Добірка наукової літератури з теми "Anisotroping"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Anisotroping".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Anisotroping"
Ben Slimane, Mourad. "Anisotropic Two-Microlocal Spaces and Regularity." Journal of Function Spaces 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/505796.
Повний текст джерелаXiong, Zonghou. "Electromagnetic fields of electric dipoles embedded in a stratified anisotropic earth." GEOPHYSICS 54, no. 12 (December 1989): 1643–46. http://dx.doi.org/10.1190/1.1442633.
Повний текст джерелаBadreddine, Houssem, and Khemais Saanouni. "On the full coupling of plastic anisotropy and anisotropic ductile damage under finite strains." International Journal of Damage Mechanics 26, no. 7 (March 3, 2016): 1080–123. http://dx.doi.org/10.1177/1056789516635729.
Повний текст джерелаRemazeilles, Mathieu, Andrea Ravenni та Jens Chluba. "Leverage on small-scale primordial non-Gaussianity through cross-correlations between CMB E-mode and μ-distortion anisotropies". Monthly Notices of the Royal Astronomical Society 512, № 1 (24 лютого 2022): 455–70. http://dx.doi.org/10.1093/mnras/stac519.
Повний текст джерелаMishra, B., and S. K. Tripathy. "Anisotropic dark energy model with a hybrid scale factor." Modern Physics Letters A 30, no. 36 (November 3, 2015): 1550175. http://dx.doi.org/10.1142/s0217732315501758.
Повний текст джерелаCLAUSEL, M., and B. VEDEL. "EXPLICIT CONSTRUCTION OF OPERATOR SCALING GAUSSIAN RANDOM FIELDS." Fractals 19, no. 01 (March 2011): 101–11. http://dx.doi.org/10.1142/s0218348x11005208.
Повний текст джерелаCastro, Caio Leandro Perdigão, José Jadsom Sampaio de Figueiredo, and Isadora Augusta Soares de Macedo. "COMPARING TWO APPROACHES ON THE ESTIMATIVE ANISOTROPIC PARAMETERSFROM WELL LOGS: AN APPLICATION ON THE NORNE FIELD DATASET." Revista Brasileira de Geofísica 36, no. 4 (December 21, 2018): 1. http://dx.doi.org/10.22564/rbgf.v36i4.1971.
Повний текст джерелаHeiba, Z. K., and Karimat El-Sayed. "Structural and anisotropic thermal expansion correlation of Li2ZrO3at different temperatures." Journal of Applied Crystallography 35, no. 5 (September 18, 2002): 634–36. http://dx.doi.org/10.1107/s0021889802011214.
Повний текст джерелаHood, J. A. "A simple method for decomposing fracture‐induced anisotropy." GEOPHYSICS 56, no. 8 (August 1991): 1275–79. http://dx.doi.org/10.1190/1.1443149.
Повний текст джерелаGudelev, V. G., L. P. Svirina, and Yu P. Zhurik. "Polarization Dynamical Phenomena in Gas Lasers with Weakly Anisotropic Cavities." International Journal of Bifurcation and Chaos 08, no. 05 (May 1998): 1025–32. http://dx.doi.org/10.1142/s0218127498000838.
Повний текст джерелаДисертації з теми "Anisotroping"
Touil, Hatem. "Modélisation spectrale de la turbulence inhomogène anistrope." Ecully, Ecole centrale de Lyon, 2002. http://www.theses.fr/2002ECDL0020.
Повний текст джерелаSpectral modelling for anisotropic and inhomogeneous turbulence This work concerns the development of a model for anisotropic and inhomogeneous turbulence by means of a spectral statistical approach. The basic unknown of this new model is the spectrum of the Reynolds stress tensor, a quantity which depends on space and time variables as well as on the wave vector module. The theoretical base of this work was provided by A. Laporta (1 995), who expanded about homogeneity the equations for the two point velocity correlations, and on the work of S. Parpais (1996) for the modelling part of the complex terms involved in this kind of approach. In this thesis, a numerical model was proposed that can be used in complex geometries. It should be noted that this model is based on quasi-normal assumptions intended to represent the energy cascade towards the small scales and therefore does not require, like usual turbulence models, the use of a transport equation for the dissipation of the turbulent kinetic energy. The spectral information provided by this new model was used to scrutinize some properties of turbulence. The model allows to characterize situations of turbulence desequilibrium in flows such as that around an airfoil with incidence. The spectral desequilibrium is characterized by comparisons with the Kolmogorov (1941) theory leading to a distribution of energy proportional to k-5/ 3, for wave numbers k in the inertial range. The spectral analysis enables to propose relevant one-point quantities to highlight these non-equilibrium states, thus opening new modelling frontiers
Vallefuoco, Donato. "Numerical study of unconfined and confined anisotropic turbulence." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEC053/document.
Повний текст джерелаIn turbulent flows of practical interest, turbulence interacts with confinement and external forces, leading to statistical inhomogeneity and anisotropy. Isolating their contributions to some targeted statistics is indispensable for understanding the underlying physical phenomena. The aim of this thesis has therefore been to gain further insight into direction- and scale-dependent anisotropy in a set of idealized and realistic contexts. Both spectral space and separation space statistical characterizations have been employed. The spectral characterization concerns the anisotropic statistics of turbulence under the form of directional energy, polarization and helicity spectra. The separation space characterization is built on two-point second- and third-order velocity increment moments, and two-point velocity correlations. First, we studied the effect of large-scale spectral forcing. The considered forcing methods are the non-helical and the helical Euler scheme, and the ABC-scheme. We showed that both forcings have a drawback in that, if the number of sufficiently excited modes is too low, anisotropy is bound to arise even at small scales. In the case of Euler forcing, this depends on both the range of forcing wavenumbers and its helicity contents. The ABC forcing, for which the amount of injected helicity cannot be controlled, excites only six modes and therefore always generates anisotropy at all resolved scales. Our second step was to analyze the scale- and direction-dependent anisotropy of homogeneous rotating turbulence. Surprisingly, anisotropy arises at all scales even at low rotation rate. In particular, we identified two anisotropic ranges with different features. In the large scales, directional anisotropy is larger and decreases with wavenumber. At smaller scales, it is much weaker—although still significant—and slowly increases with wavenumber all the way to the dissipative scales. Another interesting and original conclusion of this part of the work concerns the role of the Zeman scale and its link with the flow scale-dependent anisotropy. The Zeman scale was previously argued to be the characteristic lengthscale separating rotation-affected scales 2 from isotropic ones. Upon closer investigation using several simulations at different parameters, we found that the separating scale between large and weak anisotropy is rather the characteristic lengthscale at which rotation and dissipation effects balance. This result, however, does not contradict Zeman’s argument about isotropy recovery in the asymptotic limit of vanishing viscosity, since the separating scale vanishes at infinite Reynolds number, and therefore only the decreasing anisotropy range should persist and scales much smaller than the Zeman one may recover isotropy. Finally, we considered the von Kármán flow between two counter-rotating bladed disks in a cylindrical cavity. We repeated the separation space analysis in different small sub-regions, in order to question the possible analogies in the flow dynamics with that of homogeneous rotating turbulence. We found that, in the regions of the domain where the mean flow has a larger average rotation rate, the distributions of the statistics in separation space display some of the features typical of rotating turbulence
Xia, Chao [Verfasser], and Guofang [Akademischer Betreuer] Wang. "On a class of anisotropic problems = Über eine Klasse von anisotropen Problemen." Freiburg : Universität, 2012. http://d-nb.info/1123470936/34.
Повний текст джерелаFerraro, Filippo Jacopo. "Magnetic anisotropies and exchange bias in ultrathin cobalt layers for the tunnel anisotropic magnetoresistance." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAY086/document.
Повний текст джерелаIn the context of studying magnetic and spintronics phenomena occurring at the nanoscale, we investigated several aspects of Pt/Co/AlOx asymmetric structures. One of the objectives of this thesis was the control of the oxidation and the tailoring of the magnetic properties of these multilayers. We combined structural (X-Ray Reflectivity), transport (Anomalous Hall Effect) and magnetic measurements (VSM-SQUID), to study the interplay of magnetic and interfacial effects. One objective was to analyze the role that few monolayers (MLs) of CoO (which can form when overoxidizing the Al layer), could have on the properties of the stack. We used a wedge deposition techniques to control the oxidation on a subnanometer scale. We established that few MLs of CoO largely affect the total anisotropy of the stack. To further investigate the impact of the CoO, we engineered ultrathin Co(0.6nm)/CoO(0.6nm) bilayers. We performed field cooled measurements on this system and we found a large exchange bias anisotropy. These results indicate that the CoO keeps a large anisotropy even in the ML regime, help to rule out some of the models proposed to explain the exchange bias effect and imply that the usually neglected CoO presence must be considered in the energy balance of the system. We build perpendicular Tunneling Anisotropic MagnetoResistance (TAMR) devices based on the Pt/Co/AlOx structure. The TAMR is a relatively new spintronics effect in which the rotation of the magnetization in a single magnetic electrode (combined with the Spin-Orbit Coupling) can cause a change of the tunnel probability, which manifests as a magnetoresistance effect. We demonstrated that a careful control of the interface oxidation is crucial for the TAMR effect. The large induced magnetic anisotropy allowed us to achieve enhanced TAMR values compared to similar Pt/Co/AlOx structures
Hucht, Alfred. "Temperaturabhängigkeit magnetischer Anisotropien in ultradünnen Filmen - Temperature dependence of magnetic anisotropies in ultra-thin films." Gerhard-Mercator-Universitaet Duisburg, 2001. http://www.ub.uni-duisburg.de/ETD-db/theses/available/duett-09132001-105033/.
Повний текст джерелаCarlioz, Thomas. "Nucléation et propagation de fissures en conditions anisotropes." Thesis, Paris Est, 2017. http://www.theses.fr/2017PESC1247/document.
Повний текст джерелаStarting from an industrial issue that is cracks onset when excavating a tunnel, this work aims at giving new insights into a more general problematic which is the initiation of macroscopic cracks. Thus, general and theoretical results are established. Nevertheless, they are applied in order to give some explanations to the excavation-induced fractures observed around the deep geological repository. To begin with, an idealised geometrical model is detailed and justified. Thanks to this preliminary work, we establish that the cracks that should be taken into account are closed ones. In addition we show that it's possible for small cracks length to work on an equivalent bidimensionnal problem. This last result allows us to apply the mixed criteria. After giving the definition of a stable crack initiation length we define our own criteria to predict cracks onset. In order to do so and in order to be more in adequacy with the caracter brutal of a crack initiation, we offer through a micromecanic modelisation to deploy the usual thermodynamic approach in an adiabatic context. Different methods to compute the key quantity which is the incremental energy released rate are then built. Finally, the criteria is applied to give some justifications to the anisotropic geometry of the excavation-induced fractures. In a second part of this work, we focuse on the problematics tied to the local damage models. For instance, the notion of stability for an equilibrium state is discussed. Hill's stability critera is adapted to damage problems. Once again, it seems that an adiabatic context is more suited and the differences implied are emphasized. To conclude, we offer to investigate the localisation issue in one dimensionnal problems
Briones, Edgar. "Anisotropie de magnéto-résistance de diodes tunnel ferromagnétiques zener-esaki p-GaMnAs/n-GaAs : spectroscopie des anisotropies de bandes de GaMnAs." Paris 11, 2010. http://www.theses.fr/2010PA112074.
Повний текст джерелаFerromagnetism in highly-doped diluted magnetic semiconductor GaMnAs is mediated by delocalized carriers. Those are often described as Bloch states in the valence band of GaMnAs in presence of an exchange interaction. Nevertheless, the exact role of the Mn-impurity band overlapping the valence band is still under debate. A better knowledge of the exact band structure is still necessary to determine the actual Fermi level position, as well as to fully understand the true nature of bands anisotropies (valence bands, imurity band). We investigate the tunneling anisotropic magnetoresistance (TAMR) in ferromagnetic tunnel diodes p++-GaMnAs/n+-GaAs. Inter-band tunneling allows us to carry out the electrical spectroscopy of the TAMR, both in energy or impulse space. The comparison in the energy dependence of the cubic and uni-axial anisotropies suggests that the Fermi level is not pinned in the impurity band but lies deep into the valence band. The results further reveal the opposite contributions of different valence bands to TAMR, in qualitative agreement with k. P calculations, as well as an additional contribution to the in-plane uniaxial anisotropy due to the impurity band. Besides, spectroscopy in momentum space shows an enhancement of TAMR due to Bloch’s states impulse filtering. Nevertheless, multi-bands tunnel spectroscopy of delocalized states in 3D space does not allow to determine the curves of dispersion. Preliminary results on the electrical spectroscopy of TAMR using resonant tunnelling through energy levels of a quantum well are also shown, as well as others on the use of TAMR to study nanomagnetism of an individual GaMnAs nanodot
Gebbie, Tim. "Temperature anisotropies: covariant CMB anisotropies and nonlinear corrections." Doctoral thesis, Faculty of Science, 1999. http://hdl.handle.net/11427/30218.
Повний текст джерелаPenkrot, Brian. "Anisotropic streaming." Diss., University of Iowa, 2014. https://ir.uiowa.edu/etd/4715.
Повний текст джерелаAzevedo, Carlos Alberto Cabral de. "Formulação alternativa para análise de domínios não-homogêneos e inclusões anisotrópicas via MEC." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/18/18134/tde-18102007-110753/.
Повний текст джерелаThis work deals with elastic 2D problems characterized by the presence of zones with different materials and anisotropic inclusions using the boundary element method. The anisotropy can be assumed either over the whole domain or defined only over some particular inclusions, which is the most usual case. Fundamental solutions for anisotropic domains, although well-known, lead to more complex formulations and may introduce difficulties when the analysis requires more complex material models as for instance plastic behavior, finite deformations, etc. The alternative formulation proposed in this work can be applied to anisotropic bodies using the classical fundamental solutions for 2D elastic isotropic domains plus correction given by an initial stress field. The domain region with anisotropic properties or only with different isotropic elastic parameters has to be discretized into cells to allow the required corrections, while the complementary part of the body requires only boundary discretization. The initial stress tensor to be applied to the anisiotropic region is defined as the isotropic material elastic stress tensor correction by introducing a local penalty matrix. This matrix is obtained by the difference between the elastic parameters between the reference values and the anisotropic material. This technique is particularly appropriate for anisotropic inclusion analysis, in which the domain discretization is required only over a small region, therefore increasing very little the number of degrees of freedom of the final algebraic system. The numerical results obtained by using the proposed formulation have demonstrated to be very accurate in comparison with either analytical solutions or the other numerical values.
Книги з теми "Anisotroping"
Ting, T. C. t. Anisotropic elasticity. New York: Oxford University Press, 1996.
Знайти повний текст джерелаLi, Quan, ed. Anisotropic Nanomaterials. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18293-3.
Повний текст джерелаVannucci, Paolo. Anisotropic Elasticity. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5439-6.
Повний текст джерелаHwu, Chyanbin. Anisotropic elastic plates. New York: Springer, 2010.
Знайти повний текст джерелаFreger, G. E. Spirally Anisotropic Composites. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.
Знайти повний текст джерелаGivargizov, E. I. Highly anisotropic crystals. Dordrecht: D. Reidel Pub. Co., 1987.
Знайти повний текст джерелаFreger, G. E., V. N. Kestelman, and D. G. Freger. Spirally Anisotropic Composites. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-09975-9.
Повний текст джерелаHwu, Chyanbin. Anisotropic Elastic Plates. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-5915-7.
Повний текст джерелаGivargizov, E. I. Highly Anisotropic Crystals. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3709-3.
Повний текст джерелаGlaser, Rainer, and Piotr Kaszynski, eds. Anisotropic Organic Materials. Washington, DC: American Chemical Society, 2001. http://dx.doi.org/10.1021/bk-2001-0798.
Повний текст джерелаЧастини книг з теми "Anisotroping"
Vannucci, Paolo. "Basic Concepts on Anisotropy." In Anisotropic Elasticity, 1–17. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5439-6_1.
Повний текст джерелаMikolajick, Thomas, and Walter M. Weber. "Silicon Nanowires: Fabrication and Applications." In Anisotropic Nanomaterials, 1–25. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18293-3_1.
Повний текст джерелаKe, Changhong, and Xiaoming Chen. "Interfacial Interactions in 1D and 2D Nanostructure-Based Material Systems." In Anisotropic Nanomaterials, 379–424. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18293-3_10.
Повний текст джерелаZhang, Pengfei, and Sheng Dai. "Mesoporous Carbon for Energy." In Anisotropic Nanomaterials, 425–45. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18293-3_11.
Повний текст джерелаSreekanth, Kandammathe Valiyaveedu, Antonio De Luca, and Giuseppe Strangi. "Hyperbolic Metamaterials: Design, Fabrication, and Applications of Ultra-Anisotropic Nanomaterials." In Anisotropic Nanomaterials, 447–67. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18293-3_12.
Повний текст джерелаKimura, Munehiro. "Printed Anisotropic Molecular Alignments." In Anisotropic Nanomaterials, 469–94. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18293-3_13.
Повний текст джерелаZhang, Shuang-Yuan, Kwok Wei Shah, and Ming-Yong Han. "Methods and Structures for Self-assembly of Anisotropic 1D Nanocrystals." In Anisotropic Nanomaterials, 27–68. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18293-3_2.
Повний текст джерелаXue, Chenming, and Quan Li. "Anisotropic Gold Nanoparticles: Preparation, Properties, and Applications." In Anisotropic Nanomaterials, 69–118. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18293-3_3.
Повний текст джерелаTongying, Pornthip, Maksym Zhukovskyi, and Masaru Kuno. "Synthesis and Application of Solution-Based II–VI and IV–VI Semiconductor Nanowires." In Anisotropic Nanomaterials, 119–56. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18293-3_4.
Повний текст джерелаYan, Chun-Hua, Ling-Dong Sun, Chao Zhang, Chun-Jiang Jia, Guang-Ming Lyu, Hao Dong, Xiao-Yu Zheng, et al. "Rare Earth Based Anisotropic Nanomaterials: Synthesis, Assembly, and Applications." In Anisotropic Nanomaterials, 157–208. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18293-3_5.
Повний текст джерелаТези доповідей конференцій з теми "Anisotroping"
lavsky, J., G. G. Long, A. J. Allen, L. Leblanc, M. Prystay, and C. Moreau. "Anisotropic Microstructure of Plasma-Sprayed Deposits." In ITSC 1998, edited by Christian Coddet. ASM International, 1998. http://dx.doi.org/10.31399/asm.cp.itsc1998p1577.
Повний текст джерелаHilgert, Oliver, Susanne Höhler, and Holger Brauer. "Anisotropic HFI Welded Steel Pipes for Strain Based Design." In 2016 11th International Pipeline Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/ipc2016-64194.
Повний текст джерелаGoldberg, Alexander, Matthias Zwicker, and Frédo Durand. "Anisotropic noise." In ACM SIGGRAPH 2008 papers. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1399504.1360653.
Повний текст джерелаKovacs, Denis, Ashish Myles, and Denis Zorin. "Anisotropic quadrangulation." In the 14th ACM Symposium. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1839778.1839797.
Повний текст джерелаJones, I. F., N. X. Bernitsas, P. A. Farmer, J. Leslie, and M. L. Bridson. "Anisotropic Ambiguities." In 64th EAGE Conference & Exhibition. European Association of Geoscientists & Engineers, 2002. http://dx.doi.org/10.3997/2214-4609-pdb.5.p137.
Повний текст джерелаJones, Ian F., Nick Bernitsas, Paul Farmer, Jennifer Leslie, and Mike Bridson. "Anisotropic ambiguities." In SEG Technical Program Expanded Abstracts 2002. Society of Exploration Geophysicists, 2002. http://dx.doi.org/10.1190/1.1816871.
Повний текст джерела"CMB ANISOTROPIES INTERPOLATION." In International Conference on Imaging Theory and Applications. SciTePress - Science and and Technology Publications, 2009. http://dx.doi.org/10.5220/0001434401550158.
Повний текст джерелаHollender, Peter, Anna Knight, Annette Caenen, Niranjana Shashikumar, Inje Lee, Mark Palmeri, Kathryn Nightingale, and Gregg Trahey. "Anisotropic Constructive Shearwave Interference Measurement of Transversely Anisotropic Materials." In 2018 IEEE International Ultrasonics Symposium (IUS). IEEE, 2018. http://dx.doi.org/10.1109/ultsym.2018.8579927.
Повний текст джерелаLabelle, Francois, and Jonathan Richard Shewchuk. "Anisotropic voronoi diagrams and guaranteed-quality anisotropic mesh generation." In the nineteenth conference. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/777792.777822.
Повний текст джерелаPeravali, S., T. H. Hyde, K. A. Cliffe, and S. B. Leen. "An Anisotropic Creep Damage Model for Anisotropic Weld Metal." In ASME 2007 Pressure Vessels and Piping Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/creep2007-26262.
Повний текст джерелаЗвіти організацій з теми "Anisotroping"
Lee, Hung-Mou, and Chen-Kuo Yu. A Theorem of Anisotropic Absorbers. Fort Belvoir, VA: Defense Technical Information Center, March 1997. http://dx.doi.org/10.21236/ada323831.
Повний текст джерелаCheng, C. Z. Magnetospheric equilibrium with anisotropic pressure. Office of Scientific and Technical Information (OSTI), July 1991. http://dx.doi.org/10.2172/5730952.
Повний текст джерелаNikkel, D. J., D. S. Nath, A. A. Brown, and J. Casey. Modeling of Anisotropic Inelastic Behavior. Office of Scientific and Technical Information (OSTI), February 2000. http://dx.doi.org/10.2172/793453.
Повний текст джерелаSahu, D., A. Langner, and Thomas F. George. Specific Heat of Anisotropic Superconductors. Fort Belvoir, VA: Defense Technical Information Center, July 1990. http://dx.doi.org/10.21236/ada225031.
Повний текст джерелаMoss, W., and J. Levatin. MOSSFRAC: An anisotropic 3D fracture model. Office of Scientific and Technical Information (OSTI), August 2006. http://dx.doi.org/10.2172/894759.
Повний текст джерелаJensen, L. G., and J. A. Stein-Schabes. Effect of inflation on anisotropic cosmologies. Office of Scientific and Technical Information (OSTI), March 1986. http://dx.doi.org/10.2172/6020214.
Повний текст джерелаEbeida, Mohamed Salah. An Anisotropic Adaptive Voronoi Meshing Method. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1568991.
Повний текст джерелаMarcassa, Luis G. Anisotropic Interactions between Cold Rydberg Atoms. Fort Belvoir, VA: Defense Technical Information Center, September 2015. http://dx.doi.org/10.21236/ada627619.
Повний текст джерелаBraun, R. J., S. R. Corriel, and R. F. Sekerka. Phase-field models for anisotropic interfaces. Gaithersburg, MD: National Institute of Standards and Technology, 1993. http://dx.doi.org/10.6028/nist.ir.5130.
Повний текст джерелаLukyanov, Alexander A., and Steven B. Segletes. Frontiers in Anisotropic Shock-Wave Modeling. Fort Belvoir, VA: Defense Technical Information Center, February 2012. http://dx.doi.org/10.21236/ada557251.
Повний текст джерела