 8HQ folgt die Adsorption auf Siliziumdioxid aus elektrostatischen oder aromatischen Wechselwirkungen zwischen 8HQ und der Partikeloberfläche. Bei mittleren adsorbierten Mengen wird die Öl Benetzbarkeit der Partikel ausreichend erhöht um Öl-in-Wasser Emulsionen zu stabilisieren. Kryogene REM zeigt, dass die Partikel dann in dicht gepackte Hüllen, mit teilweise aggregierten Domänen auf der Öltröpfchenoberfläche vorliegen. Durch weiter ansteigende adsorbierte 8HQ Mengen wird die Öl-Benetzbarkeit wieder zurückgesetzt und die Emulgationsfähigkeit der Partikel aufgehoben. Durch die Zugabe von Hexadecan zur Öl Phase kann die Tropfengröße durch Erhöhung des Siliziumdioxid Anteils auf 200 nm herabgesetzt werden. Anschließende Polymerisation des Styrols generiert Korrosionsinhibitor gefüllte (20 Gew-%) Polystyrol-Silizumoxid Komposite. Die Messung der Freisetzungsrate von 8HQ zeigt einen schnellen Anstieg der 8HQ Konzentration in einer gerührten wässrigen Lösung innerhalb von 5 Minuten. Die Verkapselungsmethode wird auch für andere organische Korrosionsinhibitoren erweitert. Die Komposite werden dann in einer wasserbasierten Alkydpräpolymeremulsion dispergiert und diese Mischung wird zur Beschichtung von flachen Aluminiumplatten genutzt. Nach Trocknung und Quervernetzung des Films wird Konfokale Laser Mikroskopie dazu verwendet um die räumliche Verteilung der Composite im Film zu visualisieren. Elektrochemische Impedanzspektroskopie zeigt, dass die Barriereeigenschaften des Films durch die Anwesenheit der Komposite verbessert sind. Raster Vibrationselektroden Messungen zeigen, dass die Korrosionsrate in einem Kratzer des Films durch die Anwesenheit der Inhibitor efüllten Komposite reduziert ist. Durch die Ablagerung von 6 Polyelektroytschichten auf Feststoffstabilisierten Emulsionströpfchen verändert sich deren Oberflächenmorphologie deutlich (gezeigt durch REM). Wenn die Ölbenetzbarkeit der äußeren Polyelektrolytschicht ansteigt, dann können solche Polyelektolytbeschichteten Feststoffstabilisierte Emulsionströpfchen selber als Emulsionsstabilisatoren verwendet werden. Diese lagern sich dann in einer dicht gepackten Schicht auf der Oberfläche von größeren Emulsionstropfen ab. In der Gegenwart von 3 mM LaCl3 aggregieren 8HQ modifizierte Siliziumoxid Partikel stark auf der Öl-Wasser Grenzfläche. Der Einsatz von Ultraschall kann aggregierte Schalenbestandteile von der Tropfenoberfläche wegreißen. Diese Wracks können bis zu einem Viertel der Kugelhülle ausmachen und liegen dann als kolloidale Schalen im Wasser vor.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Haase, Martin F. [Verfasser], and HELMUTH [Akademischer Betreuer] MOEHWALD. "Modification of nanoparticle-surfaces for emulsion stabilization and encapsulation of active molecules for anti-corrosive coatings / Martin F. Haase. Betreuer: Helmuth Möhwald." Potsdam : Universitätsbibliothek der Universität Potsdam, 2011. http://d-nb.info/1017895872/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Colin, Alexis. "Vieillissement thermique de peintures anticorrosion : corrélations entre les évolutions de la chimie, de l'architecture macromoléculaire et des propriétés fonctionnelles." Thesis, Clermont-Ferrand 2, 2015. http://www.theses.fr/2015CLF22640.

Повний текст джерела
Анотація:
Des revêtements multicouche anticorrosion, ou peintures anticorrosion, sont utilisés dans de nombreuses applications industrielles telles que la protection d’emballages métalliques utilisés pour le transport ou l’entreposage de matériaux radioactifs. En conditions d’usage, les propriétés fonctionnelles de ces peintures peuvent être dégradées sous l’effet de la température et des conditions environnementales (lumière, dioxygène, humidité, …). Ces évolutions ont été attribuées au vieillissement des différentes couches de peinture constituant le revêtement anticorrosion (vernis de structure acrylique-siloxane, sous couches de type résine époxydique à durcisseur amine). Afin de mener à bien cette étude, une approche dite « multi-échelle ascendante » a été développée. Cette méthodologie, initialement focalisée sur la modification des propriétés physico-chimiques des polymères vierges constituant chaque couche du revêtement (depuis l’évolution de la structure chimique et de l’architecture macromoléculaire, vers les propriétés fonctionnelles), est ensuite progressivement complexifiée par l’ajout d’additifs à la formulation des peintures (pigments, particules barrières à l’oxydation ou anticorrosion, …) avant que le revêtement multicouche complet ne soit analysé dans son ensemble. Ce travail de thèse vise à identifier et à corréler les modifications de la structure chimique et de l’architecture macromoléculaire des différentes couches de peinture responsables de la modification des propriétés fonctionnelles du revêtement anticorrosion
Anti-corrosive multilayer coatings, or anti-corrosive paints, are used in several industrial applications such as metallic package protection used for transportation or storage of radioactive materials. In working conditions, functional properties of these paints could be degraded under the influence heat or environmental conditions (light, oxygen, moisture …). Such evolutions had been attributed to the aging of the different paint layers that constituted the anticorrosive coating (acrylic-siloxane topcoat, epoxy resin with amine hardener undercoats). In order to properly carry out this study, a « bottom-up multiscale approach » has been developed. This methodology, initially focused on the physico-chemical modifications of neat polymers that constituted each layer of the coating (from chemical structure and macromolecular architecture evolutions to functional properties), is then complexified by adding filers to the paint formulations (pigments, barrier or anti-corrosive particles …). The complete multilayer coating analyses are the last steps of that methodology. The aim of this thesis is to identify and correlate the evolution of anti-corrosive multilayer coating functional properties to the chemical and architectural modifications in each different layer
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kuo, Ming-tong, and 郭明同. "Fabrication and Anti-Corrosive Properties of Electroless Ni-Fe-P Alloys." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/15311773213781240426.

Повний текст джерела
Анотація:
碩士
國立成功大學
化學工程學系碩博士班
95
Electroless Ni-Fe-P alloys have been deposited from a basic plating bath having sodium citrate as a complexing agent. Effects of added reducing agents (sodium hypophosphite and hydrazine hydrate) and pH values of plating bath were studied. The surface morphology and microstructures were examined under a scanning electron microscope equipped with an energy dispersive spectrometer (EDS). The electroless plating using hydrazine hydrate as reductants was found with many crackings on it from SEM photos. The electroless alloys using sodium hypophosphite as reductants and ammonium sulfate as a buffer agent does not contain any crackings. The deposition rate is approximately 10-14 μm/hr. In addition, the percentage of iron and phosphorus in deposits are respectively approximately 2-6 wt.% and 8-10 wt.%. Moreover, composition and the deposition rate of the electroless Ni-Fe-P alloys depend on pH in the bath. The structure of as-plated alloys at all conditions is mainly amorphous. The crystallization behavior of Ni-P-Fe alloys with heat treatment were studied by using X-ray diffractometry. Moreover, the anti-corrosive properties of Ni-Fe-P alloys were measured with a potentiostat.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chen, Guey-Shin, and 陳貴新. "Effect of Glass Flake Content on Properties of Anti-Corrosive Coating." Thesis, 1993. http://ndltd.ncl.edu.tw/handle/30376117207490403434.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lin, Yi-Wei, and 林逸瑋. "Corrosion properties of stainless steels and anti-corrosive high-entropy alloys." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/63676880818403269759.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

cheng, chih-wen, and 鄭智文. "Environmental protection endures the anti-corrosive coating of nano-particles to study." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/59956703953412296231.

Повний текст джерела
Анотація:
碩士
國防大學中正理工學院
應用化學研究所
95
In order to protect the environment, a water-borne inorganic Zinc-rich silicate paint is developed in this study. Nano-sized zinc dust (ca. 35 nm) is used in this recipe instead of and mix of micro-sized zinc particle (ca. 7.5 μm). The film formations are accomplished by either coating or spray painting. The influence of Zinc particle sizes (nano or micro scale) on anticorrosion performance and film morphology are compared and the process parameters are thus obtained. Our results show that the effect of H14N on the dispersion degree can be effective. After exposure time of 690 hr, the presence of local rusts areas for all of the samples with or without H14N anionic dispersant are over 30%. It is obvious that the effect of H14N on the anticorrosion is negligible. The nano-sized Zinc particles and water-bone inorganic silicate paint were mixed with a wet grinding machine, and than were sprayed painting coated samples. Our SEM results show that the nano-sized Zinc particles of all samples disperse very well. It is also found that the dispersion degree can be effectively verified by wet grinding and spraying machines and dispersion analyzer. The EIS data show that the anticorrosion mechanisms are different between paints with nano-sized Zinc and those with micro-sized Zinc. Nano-sized Zinc paint protects the metallic surface by acting as a physical barrier, the appearance of sample does not change, the rust only presents on the carved part. Micro-sized Zinc paint protects the metallic substrate by sacrificial cathode protection mechanism. The adhesion between paint and substrate for nano-sized Zinc paint is superior to micro-sized Zinc paint. The adhesion datum determined according to the ASTM 3359 Standard for nano-sized Zinc paint is 5B.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

KURITA, Koji, Yoshito ITOH, and Mikihito HIROHATA. "Deterioration Characteristics of Anti-corrosive Metallic Coatings under Acid Rain and Application of Paint Repair." 2011. http://hdl.handle.net/2237/18876.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Anti-corrosive"

1

Zhang, Renhui, Lei Guo, and Ime Bassey Obot. Anti-Corrosive Nanomaterials. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003331124.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

United States. National Aeronautics and Space Administration., ed. New anti-corrosive coatings with resin-bonded polyaniline and related electroactive groups: Final report, grant no. NAG10-0174. [Washington, DC: National Aeronautics and Space Administration, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

United States. National Aeronautics and Space Administration., ed. New anti-corrosive coatings with resin-bonded polyaniline and related electroactive groups: Final report, grant no. NAG10-0174. [Washington, DC: National Aeronautics and Space Administration, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

United States. National Aeronautics and Space Administration., ed. New anti-corrosive coatings with resin-bonded polyaniline and related electroactive groups: Final report, grant no. NAG10-0174. [Washington, DC: National Aeronautics and Space Administration, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Handling hazardous materials: Corrosive, 8. Neenah, Wisconsin: J. J. Keller & Associates, Inc., 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

B, Blake K., and Canada Mines Branch, eds. Cobalt alloys with non-corrosive properties. Ottawa: Govt. Print. Bureau, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gerhard, Kreysa, Schütze Michael, and Dechema, eds. Corrosion handbook: Corrosive agents and their interaction with materials. 2nd ed. Weinheim: Wiley-VCH, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Miyoshi, Kazuhisa. Wear of iron and nickel in corrosive liquid environments. [Washington, DC]: National Aeronautics and Space Administration, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Iordanskiĭ, A. L. Interaction of polymers with bioactive and corrosive media. Utrecht: VSP, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lowther, Michael. How to work safely with corrosive liquids and solids. Hamilton, Ont: Canadian Centre for Occupational Health and Safety, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Anti-corrosive"

1

Sheetal, Sanjeeve Thakur, Balaram Pani, and Ashish Kumar Singh. "Carbon Nanotubes and Nanofibres." In Anti-Corrosive Nanomaterials, 141–53. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003331124-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Quadri, Taiwo W., and Eno E. Ebenso. "Fabrication and Applications of Fullerene-Based Anticorrosive Coatings." In Anti-Corrosive Nanomaterials, 123–40. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003331124-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Es-Soufi, Hicham, Elyor Berdimurodov, Khasan Berdimuradov, Hssain Bih, M. I. Sayyed, and Lahcen Bih. "Nanoceramics for Enhanced Corrosion Protection." In Anti-Corrosive Nanomaterials, 241–58. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003331124-14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Berdimurodov, Elyor, Hicham Es-Soufi, Khasan Berdimuradov, Brahim El Ibrahimi, Dakeshwar Kumar Verma, Hssain Bih, Omar Dagdag, Eshmamatova Nodira, Borikhonov Bakhtiyor, and Lahcen Bih. "Stimuli-Responsive Smart Nanocoatings for Autonomous Corrosion Monitoring and Control." In Anti-Corrosive Nanomaterials, 259–69. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003331124-15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhang, Qiao, Renhui Zhang, Lei Guo, and Ime Bassey Obot. "Summary and Future Perspectives of Corrosion Protection at the Nanoscale." In Anti-Corrosive Nanomaterials, 323–30. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003331124-18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Anadebe, Valentine Chikaodili, Vitalis Ikenna Chukwuike, and Rakesh Chandra Barik. "Organic–Inorganic Hybrid Nanocomposite Coatings for Corrosion Protection." In Anti-Corrosive Nanomaterials, 271–83. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003331124-16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Li, Hao. "Metal-Oxide-Based Anticorrosion Nanocoating." In Anti-Corrosive Nanomaterials, 231–40. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003331124-13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dagdag, Omar, Rajesh Haldhar, Seong-Cheol Kim, Walid Daoudi, Elyor Berdimurodov, Ekemini D. Akpan, and Eno E. Ebenso. "General Classification, Designing Principles, Synthesis Methods, and Potential Applications of Nanomaterials." In Anti-Corrosive Nanomaterials, 13–23. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003331124-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhao, Wenjie, and Yangmin Wu. "Recent Progress of MXene-Based Nanomaterials for Corrosion Protection Nanomaterial." In Anti-Corrosive Nanomaterials, 191–216. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003331124-11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Fan, Xiaoqiang. "Anticorrosive Application of Graphene and Its Derivatives." In Anti-Corrosive Nanomaterials, 77–107. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003331124-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Anti-corrosive"

1

Bachert, Joshua, A. H. M. E. Rahman, and Ma'moun Abu-Ayyad. "Anti-Corrosive Coating Using Recycled High Density Polyethylene for Automotive Chassis." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86498.

Повний текст джерела
Анотація:
Both high corrosion costs and an over-abundance of plastic waste have significant global impacts. This research seeks to help in both areas by utilizing recycled plastic as an anticorrosive coating. Many plastic-based coatings, especially those developed in more recent years, already contain recycled content. This research, which utilizes 100% recycled high density polyethylene (HDPE) as a powder coat, will add to the increasingly sustainable catalog of anti-corrosive coatings. The HDPE was applied to mild steel samples with traditional electrostatic powder coating equipment. The coating thickness was measured using scanning electron microscope (SEM) characterized and was found to be roughly 116 μm. The SEM analysis did not reveal any porosity in the coating. The immersion corrosion test in 5% H2SO4 for 2–3 days showed corrosion products at the bottom of the beaker. The maximum corrosion obtained was 424.4 mills/year (mpy) after 70.45 hours of immersion and the minimum corrosion obtained was 0.0 mpy after 5.58 hours of immersion. The acid immersion tests indicated that the corrosion started from the edges and advanced towards the inner surfaces. The coating on the edges was not uniform and may be porous. The salt immersion test in 5% NaCl solution by mass showed the sign of corrosion products after 5.5 hours and increased with time. A few samples showed corrosion over 25% of the surface after 70.5 hours of immersion. This is again attributed to the fact that the edges were not coated completely. The corrosion resistance can be improved by avoiding the sharp edges on the part.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Harahap, Sabrina, Surya Dewi Puspitasari, and Ahmad Aki Muhaimin. "Seawater-mixed concrete in Indonesia and anti-corrosive materials: A review." In INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING (ICoBE 2021). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0110946.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ito, Hisaki, and Masamine Tanikawa. "Study of Anti-Corrosive Property of Engine Coolant for Aluminum Cylinder Heads." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995. http://dx.doi.org/10.4271/950119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Stepin, Sergey. "PROPERTIES OF ANTI-CORROSIVE FERRITE PIGMENT SYNTHESIZED WITH THE USE OF PRODUCTION WASTE." In 18th International Multidisciplinary Scientific GeoConference SGEM2018. Stef92 Technology, 2018. http://dx.doi.org/10.5593/sgem2018/6.1/s24.056.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hashimoto, Yui, Yusuke Hioka, and Masatoshi Kubouchi. "Study on Optical Fiber Sensing for Detecting Liquid Penetration into Anti-corrosive Resins." In International Conference on Industrial Application Engineering 2015. The Institute of Industrial Applications Engineers, 2015. http://dx.doi.org/10.12792/iciae2015.045.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Loganathan, P., A. Fathima Darras Gracy, and S. Mary Rebekah Sharmila. "An experimental investigation on corrosion impediment in R.C. slabs using anti-corrosive agents." In INTELLIGENT SYSTEMS: A STEP TOWARDS SMARTER ELECTRICAL, ELECTRONIC AND MECHANICAL ENGINEERING: Proceedings of 2nd International Conference on Industrial Electronics, Mechatronics, Electrical and Mechanical Power (IEMPOWER), 2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0102996.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

de Cayeux, S., J. Tanguy, and G. Lécayon. "Anti-corrosive properties of an electropolymerized polymer coating on a shape memory alloy surface." In The proceedings of the 53rd international meeting of physical chemistry: Organic coatings. AIP, 1996. http://dx.doi.org/10.1063/1.49466.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Xu, Jin, Juan Mo, Baozhen Fan, Yuchao Ma, Xiang Li, and Hongbing Shen. "Analysis of the Influence of Anti-Corrosive Coating on the Heat Dissipation of Distribution Transformer." In 2021 China International Conference on Electricity Distribution (CICED). IEEE, 2021. http://dx.doi.org/10.1109/ciced50259.2021.9556703.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wang, Yuequan, Tao Hang, and Ming Li. "Reverse pulse current (RPC) electrodeposition of anti-corrosive nickel-tungsten ultrathin film for connector application." In 2016 17th International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2016. http://dx.doi.org/10.1109/icept.2016.7583258.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mei, Hongwei, Xiyuan Guan, Chenglong Zhao, Liming Wang, and Xiangyun Fu. "Effect of anti-corrosive coatings on the performance of high temperature vulcanized silicone rubber insulator." In 2017 IEEE Electrical Insulation Conference (EIC). IEEE, 2017. http://dx.doi.org/10.1109/eic.2017.8004660.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Anti-corrosive"

1

Volinsky, Alex A. Mechanical Aspects of Anti-Corrosive Coatings Performance Tests. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada456129.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії