Добірка наукової літератури з теми "Amphibiens – Physiologie"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Amphibiens – Physiologie".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Amphibiens – Physiologie"

1

Çömden, Esra Akat, Melodi Yenmiş, and Berna Çakır. "The Complex Bridge between Aquatic and Terrestrial Life: Skin Changes during Development of Amphibians." Journal of Developmental Biology 11, no. 1 (January 30, 2023): 6. http://dx.doi.org/10.3390/jdb11010006.

Повний текст джерела
Анотація:
Amphibian skin is a particularly complex organ that is primarily responsible for respiration, osmoregulation, thermoregulation, defense, water absorption, and communication. The skin, as well as many other organs in the amphibian body, has undergone the most extensive rearrangement in the adaptation from water to land. Structural and physiological features of skin in amphibians are presented within this review. We aim to procure extensive and updated information on the evolutionary history of amphibians and their transition from water to land—that is, the changes seen in their skin from the larval stages to adulthood from the points of morphology, physiology, and immunology.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hernandez-Caballero, Irene, Luz Garcia-Longoria, Ivan Gomez-Mestre, and Alfonso Marzal. "The Adaptive Host Manipulation Hypothesis: Parasites Modify the Behaviour, Morphology, and Physiology of Amphibians." Diversity 14, no. 9 (September 8, 2022): 739. http://dx.doi.org/10.3390/d14090739.

Повний текст джерела
Анотація:
Parasites have evolved different strategies to increase their transmission from one host to another. The Adaptive Host Manipulation hypothesis states that parasites induce modifications of host phenotypes that could maximise parasite fitness. There are numerous examples of parasite manipulation across a wide range of host and parasite taxa. However, the number of studies exploring the manipulative effects of parasites on amphibians is still scarce. Herein, we extensively review the current knowledge on phenotypic alterations in amphibians following parasite infection. Outcomes from different studies show that parasites may manipulate amphibian behaviours to favour their transmission among conspecifics or to enhance the predation of infected amphibians by a suitable definite host. In addition, parasites also modify the limb morphology and impair locomotor activity of infected toads, frogs, and salamanders, hence facilitating their ingestion by a final host and completing the parasite life cycle. Additionally, parasites may alter host physiology to enhance pathogen proliferation, survival, and transmission. We examined the intrinsic (hosts traits) and extrinsic (natural and anthropogenic events) factors that may determine the outcome of infection, where human-induced changes of environmental conditions are the most harmful stressors that enhance amphibian exposure and susceptibility to parasites.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Blaustein, Andrew R., Stephanie S. Gervasi, Pieter T. J. Johnson, Jason T. Hoverman, Lisa K. Belden, Paul W. Bradley, and Gisselle Y. Xie. "Ecophysiology meets conservation: understanding the role of disease in amphibian population declines." Philosophical Transactions of the Royal Society B: Biological Sciences 367, no. 1596 (June 19, 2012): 1688–707. http://dx.doi.org/10.1098/rstb.2012.0011.

Повний текст джерела
Анотація:
Infectious diseases are intimately associated with the dynamics of biodiversity. However, the role that infectious disease plays within ecological communities is complex. The complex effects of infectious disease at the scale of communities and ecosystems are driven by the interaction between host and pathogen. Whether or not a given host–pathogen interaction results in progression from infection to disease is largely dependent on the physiological characteristics of the host within the context of the external environment. Here, we highlight the importance of understanding the outcome of infection and disease in the context of host ecophysiology using amphibians as a model system. Amphibians are ideal for such a discussion because many of their populations are experiencing declines and extinctions, with disease as an important factor implicated in many declines and extinctions. Exposure to pathogens and the host's responses to infection can be influenced by many factors related to physiology such as host life history, immunology, endocrinology, resource acquisition, behaviour and changing climates. In our review, we discuss the relationship between disease and biodiversity. We highlight the dynamics of three amphibian host–pathogen systems that induce different effects on hosts and life stages and illustrate the complexity of amphibian–host–parasite systems. We then review links between environmental stress, endocrine–immune interactions, disease and climate change.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Glinski, Donna A., S. Thomas Purucker, Robin J. Van Meter, Marsha C. Black, and W. Matthew Henderson. "Endogenous and exogenous biomarker analysis in terrestrial phase amphibians (Lithobates sphenocephala) following dermal exposure to pesticide mixtures." Environmental Chemistry 16, no. 1 (2019): 55. http://dx.doi.org/10.1071/en18163.

Повний текст джерела
Анотація:
Environmental contextMetabolomics can be used to provide a snapshot of an organism’s physiology as the organism is exposed to varying environmental conditions. In this study, laboratory-reared amphibians were exposed to multiple pesticides, analogous to field exposures, resulting in an impact to both pesticide body concentrations and the amphibians’ hepatic metabolome. These data can be used in the environmental and ecological risk assessment of multiple pesticides in non-target species. AbstractPesticide mixtures are frequently co-applied throughout an agricultural growing season to maximise crop yield. Therefore, non-target ecological species (e.g. amphibians) may be exposed to several pesticides at any given time on these agricultural landscapes. The objectives of this study were to quantify body burdens in terrestrial phase amphibians and translate perturbed metabolites to their corresponding biochemical pathways affected by exposure to pesticides as both singlets and in combination. Southern leopard frogs (Lithobates sphenocephala) were exposed either at the maximum or 1/10th maximum application rate to single, double or triple pesticide mixtures of bifenthrin (insecticide), metolachlor (herbicide) and triadimefon (fungicide). Tissue concentrations demonstrated both facilitated and competitive uptake of pesticides when in mixtures. Metabolomic profiling of amphibian livers identified metabolites of interest for both application rates; however, the magnitude of changes varied for the two exposure rates. Exposure to lower concentrations demonstrated downregulation in amino acids, potentially owing to their usage for glutathione metabolism and/or increased energy demands. Amphibians exposed to the maximum application rate resulted in upregulation of amino acids and other key metabolites likely owing to depleted energy resources. Coupling endogenous and exogenous biomarkers of pesticide exposure can be used to form vital links in an ecological risk assessment by relating internal dose to pathophysiological outcomes in non-target species.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Storey, Kenneth B., and Janet M. Storey. "Molecular Physiology of Freeze Tolerance in Vertebrates." Physiological Reviews 97, no. 2 (April 2017): 623–65. http://dx.doi.org/10.1152/physrev.00016.2016.

Повний текст джерела
Анотація:
Freeze tolerance is an amazing winter survival strategy used by various amphibians and reptiles living in seasonally cold environments. These animals may spend weeks or months with up to ∼65% of their total body water frozen as extracellular ice and no physiological vital signs, and yet after thawing they return to normal life within a few hours. Two main principles of animal freeze tolerance have received much attention: the production of high concentrations of organic osmolytes (glucose, glycerol, urea among amphibians) that protect the intracellular environment, and the control of ice within the body (the first putative ice-binding protein in a frog was recently identified), but many other strategies of biochemical adaptation also contribute to freezing survival. Discussed herein are recent advances in our understanding of amphibian and reptile freeze tolerance with a focus on cell preservation strategies (chaperones, antioxidants, damage defense mechanisms), membrane transporters for water and cryoprotectants, energy metabolism, gene/protein adaptations, and the regulatory control of freeze-responsive hypometabolism at multiple levels (epigenetic regulation of DNA, microRNA action, cell signaling and transcription factor regulation, cell cycle control, and anti-apoptosis). All are providing a much more complete picture of life in the frozen state.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Frumkes, Thomas E., and Thor Eysteinsson. "The cellular basis for suppressive rod–cone interaction." Visual Neuroscience 1, no. 3 (May 1988): 263–73. http://dx.doi.org/10.1017/s0952523800001929.

Повний текст джерела
Анотація:
AbstractThe response to spatially focal flicker is enhanced by dim, spatially diffuse, rod-stimulating backgrounds. This effect is called suppressive rod-cone interaction (SRCI) as it reflects a tonic, suppressive influence of dark-adapted rods upon cone pathways which is removed by selective rod-light adaptation. SRCI is observed in amphibian retina with intracellular recordings from most cone-driven cells including the cones themselves, and is most obvious using stimuli flickering at frequencies too rapid for rods to follow. SRCI is blocked by glutamate analogs which selectively block the photic response of horizontal cells (HCs). In the presence of these agents, flicker responses from bipolar cells and cones are enhanced to levels normally seen only with selective rod-light adaptation. In the HCs themselves, SRCI is similarly blocked by lead chloride which blocks rod-, but not cone-related activity.In amphibian and cat HCs and in human observers, SRCI is limited by a space constant of very similar value (between 100 and 150 μm). We suggest that SRCI in all three species is mediated by HCs: in amphibians, SRCI must at least partially reflect rod-modulation of HC feedback onto cones.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Svinin, Anton O., Igor V. Chikhlyaev, Ivan W. Bashinskiy, Vitaly V. Osipov, Leonid A. Neymark, Alexander Yu Ivanov, Tamara G. Stoyko, et al. "Diversity of trematodes from the amphibian anomaly P hotspot: Role of planorbid snails." PLOS ONE 18, no. 3 (March 29, 2023): e0281740. http://dx.doi.org/10.1371/journal.pone.0281740.

Повний текст джерела
Анотація:
Trematode infection of the second intermediate hosts can lead to changes in their fitness and, as a result, a change in the invasion rate of animal communities. It is especially pronounced during the invasion of parasite species that reduce activity due to the manipulation of hosts through the changes of their morphology and physiology. One of these cases is an anomaly P syndrome hotspot found in some populations of water frogs and toads in Europe caused by the trematode Strigea robusta metacercariae. The occurrence of pathogen and their participation in ecosystems are intrigues questions in the anomaly P phenomenon, as well as the role of planorbid snails that serve as the first intermediate hosts for many trematode species. Herein, we focused on trematodes spectra from planorbid snails and amphibians from the anomaly P hosts with the aim to undetected interactions between the pathways of parasites. Emerging cercariae of 6802 planorbid snails of dominant species (Planorbarius corneus, Planorbis planorbis, and Anisus spp.) were detected by both morphological and molecular methods in seven waterbodies in Privolzhskaya Lesostep Nature Reserve (Russia). A total of 95 sequences of 18 species were received, and 48 sequences were unique and did not present in any genetic databases. The 18 species of trematodes from snails and 14 species of trematodes from amphibian hosts (Pelophylax ridibundus; Ranidae; Anura) were detected. Three species (Echinostoma nasincovae, Tylodelphys circibuteonis and Australapatemon burti) was new for the trematode fauna of the Middle Volga River region and Russia as a whole. Eleven species of parasitic flatworms have amphibians in their life cycles and nine species used amphibians as metacercariae hosts: Echinostoma nasincovae, E. miyagawai, Echinoparyphium recurvatum, Tylodelphys circibuteonis, Neodiplostomum spathula, Paralepoderma cloacicola, Macrodera longicollis, Strigea robusta, and Strigea strigis. The occurrence of trematode species from planorbid mollusks and frogs were compared.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yermolenko, S. V., V. S. Nedzvetsky, V. Y. Gasso, V. A. Spirina, V. B. Petrushevskyi, and V. V. Kyrychenko. "Low doses of imidacloprid induce neurotoxic effects in adult marsh frogs: GFAP, NfL, and angiostatin as biomarkers." Regulatory Mechanisms in Biosystems 13, no. 4 (November 15, 2022): 426–30. http://dx.doi.org/10.15421/022256.

Повний текст джерела
Анотація:
Imidacloprid is one of the most widely used insecticides in the world. The neurotoxicity of imidacloprid in adult amphibians has not been studied thoroughly. We investigated the expression of glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL) and angiostatin in the amphibian brain to identify valid biomarkers of low dose imidacloprid exposure. For the experiment, 30 individuals of the marsh frog Pelophylax ridibundus were selected. The amphibians were divided into five groups. The duration of the experiment was 7 and 21 days. The exposure concentrations were 10 and 100 µg/L. The results of the study revealed a decrease in the expression of GFAP after 7 days in the exposure groups of 10 and 100 μg/L. An increase in the level of NfL was observed in the group exposed to 10 μg/L after 21 days of the experiment. The angiostatin level was increased after 7 days at 10 µg/L and after 21 days at 100 µg/L. The data obtained indicate that low concentrations of imidacloprid can cause neurotoxic effects in the brain of P. ridibundus. Such effects can have a significant impact on amphibian populations. According to the results of the study of the expression level of GFAP, NfL and angiostatin, it can be stated that imidacloprid has a neurotoxic effect on adult marsh frogs. The studied indicators can be promising biomarkers of environmental pollution by neonicotinoids.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Turko, Andy J., Giulia S. Rossi, and Patricia A. Wright. "More than Breathing Air: Evolutionary Drivers and Physiological Implications of an Amphibious Lifestyle in Fishes." Physiology 36, no. 5 (September 1, 2021): 307–14. http://dx.doi.org/10.1152/physiol.00012.2021.

Повний текст джерела
Анотація:
Amphibious and aquatic air-breathing fishes both exchange respiratory gasses with the atmosphere, but these fishes differ in physiology, ecology, and possibly evolutionary origins. We introduce a scoring system to characterize interspecific variation in amphibiousness and use this system to highlight important unanswered questions about the evolutionary physiology of amphibious fishes.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gull, Mazhar, Stefan M. Schmitt, Roland E. Kälin, and André W. Brändli. "Screening of Chemical Libraries UsingXenopusEmbryos and Tadpoles for Phenotypic Drug Discovery." Cold Spring Harbor Protocols 2023, no. 4 (September 30, 2022): pdb.prot098269. http://dx.doi.org/10.1101/pdb.prot098269.

Повний текст джерела
Анотація:
Phenotypic drug discovery assesses the effect of small molecules on the phenotype of cells, tissues, or whole organisms without a priori knowledge of the target or pathway. Using vertebrate embryos instead of cell-based assays has the advantage that the screening of small molecules occurs in the context of the complex biology and physiology of the whole organism. Fish and amphibians are the only classes of vertebrates with free-living larvae amenable to high-throughput drug screening in multiwell dishes. For both animal classes, particularly zebrafish andXenopus, husbandry requirements are straightforward, embryos can be obtained in large numbers, and they develop ex utero so their development can be monitored easily with a dissecting microscope. At 350 million years, the evolutionary distance between amphibians and humans is significantly shorter than that between fish and humans, which is estimated at 450 million years. This increases the likelihood that drugs discovered by screening in amphibian embryos will be active in humans. Here, we describe the basic protocol for the medium- to high-throughput screening of chemical libraries using embryos of the African clawed frogXenopus laevis. Bioactive compounds are identified by observing phenotypic changes in whole embryos and tadpoles. In addition to the discovery of compounds with novel bioactivities, the phenotypic screening protocol also allows for the identification of compounds with in vivo toxicity, eliminating early hits that are poor drug candidates. We also highlight important considerations for designing chemical screens, choosing chemical libraries, and performing secondary screens using whole mount in situ hybridization or immunostaining.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Amphibiens – Physiologie"

1

Renoirt, Matthias. "Influence de l’habitat sur l’écologie et la physiologie du crapaud épineux (Bufo spinosus)." Electronic Thesis or Diss., La Rochelle, 2022. http://www.theses.fr/2022LAROS041.

Повний текст джерела
Анотація:
Un grand nombre d’études ont mis en avant les effets négatifs des pressions anthropiques dans le temps et dans l’espace sur la biodiversité. Parmi ces pressions anthropiques, les activités et l’expansion agricole jouent un rôle principal dans la modification des milieux et dans la perte de biodiversité. De fait, la question de la persistance des espèces animales dans ce type de milieux se pose. C’est dans ce contexte que ma thèse s’axe. Afin d’étudier les réponses des organismes à un milieu dégradé et les contraintes du paysage sur différents traits d’histoire de vie et l’écologie, je travaille spécifiquement sur une espèce d’amphibien occupant des milieux allant de fortement conservés à fortement dégradés. Afin de comparer les populations de crapauds épineux (Bufo spinosus) forestières et les populations agricoles, j’utilise un vaste panel de marqueurs pour examiner (1) la structure génétique des populations (marqueurs microsatellites), (2) l’écologie alimentaire (isotopes stables), (3) la qualité individuelle (télomères, morphologie, traits de développement) et son impact sur la reproduction. De ce fait et au cours de cette thèse, j’ai pu mettre en relation de nombreux facteurs associés aux paysages agricoles qui soulèvent de nombreuses questions quant au maintien des populations de crapauds épineux. Ainsi, nous avons pu montrer un effet significatif des fertilisants sur la signature isotopique en δ15N des populations de B.spinosus. Aussi, nous avons pu souligner que l’environnement agricole reste suffisamment perméable au maintien de la diversité génétique. Cependant, nous avons mis en évidence de nombreuses contraintes de ce milieu sur la reproduction des populations d’amphibiens, que ce soit par la faible (voir l’absence) abondance de femelles sur les sites de reproduction, et/ou directement sur le succès reproducteur et la qualité de la progéniture. Ces résultats suggèrent de possibles effets à long terme sur les populations d’amphibiens et nous suggérons d’approfondir les différentes voies de recherche que nous suggérons tout au long de cette thèse afin de mieux comprendre les mécanismes sous-jacents à ces résultats et de trouver des solutions quant à la pérennité des espèces sauvages qui n’ont d’autres choix que de s’adapter
A large number of studies have highlighted the negative effects of anthropogenic pressures intime and space on biodiversity. Among these anthropogenic pressures, agricultural activities and expansion play a major role in the modification of environments and in the loss of biodiversity. Questions whether animal species persist in this type of environment arises. My thesis is based on this context. We aimed at study the responses of organism to a degraded environment and the landscape constraints on life history traits and ecology. My work is focused specifically on an amphibian species persisting in habitat ranging from highly conserved to highly degraded by agricultural activities. In order to compare forest and agricultural populations of model species (Spined toad, Bufo spinosus), I relied on a wide variety of markers to examine (1) population genetic structure (micro-satellite markers), (2) feeding ecology (stable isotope), (3) individual quality (telomeres, morphology, developmental traits) and the impact on reproduction. As a result, I was able to connect many factors associated with agricultural landscapes that raised many questions about the persistence of spined toad populations. We were able to show a significant effect of fertilizers on the δ15N isotopic signature of B.spinosus populations. Moreover, we highlighted that agricultural environment allows genetic diversity between populations. However, using correlative approaches, we pointed out various on strains of this environment on the reproduction of amphibians populations, either through low (or no) abundance of females on breeding sites, and/or directly on reproductive success and offspring quality. These results suggest possible long-term effects on amphibian populations, and we suggest that the various avenues of research we suggested throughout this thesis should be pursued in order to better understand the mechanisms underlying these results and to find solutions for the sustainability of wild species that have no choice but to adapt
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bouvet, Jean-François. "Les interactions périphériques entre systèmes trigéminal et olfactif chez les amphibiens : approches immunohistochimique, électrophysiologique et pharmacologique." Lyon 1, 1992. http://www.theses.fr/1992LYO10006.

Повний текст джерела
Анотація:
Cette these se situe dans le cadre du controle de l'entree sensorielle chez les vertebres. Le premier chapitre etudie l'innervation extrinseque de la muqueuse olfactive; il met en evidence l'existence, chez la grenouille, de fibres trigeminales presentant une immunoreactivite de type substance p et atteignant la surface de l'epithelium. Le deuxieme chapitre s'interesse aux interactions entre systemes olfactif et trigeminal; les effets peripheriques de la stimulation electrique antidromique et la branche ophtalmique du trijumeau sont testes chez les amphibiens. Les principaux resultats enregistres au niveau de l'epithelium olfactif sont representes par une modification de l'activite electrique des neurones recepteurs et une secretion des cellules de soutien. Le troisieme chapitre est consacre aux proprietes pharmacologiques de la muqueuse olfactive. Les effets de l'acetylcholine et de la substance p, qui apparaissent impliquees dans les effets precedemment cites, sont testes sur l'activite electrique de la muqueuse de grenouille. La muqueuse repond avec une grande sensibilite a l'application de l'une ou l'autre de ces deux substances. Ces resultats sont discutes dans une perspective phylogenetique de la reception des differents types de stimulus, odorivecteurs ou modulateurs, par les neurones de l'epithelium olfactif. La discussion generale propose un modele d'activation et d'action du systeme trigeminal de la muqueuse olfactive qui s'integre dans une etude comparative de la regulation peripherique de differents systemes sensoriels chez les vertebres
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Figiel, Anne. "Substitution naturelle et induite de l'épithélium intestinal des amphibiens anoures : Aspects cellulaires et moléculaires." Nancy 1, 1989. http://www.theses.fr/1989NAN10158.

Повний текст джерела
Анотація:
Analyse de l'expression du génome des épithéliocytes intestinaux au cours de la métamorphose naturelle ou induite par la triiodothyronine par électrophorèse bidimensionnelle suivie de fluorographie. La même étude a été réalisée sur les protéines extraites de fractions enrichies en bordure en brosse intestinale au cours de la métamorphose naturelle ou induite ; la villine, protéine du cytosquelette des bordures en brosse a été mise en évidence dans l'intestin des amphibiens. Cette protéine a été purifiée, les caractères et l'expression post-embryonnaire de la villine intestinale d'amphibiens ont été analysés
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Cordier-Picouet, Marie-Jeanne. "Organisation du systeme visuel et mise en place de la retinotopie tectale chez les amphibiens anoures." Paris 7, 1987. http://www.theses.fr/1987PA077104.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Morra, Mohamad. "Contribution à l'étude du contrôle de la steroïdogénèse surrénalienne chez les amphibiens : effet et mécanisme d'action de la dopamine." Rouen, 1991. http://www.theses.fr/1991ROUES003.

Повний текст джерела
Анотація:
L'éventualité d'un contrôle, chez les amphibiens, de la corticostéroïdogénèse par les catécholamines sécrétées par les paraneurones de l'interrénal (surrénale) a été étudiée. En utilisant la technique de périfusion, nous montrons que la dopamine (DA) induit une inhibition dose-dépendante, réversible et reproductible de la production de corticosteroïdes par des tranches d'interrénale de grenouille. La noradrénaline et l'adrénaline sont peu actives. La DA interagit négativement sur la réponse stéroïdienne à l'angiotensine II, tandis qu'elle n'altère pas l'activité corticotrope de l'ACTH ou de la sérotonine. Un effet biphasique, brève stimulation suivie d'une inhibition, est observé lorsque la DA est administrée à des cellules interrénaliennes dispersées. Ces effets stimulateur et inhibiteur seraient médiés respectivement par des récepteurs de type D1 et D2 possédant des caractéristiques pharmacologiques et biochimiques différentes de celles des récepteurs dopaminergiques du cortex surrénalien des mammifères. En particulier, ces récepteurs ne sont pas couplés à l'adénylate cyclase. En revanche, nous montrons que la DA exerce son effet inhibiteur en réduisant l'activité d'une phospholipase C couplée à une protéine G ; cette action se traduit par une réduction de turnover des phospholipides, et consécutivement par une baisse de production d'acide arachidonique et de ses métabolites (prostaglandines). En conclusion, la DA libérée par les paraneurones interrénaliens est susceptible chez les amphibiens d'exercer par voie paracrine un contrôle inhibiteur direct sur la corticosteroïdogénèse
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Al-Asaad, Imane. "Étude de marqueurs de différenciation testiculaire Sox9 et Amh lors d'un développement normal, d'une inversion sexuelle et d'un développement en absence de cellules germinales chez l'amphibien urodèle Pleurodeles waltl. Intérêt pour la physiologie comparée de la reproduction des vertébrés." Thesis, Université de Lorraine, 2013. http://www.theses.fr/2013LORR0229/document.

Повний текст джерела
Анотація:
Dans le contexte de la physiologie comparée de la reproduction, les amphibiens sont peu étudiés. Le travail réalisé durant cette thèse visait à analyser des marqueurs de différenciation testiculaire chez l'urodèle Pleurodeles waltl, dont le déterminisme génétique du sexe (ZZ/ZW) peut être influencé par la température. Nos études ont d'abord porté sur le gène sox9 marqueur de la différenciation testiculaire chez les vertébrés supérieurs. Le gène cloné chez le pleurodèle montre une bonne conservation par rapport aux autres vertébrés. Son expression plus élevée dans la gonade mâle n'apparaît que tardivement suggérant qu'il n'est probablement pas impliqué dans les stades précoces de la différenciation testiculaire. En outre, son expression dans le mésonéphros rend difficile son utilisation comme marqueur de différenciation testiculaire. Nous avons ensuite étudié l'Amh, hormone testiculaire impliquée dans la régression des canaux de Müller chez de nombreux vertébrés. Son expression spécifique de la gonade, précocement plus élevée chez les larves ZZ que les ZW en font un excellent marqueur de la différenciation testiculaire. Le fait que les pleurodèles mâles voient les canaux de Müller persister malgré la présence d'Amh suggère que la fonction primaire de cette hormone était en relation avec la différenciation gonadique et que la fonction de régression des canaux de Müller n'est apparue que secondairement au cours de l'évolution. Ces marqueurs ont été mis à profit pour caractériser le phénotype gonadique lors d'inversions sexuelles ou lors de développements en absence de cellules germinales. Ils ont permis de montrer que les cellules germinales ne semblent pas jouer de rôle dans la différenciation gonadique du pleurodèle
In the context of comparative physiology of reproduction, amphibians are poorly studied. This work was dedicated to the analysis of testis differentiation markers in the newt Pleurodeles waltl, which shows a ZZ/ZW genetic mode of sex determination that can be affected by temperature. First, we studied sox9, a testis differentiation marker well characterized in many higher vertebrates. The gene cloned in Pleurodeles shows a good level of identity with other vertebrates. The testis-enriched expression appears late during the testis differentiation process indicating that it is probably not involved in the early steps of testis differentiation. Its use as a marker of testicular differentiation proved difficult since it is expressed not only in the gonads but also in the mesonephros. Then, we studied amh, a testis hormone responsible for müllerian duct regression in many vertebrates. Its early expression in the gonad, significantly higher in male than in female larvae makes it an excellent marker for testis differentiation. Since in Pleurodeles waltl, Müllerian ducts persist in males, it suggests that during the course of evolution, the function of Amh on the regression of Müllerian ducts appeared secondarily after its role in gonadal differentiation. These markers have been used to characterize the gonadal phenotype during sex reversal, or in gonads developed in the absence of germ cells. They showed that these cells do not seem to play a role in gonadal differentiation of Pleurodeles waltl
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ouedraogo, Lazare. "Etude de quelques effets de la métamorphose des amphibiens sur certaines protéines et sur la structure hépatique." Paris 13, 1987. http://www.theses.fr/1987PA132022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ferrary, Evelyne. "Contribution à l'étude des liquides de l'oreille interne." Paris 11, 1989. http://www.theses.fr/1989PA112058.

Повний текст джерела
Анотація:
Dans l'oreille interne le labyrinthe membraneux, épithélium neurosensoriel hétérogène, sépare les compartiments endolymphatique et périlymphatique. La composition des liquides contenus dans ces compartiments diffère : l'endolymphe est riche en K, pratiquement dépourvus de Na, et positivement polarisée (quelques mV dans la vestibule) alors que la composition de la périlymphe rappelle celle d'un liquide extracellulaire. L'objet de cette thèse a été d'étudier la composition des liquides de l'oreille interne chez la grenouille et les mécanismes de sécrétion de l'endolymphe dans le canal semi-circulaire. L'étude a éte réalisée sur des hémi-tête de grenouilles sur lesquelles des ligatures on été effectuées afin de séparer les différents segments de l'oreille interne (utricule, ampoule et portion non-ampullaire du canal semi-circulaire postérieur vertical) et sur des canaux semi-circulaire isolés et placés dans une chambre de perfusion. Des techniques de microponctions et de microdosages (Na, K, Cl, osmolalité) ont été utilisées. Les résultats obtenus ont permis de démonter que : i) la composition des liquides labyrinthiques de la grenouille est similaire à celle des liquides des mammifères ; ii) la sécrétion de l'endolymphe est localisée à l'ampoule du canal semi-circulaire par un mécanisme qui dépend de l'activité de la Na+, K+-ATPase, la portion non-ampullaire n'est pas directement impliquée dans les mécanismes de transports necessaires à la sécrétion et au maintien de la composition de l"endolymphe ; iii) le Na est transféré de l'endolymphe vers la cellule par un canal sodique inhibé par l'amiloride ; iv) sur la membrane basolatérale de l'épithélium, la Na+, K+-ATPase et un co-transporteur Na-K-Cl sont impliqués dans les mécanismes de sécrétion de l'endolymphe.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Carey, Marc Brandon. "Brainstem auditory evoked potentials in anuran amphibians." PDXScholar, 1992. https://pdxscholar.library.pdx.edu/open_access_etds/4267.

Повний текст джерела
Анотація:
In this study, I looked at the effects of sound level, temperature and dehydration/hypernatremia on the brainstem auditory evoked potential (BAEP) of four species of anuran amphibians (Rana pipiens, Rana catesbeiana, Bufo americanus and Bufo terrestris). The BAEP was used because it allowed me to monitor both the peripheral and central aspects of auditory nervous function simultaneously and over a long period of time.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Piotrowski, Jeffery Scott. "Physiology, Enzyme Production, and Zoospore Behavior of Balrachochytrium dendrobatidis, a Chytrid Pathogenic to Amphibians." Fogler Library, University of Maine, 2002. http://www.library.umaine.edu/theses/pdf/PiotrowskiJS2002.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Amphibiens – Physiologie"

1

Wever, Ernest Glen. The amphibian ear. Princeton, N.J: Princeton University Press, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

E, Feder Martin, and Burggren Warren W, eds. Environmental physiology of the amphibians. Chicago: University of Chicago Press, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

S, Hillman Stanley, ed. Ecological and environmental physiology of amphibians. Oxford: Oxford University Press, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

International, Symposium on Biology and Physiology of Amphibians (1st 1988 Karlsruhe Federal Republic of Germany). Biology and physiology of amphibians: Proceedings of the first International Symposium on Biology and Physiology of Amphibians held at Karlsruhe, Federal Republic of Germany, August 31-September 3, 1988. New York: Gustav Fischer Verlag/VCH Publ. Inc., 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

International, Symposium on Biology and Physiology of Amphibians (1st 1988 Karlsruhe Germany). Symposium, Biology and Physiology of Amphibians: Karlsruhe, Aug. 31-Sept. 3. [Karlsruher, Germany: s.n., 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

International Workshop on Visuomotor Coordination in Amphibians: Experiments, Comparisons, Models, and Robots (1987 Kassel, Germany). Visuomotor coordination: Amphibians, comparisons, models, and robots. New York: Plenum Press, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

International, Symposium on Biology and Physiology of Amphibians (1st 1988 Karlsruhe Germany). Biology and physiology of amphibians: Proceedings of the First International Symposium on Biology and Physiology of Amphibians, held at Karlsruhe, Federal Republic of Germany, August 31-September 3, 1988. Stuttgart: G. Fischer, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

O'Malley, Bairbre. Clinical anatomy and physiology of exotic species: Structure and function of mammals, birds, reptiles, and amphibians. Edinburgh: Elsevier Saunders, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Clinical anatomy and physiology of exotic species: Structure and function of mammals, birds, reptiles, and amphibians. Edinburgh: Elsevier Saunders, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

R, Fay Richard, and Popper Arthur N, eds. Comparative hearing. New York: Springer, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Amphibiens – Physiologie"

1

Glandt, Dieter. "Anatomie und Physiologie." In Amphibien und Reptilien, 31–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49727-2_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lewis, Edwin R., and Peter M. Narins. "The Acoustic Periphery of Amphibians: Anatomy and Physiology." In Comparative Hearing: Fish and Amphibians, 101–54. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-0533-3_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Girling, Simon J. "Basic Reptile and Amphibian Anatomy and Physiology." In Veterinary Nursing of Exotic Pets, 245–65. West Sussex, UK: Blackwell Publishing, Ltd,., 2013. http://dx.doi.org/10.1002/9781118782941.ch17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jones, H. C. "Physiology of Cerebrospinal Fluid Circulation: Amphibians, Mammals, and Hydrocephalus." In The Subcommissural Organ, 243–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-78013-4_26.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Steffensen, Annette B., and Thomas Zeuthen. "Cotransport of Water in the Choroid Plexus Epithelium: From Amphibians to Mammals." In Physiology in Health and Disease, 99–124. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0536-3_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Krattenmacher, Rolf, and Wolfgang Clauss. "Mechanisms of Electrogenic Sodium Transport in the Amphibian Colon." In Advances in Comparative and Environmental Physiology, 27–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77118-7_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pramanik, Debasis. "Amphibian Physiology." In Manual of Practical Physiology and MCQs Book, 35. Jaypee Brothers Medical Publishers (P) Ltd., 2015. http://dx.doi.org/10.5005/jp/books/12632_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Harvey Pough, F., Robin M. Andrews, Martha L. Crump, Alan H. Savitzky, Kentwood D. Wells, and Matthew C. Brandley. "Energetics and Performance." In Herpetology. Oxford University Press, 2015. http://dx.doi.org/10.1093/hesc/9781605352336.003.0009.

Повний текст джерела
Анотація:
This chapter addresses energetics and performance of amphibians and reptiles. Metabolic characteristics have equally profound effects on the day-to-day activities of amphibians and reptiles. Because the physiological characteristics of amphibians and reptiles are so clearly reflected in their behaviour and ecology, these animals have played an important role in studies of ecological and evolutionary physiology. The chapter traces some of those relationships, emphasizing the close connections between physiology and the behaviour and ecology of amphibians and reptiles. It starts with the structures used for gas exchange before considering the cardiovascular system, which transports oxygen and other substances throughout the body. The chapter then looks at how the production of ATP meets the needs of different ways of life and the energy costs of natural activities. It also studies metabolic depression, discussing aestivation, hibernation, and freezing.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ohmer, Michel E. B., Lesley A. Alton, and Rebecca L. Cramp. "Physiology provides a window into how the multi-stressor environment contributes to amphibian declines." In Conservation Physiology, 165–82. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198843610.003.0010.

Повний текст джерела
Анотація:
The amphibian disease chytridiomycosis, caused by two fungal pathogens in the genus Batrachochytrium, has caused the greatest vertebrate biodiversity loss due to disease in recorded history. Both the pathogens and their amphibian hosts are impacted by biotic and abiotic conditions that are rapidly changing due to anthropogenic causes, challenging our understanding of how the host–pathogen relationship will shift in the future. By examining this problem through a physiological lens, we can elucidate the mechanisms driving increased susceptibility to disease. This chapter first examines the physiological tools that can be used by amphibian biologists to measure aspects of immune function, stress physiology, and energy expenditure, and the main environmental drivers of these physiological shifts. Then, we explore case studies that have linked environmental change, immune function, and shifts in disease susceptibility to inform amphibian conservation and management.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

"4.9 Anatomie und Physiologie der Amphibien." In Lehrbuch für Tierheilpraktiker, edited by Sylvia Dauborn. Stuttgart: Georg Thieme Verlag, 2014. http://dx.doi.org/10.1055/b-0035-119243.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Amphibiens – Physiologie"

1

Matthews, Philip G. D. "Gills versus spiracles: The respiratory physiology of amphibious insects." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.93518.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії