Добірка наукової літератури з теми "Analisi infinitesimale"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Analisi infinitesimale".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Analisi infinitesimale"

1

Ikeda, Hiroshi. "Infinitesimal Stability of Anosov Endomorphisms." Journal of Differential Equations 130, no. 1 (September 1996): 1–8. http://dx.doi.org/10.1006/jdeq.1996.0129.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wu, Yan, Yi Qi, and Zunwei Fu. "On Geodesic Segments in the Infinitesimal Asymptotic Teichmüller Spaces." Journal of Function Spaces 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/276719.

Повний текст джерела
Анотація:
LetAZ(R)be the infinitesimal asymptotic Teichmüller space of a Riemann surfaceRof infinite type. It is known thatAZ(R)is the quotient Banach space of the infinitesimal Teichmüller spaceZ(R), whereZ(R)is the dual space of integrable quadratic differentials. The purpose of this paper is to study the nonuniqueness of geodesic segment joining two points inAZ(R). We prove that there exist infinitely many geodesic segments between the basepoint and every nonsubstantial point in the universal infinitesimal asymptotic Teichmüller spaceAZ(D)by constructing a special degenerating sequence.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kiselev, A., and B. Simon. "Rank One Perturbations with Infinitesimal Coupling." Journal of Functional Analysis 130, no. 2 (June 1995): 345–56. http://dx.doi.org/10.1006/jfan.1995.1074.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

van Ackooij, W., B. de Pagter, and F. A. Sukochev. "Domains of infinitesimal generators of automorphism flows." Journal of Functional Analysis 218, no. 2 (January 2005): 409–24. http://dx.doi.org/10.1016/j.jfa.2004.05.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sandu, Adrian. "A Class of Multirate Infinitesimal GARK Methods." SIAM Journal on Numerical Analysis 57, no. 5 (January 2019): 2300–2327. http://dx.doi.org/10.1137/18m1205492.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Abadias, Luciano, and Pedro J. Miana. "Quasigeostrophic Equations for Fractional Powers of Infinitesimal Generators." Journal of Function Spaces 2019 (February 7, 2019): 1–7. http://dx.doi.org/10.1155/2019/4763450.

Повний текст джерела
Анотація:
In this paper we treat the following partial differential equation, the quasigeostrophic equation: ∂/∂t+u·∇f=-σ-Aαf, 0≤α≤1, where (A,D(A)) is the infinitesimal generator of a convolution C0-semigroup of positive kernel on Lp(Rn), with 1≤p<∞. Firstly, we give remarkable pointwise and integral inequalities involving the fractional powers (-A)α for 0≤α≤1. We use these estimates to obtain Lp-decayment of solutions of the above quasigeostrophic equation. These results extend the case of fractional derivatives (taking A=Δ, the Laplacian), which has been studied in the literature.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bismut, Jean-Michel. "The infinitesimal Lefschetz formulas: A heat equation proof." Journal of Functional Analysis 62, no. 3 (July 1985): 435–57. http://dx.doi.org/10.1016/0022-1236(85)90013-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Airault, Hélène. "Projection of the infinitesimal generator of a diffusion." Journal of Functional Analysis 85, no. 2 (August 1989): 353–91. http://dx.doi.org/10.1016/0022-1236(89)90041-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Galé, José E., and Tadeusz Pytlik. "Functional Calculus for Infinitesimal Generators of Holomorphic Semigroups." Journal of Functional Analysis 150, no. 2 (November 1997): 307–55. http://dx.doi.org/10.1006/jfan.1997.3136.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Primozic, Eric. "Motivic cohomology and infinitesimal group schemes." Annals of K-Theory 7, no. 3 (December 19, 2022): 441–66. http://dx.doi.org/10.2140/akt.2022.7.441.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Analisi infinitesimale"

1

Adams, Richelle Vive-Anne. "Infinitesimal Perturbation Analysis for Active Queue Management." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19844.

Повний текст джерела
Анотація:
Active queue management (AQM) techniques for congestion control in Internet Protocol (IP) networks have been designed using both heuristic and analytical methods. But so far, there has been found no AQM scheme designed in the realm of stochastic optimization. Of the many options available in this arena, the gradient-based stochastic approximation method using Infintesimal Perturbation Analysis (IPA) gradient estimators within the Stochastic Fluid Model (SFM) framework is very promising. The research outlined in this thesis provides the theoretical basis and foundational layer for the development of IPA-based AQM schemes. Algorithms for computing the IPA gradient estimators for loss volume and queue workload were derived for the following cases: a single-stage queue with instantaneous, additive loss-feedback, a single-stage queue with instantaneous, additive loss-feedback and an unresponsive competing flow, a single-stage queue with delayed, additive loss-feedback, and a multi-stage tandem network of $m$ queues with instantaneous, additive loss-feedback. For all cases, the IPA gradient estimators were derived with the control parameter, $ heta$, being the buffer-limits of the queue(s). For the single-stage case and the multi-stage case with instantaneous, additive loss-feedback, the IPA gradient estimators for when the control parameter, $ heta$, is the loss-feedback constant, were also derived. Sensitivity analyses and optimizations were performed with control parameter, $ heta$, being the buffer-limits of the queue(s), as well as the loss-feedback constant.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Houchens, Jesse P. "Alternatives to the Calculus: Nonstandard Analysis and Smooth Infinitesimal Analysis." Ohio University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1365705311.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wilson, Brigham Bond. "Infinitesimal Perturbation Analysis for the Capacitated Finite-Horizon Multi-Period Multiproduct Newsvendor Problem." BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/2988.

Повний текст джерела
Анотація:
An optimal ordering scheme for the capacitated, finite-horizon, multi-period, multiproduct newsvendor problem was proposed by cite {shao06} using a hedging point policy. This solution requires the calculation of a central curve that divides the different ordering regions and a vector that defines the target inventory levels. The central curve is a nonlinear curve that determines the optimal order quantities as a function of the initial inventory levels. In this paper we propose a method for calculating this curve and vector using spline functions, infinitesimal perturbation analysis (IPA), and convex optimization. Using IPA the derivatives of the cost with respect to the variables that determine the spline function are efficiently calculated. A convex optimization algorithm is used to optimize the spline function, resulting in a optimal policy. We present the mathematical derivations and simulation results validating this solution.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Reeder, Patrick F. "Internal Set Theory and Euler's Introductio in Analysin Infinitorum." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1366149288.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lengyel, Eric. "Hyperreal structures arising from an infinite base logarithm." Thesis, Virginia Tech, 1996. http://hdl.handle.net/10919/44960.

Повний текст джерела
Анотація:

This paper presents new concepts in the use of infinite and infinitesimal numbers in real analysis. theory is based upon the hyperreal number system developed by Abraham Robinson in the 1960's in his invention of "nonstandard analysis". paper begins with a short exposition of the construction of the hyperreal nU1l1ber system and the fundamental results of nonstandard analysis which are used throughout the paper. The new theory which is built upon this foundation organizes the set hyperrea.l numbers through structures which on an infinite base logarithm. Several new relations are introduced whose properties enable the simplification of calculations involving infinite and infinitesimal The paper explores two areas of application of these results to standard problems in elementary calculus. The first is to the evaluation of limits which assume indeterminate forms. The second is to the determination of convergence of infinite series. Both applications provide methods which greatly reduce the amount of con1putation necessary in many situations.


Master of Science
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Niranjan, Suman. "A STUDY OF MULTI-ECHELON INVENTORY SYSTEMS WITH STOCHASTIC CAPACITY AND INTERMEDIATE PRODUCT DEMAND." Wright State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=wright1217523912.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Montcouquiol, Grégoire. "Déformations de métriques Einstein sur des variétés à singularités coniques." Toulouse 3, 2005. http://www.theses.fr/2005TOU30205.

Повний текст джерела
Анотація:
Partant d'une cône-variété hyperbolique compacte de dimension n>2, on étudie les déformations de la métrique dans le but d'obtenir des cônes-variétés Einstein. Dans le cas où le lieu singulier est une sous-variété fermée de codimension 2 et que tous les angles coniques sont plus petits que 2pi, on montre qu'il n'existe pas de déformations Einstein infinitésimales non triviales préservant les angles coniques. Ce résultat peut s'interpréter comme une généralisation en dimension supérieure du célèbre théorème de Hodgson et Kerckhoff sur les déformations des cônes-variétés hyperboliques de dimension 3. Si tous les angles coniques sont inférieurs à pi, on donne ensuite une construction qui à chaque variation donnée des angles associe une déformation Einstein infinitésimale correspondante
Starting with a compact hyperbolic cone-manifold of dimension n>2, we study the deformations of the metric in order to get Einstein cone-manifolds. If the singular locus is a closed codimension 2 submanifold and all cone angles are smaller than 2pi, we show that there is no non-trivial infinitesimal Einstein deformations preserving the cone angles. This result can be interpreted as a higher-dimensional case of the celebrated Hodgson and Kerckhoff's theorem on deformations of hyperbolic 3-cone-manifolds. If all cone angles are smaller than pi, we also give a construction which associates to any variation of the angles a corresponding infinitesimal Einstein deformation
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Makovský, Jan. "Markýz de l'Hospital a Analýza nekonečně malých." Thesis, Paris 4, 2015. http://www.theses.fr/2015PA040061/document.

Повний текст джерела
Анотація:
Bien que ma dissertation de thèse consiste essentiellement en trois pièces de nature assez distincte (il s'agitde la traduction en tchèque de l'Analyse des infiniment petits, son commentaire et l'étude d'introduction),cependant, je subsume le tout sous une idée unificatrice de la loi de continuité leibnizienne qui régit le systèmede symboles au fondement du calcul différentiel. Quant à la première partie, elle décrit premièrement l'histoire dela vie du marquis de l'Hospital dite « officielle» ou bien « académique » due à l'Éloge de Bernard de Fontenellequi sert de l'arrière-plan de la seconde partie, de l'étude introductrice, du portrait « caché», consistant en l'analysedes succès géométriques du marquis, des solutions de problèmes physico-géométrique célèbres en comparaisonde celles de Jean Bernoulli, son jeune précepteur – fondée bien évidemment sur la correspondance mutuelle. Enraison de la nature du calcul leibnizienne tant physique que géométrique je démontre que c'était précisément lapureté géométrique de son esprit qui faisait obstacle à l’invention géométrique du marquis. En deuxième lieu jeprésente la description des controverses qui ont éclaté entre Leibniz et Nieuwentiijt sur la questions de fondementdu calcul, tout en précisant sur les écrits leibniziennes la nature symbolique ambiguë de différentielles. L'autrecontroverse, entre Rolle et Varignon, sert à décrire les contrainte institutionnelles du développement du calculaussi que les explication fondatrices de la part de Varignon qui indique la futur transformation newtonienne ducalcul infinitésimal. Enfin le commentaire, d'après ladite idée unificatrice, marque sur des exemplesmathématiques la transformation algébrique de la géométrie grecque pendant le XVIIe siècle tout en illustrant lesarticles de l'Analyse et comparant ses sources bernoulliennes
The basis of my dissertation consists in three rather distinct parts, that is Czech translation, a commentaryand introduction to the famous Analyse des infiniment petitis by marquis the l'Hospital. Nevertheless I unify thewhole in virtue of the leibnizien metaphysical idea of the law of continuity governing the symbolic systemfundamental to the differential calculus of Leibniz. Concerning the first part of the introduction I represent the socalled academical or official picture of marquis de l'Hospital based on the Éloge by Bernard de Fontenelle. I usethis picture as a background to the so called hidden picture of the marquis, which consists in the analysis of thephysico-geometrical problems solved by the marquis de l'Hospital in comparison to those of Johann Bernoulli,based naturally on the correspondence of the two of them. I demonstrate, regarding the nature of the calculusboth physical and geometrical, that it was precisely the geometrical purity of his mind had forbidden him to makeinventions in geometry, unlike Johann Bernoulli. In the third part I describe the controversies that made part ofthe development of the calculus; firstly the controversy between Nieuwentijt and Leibniz concerning thefundamental questions of calculus. I precise on this occasion my views on the nature of leibnizian calculus asstated above, that is ambiguous symbolism of differentials. The second controversy, between Rolle and Varignonputs forward institutional obstacles of the development of the calculus as well as the foundational attempts madeby Varignon that indicated the future transformation of the calculus according to the spirit of Newton. Finally thecommentary, by the symbolic idea above, indicates the algebraical shift of the 17th century geometry; illustratesarticles of the Analyse des infiniment petits and shows the dependence on Bernoulli's inventions
Práce je věnována přelomové, epochální práci prvního období infinitesimálního počtu, Analyse desinfiniment petits Guillauma, markýze de l'Hospitala. Dělí se na tři podstatné části: překlad, komentář a úvodnístudii. Účelem je představit toto dílo v jeho jedinečných okolnostech jeho vzniku a zároveň určit jeho obecnémísto v dějinách matematických idejí. Úvodní studie je věnována především osobnosti markýze de l'Hospitala.Na pozadí rozvoje infinitesimálního počtu se vykresluje jeho po dlouhou dobu oficiální obraz v dějináchmatematiky. V druhé části se rozebírá blízký lidský i matematický vztah markýze de l'Hospitala s JohannemBernoullim; a na základě rozboru markýzových geometrických úspěchů se ve srovnání s řešeními JohannaBernoulliho, bratra Jakoba a Leibnize se podává obecná charakteristika prvního infinitesimálního počtu cobygeometrické i fyzikální teorie a možností jeho objevitelských cest prostřednictvím analogií založených nanejzazším požadavku harmonie přírody. Třetí část úvodní studie v historických souvislostech sporů a výměnstran základů diferenciálního počtu objasňuje z hlavní ideje Leibnizovy symbolické přírody, totiž zákonakontinuity, povahu diferenciálního znaku dx, jeho radikální novost a argumenty ospravedlnění přesnostiinfinitesimálního počtu. Druhá kontroverze, která je v práci představena, probíhá mezi Rollem a Varignonem;podstatnými rysy jsou institucionální podmínky rozvoje počtu a Varignonovy pokusy o důkazy nekonečněmalých v Newtonově duchu. Komentář Analýzy nekonečně malých slouží k historickému, filologickému afilosofickému objasnění nových metod a dokládá utváření Analýzy nekonečně malých z jejích zdrojů, tj.přednášek Johanna Bernoulliho markýzi de l'Hospitalovi a jejich dopisové výměny
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Fredericks, E. "Conservation laws and their associated symmetries for stochastic differential equations." Thesis, 2009. http://hdl.handle.net/10539/6980.

Повний текст джерела
Анотація:
The modelling power of Itˆo integrals has a far reaching impact on a spectrum of diverse fields. For example, in mathematics of finance, its use has given insights into the relationship between call options and their non-deterministic underlying stock prices; in the study of blood clotting dynamics, its utility has helped provide an understanding of the behaviour of platelets in the blood stream; and in the investigation of experimental psychology, it has been used to build random fluctuations into deterministic models which model the dynamics of repetitive movements in humans. Finding the quadrature for these integrals using continuous groups or Lie groups has to take families of time indexed random variables, known as Wiener processes, into consideration. Adaptations of Sophus Lie’s work to stochastic ordinary differential equations (SODEs) have been done by Gaeta and Quintero [1], Wafo Soh and Mahomed [2], ¨Unal [3], Meleshko et al. [4], Fredericks and Mahomed [5], and Fredericks and Mahomed [6]. The seminal work [1] was extended in Gaeta [7]; the differential methodology of [2] and [3] were reconciled in [5]; and the integral methodology of [4] was corrected and reconciled in [5] via [6]. Symmetries of SODEs are analysed. This work focuses on maintaining the properties of the Weiner processes after the application of infinitesimal transformations. The determining equations for first-order SODEs are derived in an Itˆo calculus context. These determining equations are non-stochastic. Many methods of deriving Lie point-symmetries for Itˆo SODEs have surfaced. In the Itˆo calculus context both the formal and intuitive understanding of how to construct these symmetries has led to seemingly disparate results. The impact of Lie point-symmetries on the stock market, population growth and weather SODE models, for example, will not be understood until these different results are reconciled as has been attempted here. Extending the symmetry generator to include the infinitesimal transformation of the Wiener process for Itˆo stochastic differential equations (SDEs), has successfully been done in this thesis. The impact of this work leads to an intuitive understanding of the random time change formulae in the context of Lie point symmetries without having to consult much of the intense Itˆo calculus theory needed to derive it formerly (see Øksendal [8, 9]). Symmetries of nth-order SODEs are studied. The determining equations of these SODEs are derived in an Itˆo calculus context. These determining equations are not stochastic in nature. SODEs of this nature are normally used to model nature (e.g. earthquakes) or for testing the safety and reliability of models in construction engineering when looking at the impact of random perturbations. The symmetries of high-order multi-dimensional SODEs are found using form invariance arguments on both the instantaneous drift and diffusion properties of the SODEs. We then apply this to a generalised approximation analysis algorithm. The determining equations of SODEs are derived in an It¨o calculus context. A methodology for constructing conserved quantities with Lie symmetry infinitesimals in an Itˆo integral context is pursued as well. The basis of this construction relies on Lie bracket relations on both the instantaneous drift and diffusion operators.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Analisi infinitesimale"

1

R, Manfredi. Moduli di lineamenti di matematica - Modulo F: Analisi infinitesimale (seconda parte). Novara, Italy: Ghisetti & Corvi Editori, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

U, Bottazzini, Freguglia Paolo, and Toti Rigatelli Laura 1941-, eds. Fonti per la storia della matematica: Aritmetica, geometria, algebra, analisi infinitesimale, calcolo delle probabilità, logica. Firenze: Sansoni, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Manuel, Bayod José, ed. Foundations of infinitesimal stochastic analysis. Amsterdam: North-Holland, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bell, J. L. A primer of infinitesimal analysis. 2nd ed. Cambridge: Cambridge University Press, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

L, Bell J. A primer of infinitesimal analysis. Cambridge, [Eng.]: Cambridge University Press, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Moerdijk, Ieke. Models for smooth infinitesimal analysis. New York: Springer-Verlag, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Real analysis through modern infinitesimals. Cambridge: Cambridge University Press, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Infinitesimal methods of mathematical analysis. Chichester, West Sussex: Horwood, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Herzberg, Frederik. Stochastic Calculus with Infinitesimals. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Spectrums: Our mind-boggling universe, from infinitesimal to infinity. London: Bloomsbury, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Analisi infinitesimale"

1

Gordon, E. I., A. G. Kusraev, and S. S. Kutateladze. "Excursus into the History of Calculus." In Infinitesimal Analysis, 1–9. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-0063-4_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gordon, E. I., A. G. Kusraev, and S. S. Kutateladze. "Naive Foundations of Infinitesimal Analysis." In Infinitesimal Analysis, 10–34. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-0063-4_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gordon, E. I., A. G. Kusraev, and S. S. Kutateladze. "Set-Theoretic Formalisms of Infinitesimal Analysis." In Infinitesimal Analysis, 35–115. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-0063-4_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gordon, E. I., A. G. Kusraev, and S. S. Kutateladze. "Monads in General Topology." In Infinitesimal Analysis, 116–65. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-0063-4_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gordon, E. I., A. G. Kusraev, and S. S. Kutateladze. "Infinitesimals and Subdifferentials." In Infinitesimal Analysis, 166–222. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-0063-4_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gordon, E. I., A. G. Kusraev, and S. S. Kutateladze. "Technique of Hyperapproximation." In Infinitesimal Analysis, 223–80. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-0063-4_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gordon, E. I., A. G. Kusraev, and S. S. Kutateladze. "Infinitesimals in Harmonic Analysis." In Infinitesimal Analysis, 281–366. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-0063-4_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gordon, E. I., A. G. Kusraev, and S. S. Kutateladze. "Exercises and Unsolved Problems." In Infinitesimal Analysis, 367–79. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-0063-4_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sonar, Thomas. "Frühe infinitesimale Techniken." In Einführung in die Analysis, 103–28. Wiesbaden: Vieweg+Teubner Verlag, 1999. http://dx.doi.org/10.1007/978-3-322-80216-3_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gass, Saul I., and Carl M. Harris. "Infinitesimal perturbation analysis." In Encyclopedia of Operations Research and Management Science, 393. New York, NY: Springer US, 2001. http://dx.doi.org/10.1007/1-4020-0611-x_456.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Analisi infinitesimale"

1

Benedetto, Augusto Di, and Ettore Pennestrì. "Position Analysis and Higher-Order Synthesis of the Swinging-Block Mechanism." In ASME 1996 Design Engineering Technical Conferences and Computers in Engineering Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-detc/mech-1021.

Повний текст джерела
Анотація:
Abstract Algorithms for graphical analysis and kinematic synthesis of the path generator swinging-block mechanism are proposed in this paper. In particular, through a blending of optimization procedures and higher-curvature properties of infinitesimal rigid motions, it is shown how such a mechanism may approximate symmetric continuous curves with up to two sets of four infinitesimally separated precision points. Thus the generated path has eight precision points in common with the ideal curve.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mijajlović, Žarko. "Infinitesimals in Nonstandard Analysis versus Infinitesimals in p-Adic Fields." In p-ADIC MATHEMATICAL PHYSICS: 2nd International Conference. AIP, 2006. http://dx.doi.org/10.1063/1.2193129.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Geng, Yanfeng, and Christos G. Cassandras. "Traffic light control using Infinitesimal Perturbation Analysis." In 2012 IEEE 51st Annual Conference on Decision and Control (CDC). IEEE, 2012. http://dx.doi.org/10.1109/cdc.2012.6426611.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Burden, Samuel A., and Samuel D. Coogan. "On infinitesimal contraction analysis for hybrid systems." In 2022 IEEE 61st Conference on Decision and Control (CDC). IEEE, 2022. http://dx.doi.org/10.1109/cdc51059.2022.9992825.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sergeyev, Yaroslav D. "Numerical infinities and infinitesimals in a new supercomputing framework." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM 2015). Author(s), 2016. http://dx.doi.org/10.1063/1.4951756.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lee, Brian C., Daniel J. Tward, Zhiyi Hu, Alain Trouve, and Michael I. Miller. "Infinitesimal Drift Diffeomorphometry Models for Population Shape Analysis." In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2020. http://dx.doi.org/10.1109/cvprw50498.2020.00439.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jin-Yong Zhang and R. F. Jao. "Analysis on energy distribution of infinitesimal mapping method." In 2016 Progress in Electromagnetic Research Symposium (PIERS). IEEE, 2016. http://dx.doi.org/10.1109/piers.2016.7734279.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sergeyev, Yaroslav D. "Numerical infinitesimals for solving ODEs given as a black-box." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4912448.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sadok, Turki, Bistorin Olivier, and Rezg Nidhal. "Infinitesimal perturbation analysis based optimization for a manufacturing-remanufacturing system." In 2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA). IEEE, 2013. http://dx.doi.org/10.1109/etfa.2013.6648000.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lian, Shaofan, Wei Wang, Yatian Zhou, Shunxi Lou, Hong Bao, Liwei Song, and Guojun Leng. "Analysis of Deformed Antenna Array Based on Infinitesimal Dipole Model." In 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/USNC-URSI). IEEE, 2022. http://dx.doi.org/10.1109/ap-s/usnc-ursi47032.2022.9886382.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Analisi infinitesimale"

1

L'Ecuyer, Pierre. A Unified View of Infinitesimal Perturbation Analysis and Likelihood Ratios. Fort Belvoir, VA: Defense Technical Information Center, February 1989. http://dx.doi.org/10.21236/ada210682.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії