Добірка наукової літератури з теми "Alternating Device"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Alternating Device".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Alternating Device"
Inganäs, Olle, Fengling Zhang, and Mats R. Andersson. "Alternating Copolymers and Alternative Device Geometries for Organic Photovoltaics." AMBIO 41, S2 (March 2012): 138–42. http://dx.doi.org/10.1007/s13280-012-0276-3.
Повний текст джерелаYen, Hsi-Hsuan, Wen-Yung Yeh, and Hao-Chung Kuo. "GaN alternating current light-emitting device." physica status solidi (a) 204, no. 6 (June 2007): 2077–81. http://dx.doi.org/10.1002/pssa.200674766.
Повний текст джерелаLoginov, N. "MANIFUNCTIONAL MAGNETOHYDRODYNAMIC DEVICE." PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. SERIES: NUCLEAR AND REACTOR CONSTANTS 2021, no. 2 (June 26, 2021): 116–26. http://dx.doi.org/10.55176/2414-1038-2021-2-116-126.
Повний текст джерелаClarke, K. L., D. M. Sainato, and M. E. Ward. "Travel Performance of Preschoolers: The Effects of Mobility Training with a Long Cane versus a Precane." Journal of Visual Impairment & Blindness 88, no. 1 (January 1994): 19–30. http://dx.doi.org/10.1177/0145482x9408800105.
Повний текст джерелаMary Shamala L., Zayaraz G., Vivekanandan K., and Vijayalakshmi V. "A Tweakable Key Alternating Lightweight Cipher for Internet of Things." International Journal of Information Security and Privacy 14, no. 4 (October 2020): 113–33. http://dx.doi.org/10.4018/ijisp.2020100107.
Повний текст джерелаSHEVLYUGIN, Maksim V., and Daria V. SEMENOVA. "Improving the Efficiency of High-Speed AC Contact Suspension." Elektrichestvo 5, no. 5 (2021): 39–43. http://dx.doi.org/10.24160/0013-5380-2021-5-39-43.
Повний текст джерелаDanilatos, Gerasimos D. "Radiofrequency Gaseous Detection Device." Microscopy and Microanalysis 6, no. 1 (January 2000): 12–20. http://dx.doi.org/10.1017/s1431927600000027.
Повний текст джерелаKozak, Yulia A. "The way of air environment decontamination in departments for poultry meat ready-to-cook products production." Poultry and Chicken Products 26, no. 2 (2024): 44–46. http://dx.doi.org/10.30975/2073-4999-2024-26-2-44-46.
Повний текст джерелаDanilatos, Gerasimos D. "Radiofrequency Gaseous Detection Device." Microscopy and Microanalysis 6, no. 1 (January 2000): 12–20. http://dx.doi.org/10.1007/s100059910001.
Повний текст джерелаChen, Shi-Rui, and Wing-Kit Choi. "P‐264: Fast‐Response FFS LC Device with Multi‐rubbing Angle for VR Applications." SID Symposium Digest of Technical Papers 55, no. 1 (June 2024): 2075–77. http://dx.doi.org/10.1002/sdtp.18011.
Повний текст джерелаДисертації з теми "Alternating Device"
Ahmed, Mustafa M. Abdalla. "Alternating-Current Thin-Film Electroluminescent Device Characterization." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2008. http://www.nusl.cz/ntk/nusl-233432.
Повний текст джерелаLamanda, Ariana Corinne. "Alternating Current Electrokinetic Manipulation and Concentration of Free Circulating DNA from Blood Samples." Thesis, The University of Arizona, 2014. http://hdl.handle.net/10150/332828.
Повний текст джерелаNgu, Sze Song. "Design and control of a direct drive slotless permanent magnet alternating current generator for low speed Bristol cylinder wave device." Thesis, University of Glasgow, 2013. http://theses.gla.ac.uk/4746/.
Повний текст джерелаKovchar, Jean. "Design, modeling, fabrication and characterization of a micro-device for the study of alternating flow - Application to energy harvesting and conversion." Electronic Thesis or Diss., Bourgogne Franche-Comté, 2024. http://www.theses.fr/2024UBFCD009.
Повний текст джерелаThis thesis focuses on the study of alternating flows within milli- and sub-millimeter-sized channels. The aim is to contribute to the optimization of a miniature (sub-millimeter dimensions) low-temperature (T < 200 °C) energy recovery and conversion machine based on the Stirling cycle principle. This is in line with the recovery of waste heat which is still not exploited in many industrial environments. In Stirling-type engines, the working fluid flows in alternating directions. Although these flows are fairly well understood on a macroscopic scale, very little is known about them on milli and sub-millimeter scales. However, a good understanding of this type of flow at these scales is essential for engine dimensioning and design. In order to contribute to the characterization of alternating flows at these small scales, channels with dimensions close to those of the miniature machine were produced using microfabrication technology. The channels produced have a hydraulic diameter ranging from 200 µm to 1 mm, an aspect ratio between 0.1 and 1, and two different channel lengths (25 mm and 50 mm). Channels with bends were also built to study their influence on flow characteristics. These channels were then implemented on the experimental bench. Initially, the study focused on the characterization of permanent flows, in the Reynolds range from 15 to 510, whose results, in agreement with those from the literature, served as a reference for the study of alternating flows, carried out in a second step with a Womersley number ranging from 0.02 to 0.67. The characterization of alternating flows has shown that the aspect ratio and the hydraulic diameter of the channels affect the flow significantly. On the other hand, this thesis has shown that the influence of channel length and the presence of singularities (bends) on the flow characteristics do not appear to be as decisive as expected. Consequently, among the parameters tested in this thesis, the aspect ratio and hydraulic diameter of the channels are important parameters to take into account for the design of the micro Stirling machine, especially to avoid impacting considerably its efficiency
Hrabal, Michal. "Development of Light Emitting Electroluminescent Device by Means of Material Printing." Doctoral thesis, Vysoké učení technické v Brně. Fakulta chemická, 2019. http://www.nusl.cz/ntk/nusl-402111.
Повний текст джерелаDenmark, Daniel Jonwal. "Photopolymerization Synthesis of Magnetic Nanoparticle Embedded Nanogels for Targeted Biotherapeutic Delivery." Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/6827.
Повний текст джерелаJakupovic, Edin. "Alternative Information Gathering on Mobile Devices." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-210712.
Повний текст джерелаSökning och insamling av information om specifika ämnen är en tidskrävande, men nödvändig praxis. Med den kontinuerliga tillväxten som gått förbi stationära enheters andel, blir mobilmarknaden ett viktigt område att överväga. Med tanke på rörligheten av bärbara enheter, så blir vissa uppgifter svårare att utföra, jämfört med på stationära enheter. Att söka efter information på Internet är generellt långsammare på mobila enheter än på stationära. De största utmaningarna med att söka efter information på Internet med mobila enheter, är de mindre skärmstorlekarna, och tiden spenderad på att ta sig mellan källor och sökresultat i en webbläsare. Dessa utmaningar kan lösas genom att använda en applikation som fokuserar på relevanta sökresultat och sammanfattar innehållet av dem, samt presenterar dem på en enda vy. Syftet med denna studie är att hitta en alternativ datainsamlingsmetod för attskapa en snabbare och enklare sökupplevelse. Denna datainsamlingsmetod kommer snabbt att kunna hitta och samla in data som begärts via en sökterm av en användare. Därefter analyseras och presenteras data för användaren i en sammanfattad form för att eliminera behovet av att besöka innehållets källa. En undersökning utfördes genom att en mindre målgrupp av användare svarade på ett formulär av frågor. Resultaten visade att metoden var snabb, resultaten var ofta relevanta och sammanfattningarna minskade behovet av att besöka källsidan. Men medan metoden hade potential för framtida utveckling, hindras det av de etiska problemen som associeras med användningen av web scrapers.
Kim, Yong Hyun. "Alternative Electrodes for Organic Optoelectronic Devices." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-113279.
Повний текст джерелаDie vorliegende Arbeit demonstriert einen Ansatz zur Verwirklichung von kostengünstigen, semi-transparenten, langzeitstabilen und effizienten Organischen Photovoltaik Zellen (OPV) und Organischen Leuchtdioden (OLEDs) durch die Nutzung innovativer Elektrodensysteme. Dazu werden leitfähige Polymere, dotiertes ZnO und Kohlenstoff-Nanoröhrchen eingesetzt. Diese alternativen Elektrodensysteme sind vielversprechende Kandidaten, um das konventionell genutzte Indium-Zinn-Oxid (ITO), welches aufgrund seines hohen Preises und spröden Materialverhaltens einen stark begrenz Faktor bei der Herstellung von kostengünstigen, flexiblen, organischen Bauelementen darstellt, zu ersetzten. Zunächst werden langzeitstabile, effiziente, ITO-freie Solarzellen und transparente OLEDs auf der Basis von Poly(3,4-ethylene-dioxythiophene):Poly(styrenesulfonate) (PEDOT:PSS) Elektroden beschrieben, welche mit Hilfe einer Lösungsmittel-Nachprozessierung und einer Optimierung der Bauelementstruktur hergestellt wurden. Zusätzlich wurde ein leistungsfähiges, internes Lichtauskopplungs-System für weiße OLEDs, basierend auf PEDOT:PSS-beschichteten Metalloxid-Nanostrukturen, entwickelt. Weiterhin werden hoch effiziente, ITO-freie OPV Zellen und OLEDs vorgestellt, bei denen mit verschiedenen nicht-metallischen Elementen dotierte ZnO Elektroden zur Anwendung kamen. Die optimierten ZnO Elektroden bieten im Vergleich zu unserem Laborstandard ITO eine signifikant verbesserte Effizienz. Abschließend werden semi-transparente OPV Zellen mit freistehenden Kohlenstoff-Nanoröhrchen als transparente Top-Elektrode vorgestellt. Die daraus resultierenden Zellen zeigen sehr niedrige Leckströme und eine zufriedenstellende Stabilität. In diesem Zusammenhang wurde auch verschiedene Kombinationen von Elektrodenmaterialen als Top- und Bottom-Elektrode für semi-transparente, ITO-freie OPV Zellen untersucht. Zusammengefasst bestätigen die Resultate, dass OPV und OLEDs basierend auf alternativen Elektroden vielversprechende Eigenschaften für die praktische Anwendung in der Herstellung von effizienten, kostengünstigen, flexiblen und semi-transparenten Bauelement besitzen
Wang, Xian. "Enabling low cost test and tuning of difficult-to-measure device specifications: application to DC-DC converters and high speed devices." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53521.
Повний текст джерелаFröbel, Markus. "Novel Concepts For Alternating Current Operated Organic Light-Emitting Devices." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-221652.
Повний текст джерелаКниги з теми "Alternating Device"
Joshua, Hannah. Controlling Alternating Current Devices with Arduino. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-6423-2.
Повний текст джерелаKubala, Thomas S. Electricity 2: Devices, circuits, and materials. 7th ed. Albany: Delmar Thomson Learning, 2001.
Знайти повний текст джерелаKubala, Thomas S. Electricity 2: Devices, circuits, and materials. 4th ed. Albany, N.Y: Delmar Publishers, 1986.
Знайти повний текст джерелаKubala, Thomas S. Electricity 2: Devices, circuits, and materials. 5th ed. Albany, N.Y: Delmar Publishers, 1991.
Знайти повний текст джерелаMitarai, Osamu. Alternating current plasma operation in the STOR-M tokamak. Saskatoon, Sask: Plasma Physics Laboratory, University of Saskatchewan, 1995.
Знайти повний текст джерелаMitarai, Osamu. Experiments on the current rampdown phase in the STOR-M tokamak for AC operation. Saskatoon, Sask: University of Saskatchewan, Plasma Physics Laboratory, 1992.
Знайти повний текст джерелаMitarai, Osamu. Alternating current tokamak reactor with Ohmic ignition and bootstrap current. Saskatoon, Sask: University of Saskatchewan, Plasma Physics Laboratory, 1991.
Знайти повний текст джерелаBare, James E. Resonant frequency therapy: Building the Rife Beam Ray Device. [Albuquerque, NM]: The Author, 1999.
Знайти повний текст джерелаH, Lucy M., and Langley Research Center, eds. Report on alternative devices to pyrotechnics on spacecraft. Hampton, VA: NASA Langley Research Center, 1996.
Знайти повний текст джерелаMitarai, Osamu. Plasma density scaling at the current reversal in the STOR-1M tokamak with AC operation. Saskatoon, Sask: University of Saskatchewan, Plasma Physics Laboratory, 1992.
Знайти повний текст джерелаЧастини книг з теми "Alternating Device"
Martini, I., M. Kamp, and A. Forchel. "Combined Approaches for Nanoelectronic Device Fabrication." In Alternative Lithography, 235–48. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-9204-8_12.
Повний текст джерелаSolanki, Mayank, Prantik Chatterjee, Akash Lal, and Subhajit Roy. "Accelerated Bounded Model Checking Using Interpolation Based Summaries." In Tools and Algorithms for the Construction and Analysis of Systems, 155–74. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-57249-4_8.
Повний текст джерелаMoglestue, C. "Alternating Current, Microwaves." In Monte Carlo Simulation of Semiconductor Devices, 202–15. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-015-8133-2_9.
Повний текст джерелаPetersen, H. "Alternation in simple devices." In Automata, Languages and Programming, 315–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/3-540-60084-1_84.
Повний текст джерелаGolinker, Lewis. "Speech-Generating Device Funding." In Principles and Practices in Augmentative and Alternative Communication, 293–349. New York: Routledge, 2024. http://dx.doi.org/10.4324/9781003525905-22.
Повний текст джерелаFang, Yan, Steven P. Levitan, Donald M. Chiarulli, and Denver H. Dash. "Alternative Architectures for NonBoolean Information Processing Systems." In Emerging Nanoelectronic Devices, 467–97. Chichester, United Kingdom: John Wiley & Sons Ltd, 2014. http://dx.doi.org/10.1002/9781118958254.ch24.
Повний текст джерелаKull, Hans. "Alternative Factory Floor Interface Devices." In Mass Customization, 55–58. Berkeley, CA: Apress, 2015. http://dx.doi.org/10.1007/978-1-4842-1007-9_6.
Повний текст джерелаFerreira, Helder Lopes, Angelo L’Abbate, Gianluca Fulli, and Ulf Häger. "Flexible Alternating Current Transmission Systems (FACTS) Devices." In Power Systems, 119–56. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4549-3_4.
Повний текст джерелаGiudici, Michael C. "Alternative Site Pacing." In How-to Manual for Pacemaker and ICD Devices, 45–53. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781118820674.ch7.
Повний текст джерелаKuebler, Scott H., and Ronald C. Kuebler. "Chatting with an AAC(Augmentative/Alternative Communication Device)." In Lecture Notes in Computer Science, 368–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73283-9_41.
Повний текст джерелаТези доповідей конференцій з теми "Alternating Device"
Zhong, Yutong, Hanyuan Ma, Qian Lv, Yongzhuo Li, Jiabin Feng, Chen Li, Jialu Xu, Chenxin Yu, Ruitao Lv, and Cun-Zheng Ning. "Low-voltage Injection-free Electroluminescence Device based on a Monolayer MoSe2/WSe2 Lateral Heterostructure." In CLEO: Science and Innovations, SF2R.5. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sf2r.5.
Повний текст джерелаKim, Sunggi, Sang-Gyun Woo, Woo-Sung Han, Young-Bum Koh, and Moon-Yong Lee. "Application of alternating phase shift mask to device fabrication." In SPIE's 1995 Symposium on Microlithography, edited by Timothy A. Brunner. SPIE, 1995. http://dx.doi.org/10.1117/12.209281.
Повний текст джерелаGanapathi, Lasya, Krushitha Reddy Thumukuntla, R. K. Mishra, V. sudarsan, and Satya Kamal Chirauri. "Alternating Current Electroluminescence Device Guided for Lowering the Blood Pressure." In 2020 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT). IEEE, 2020. http://dx.doi.org/10.1109/rteict49044.2020.9315636.
Повний текст джерелаJianan Wu, Dongyang Cai, Xinrong Cao, and Jintian Tang. "A novel alternating magnetic field measuring device for magnetic induction hyperthermia." In 2013 ICME International Conference on Complex Medical Engineering (CME 2013). IEEE, 2013. http://dx.doi.org/10.1109/iccme.2013.6548243.
Повний текст джерелаLiu, Rui Ting, Zi Han Zhuo, Yue Yu, Yu Fang, Jie Qiong Tong, Hong Guo, and Jin Tian Tang. "Intermediate alternating electric fields device for enhancing chemotherapy of cancer: Device development and the biological effects." In 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI). IEEE, 2011. http://dx.doi.org/10.1109/bmei.2011.6098402.
Повний текст джерелаPolyakov, Vladimir, Dmitrii Sherbakov, and Iurii Plotnikov. "Simulation and Experimental Investigation of Digital Control System of Energy Storage Device for Frequency-Controlled Electric Drives." In 2023 XIX International Scientific Technical Conference Alternating Current Electric Drives (ACED). IEEE, 2023. http://dx.doi.org/10.1109/aced57798.2023.10143446.
Повний текст джерелаLi, Hanchao, Daisuke Harada, Naohiko Hanajima, Hidekazu Kajiwara, Kentaro Kurashige, Yoshinori Fujihira, and Masato Mizukami. "Application and performance evaluation of a lifting device with alternating rotation hoist." In 2016 IEEE/SICE International Symposium on System Integration (SII). IEEE, 2016. http://dx.doi.org/10.1109/sii.2016.7844029.
Повний текст джерелаZeller, J. W., and F. C. Jain. "Compact demultiplexers with narrow spectral width channels using alternating-defect coupled-cavity waveguides (AD-CCWs)." In 2007 International Semiconductor Device Research Symposium. IEEE, 2007. http://dx.doi.org/10.1109/isdrs.2007.4422533.
Повний текст джерелаWatanabe, Ryo, Taku Hachisu, Michi Sato, Shogo Fukushima, Hiroyuki Kajimoto, Naoki Saito, and Yuichiro Mori. "Development of roller-type itch-relief device employing alternating hot and cold stimuli." In the 4th Augmented Human International Conference. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2459236.2459244.
Повний текст джерелаSong, Seongkyu, and Soon Moon Jeong. "White light-emitting, alternating-current electroluminescent device driven by in-plane electric field." In Organic and Hybrid Light Emitting Materials and Devices XXIV, edited by Franky So, Chihaya Adachi, and Jang-Joo Kim. SPIE, 2020. http://dx.doi.org/10.1117/12.2567009.
Повний текст джерелаЗвіти організацій з теми "Alternating Device"
Wager, J. F., and S. M. Goodnick. Hot Electron Physics of Alternating-Current Thin-Film Electroluminescent Devices. Fort Belvoir, VA: Defense Technical Information Center, September 1994. http://dx.doi.org/10.21236/ada290528.
Повний текст джерелаParedes, Juan Roberto, María Clara Ramos, Marina Robles, and Emma Näslund-Hadley. Energy Savings, Efficient Use, and Alternative Technologies. Inter-American Development Bank, April 2015. http://dx.doi.org/10.18235/0006241.
Повний текст джерелаBorland, M. A low-emittance APS lattice with alternating horizontal beta functions at insertion devices. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/965254.
Повний текст джерелаOgunniyi, Aderinto, Gail Koebke, Heather O'Brien, and Oladimeji Ibitayo. Alternative Solder Bond Packaging Approach for High-Voltage (HV) Pulsed Power Devices. Fort Belvoir, VA: Defense Technical Information Center, September 2016. http://dx.doi.org/10.21236/ad1017567.
Повний текст джерелаDoucet, Glenn. Evaluation of an Alternative Rotorcraft Cargo Lowering Device for the Delivery of 500-lb Ammunition Loads. Fort Belvoir, VA: Defense Technical Information Center, December 1990. http://dx.doi.org/10.21236/ada230995.
Повний текст джерелаHirlinger, John M., and Gartung Cheng. Investigation of Alternative Energetic Compositions for Small Electro-Explosive Devices for Medium Caliber Ammunition. Fort Belvoir, VA: Defense Technical Information Center, April 2004. http://dx.doi.org/10.21236/ada480817.
Повний текст джерелаPhillips, Laurence R., Bankim Tejani, Jonathan Margulies, Jason L. Hills, Bryan T. Richardson, Micheal J. Baca, and Laura Weiland. Analysis of operations and cyber security policies for a system of cooperating Flexible Alternating Current Transmission System (FACTS) devices. Office of Scientific and Technical Information (OSTI), December 2005. http://dx.doi.org/10.2172/882347.
Повний текст джерелаBunn, Sarah. Mass testing for COVID-19 using lateral flow tests. Parliamentary Office of Science and Technology, November 2020. http://dx.doi.org/10.58248/rr52.
Повний текст джерелаWright, Louise, and Louise Crocker. PR-670-183826-R03 Extended Evaluation of LSM-Magnetostrictive Pipe Models. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), May 2021. http://dx.doi.org/10.55274/r0012097.
Повний текст джерелаFinch, Graeme, and Stuart Harmon. PR-670-183826-R01 Assessment of Science Behind LSM for Pipeline Integrity. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), September 2020. http://dx.doi.org/10.55274/r0011803.
Повний текст джерела