Добірка наукової літератури з теми "Alphabet arithmetic"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Alphabet arithmetic".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Alphabet arithmetic"
Campbell, Jamie I. D., Yalin Chen, Kurtis Allen, and Leah Beech. "Transfer of training in alphabet arithmetic." Memory & Cognition 44, no. 8 (June 28, 2016): 1288–300. http://dx.doi.org/10.3758/s13421-016-0631-x.
Повний текст джерелаPerl, Y., and L. Gabriel. "Arithmetic interpolation search for alphabet tables." IEEE Transactions on Computers 41, no. 4 (April 1992): 493–99. http://dx.doi.org/10.1109/12.135562.
Повний текст джерелаFias, Wim, Muhammet Ikbal Sahan, Daniel Ansari, and Ian M. Lyons. "From Counting to Retrieving: Neural Networks Underlying Alphabet Arithmetic Learning." Journal of Cognitive Neuroscience 34, no. 1 (December 1, 2021): 16–33. http://dx.doi.org/10.1162/jocn_a_01789.
Повний текст джерелаBiasizzo, Anton, Franc Novak, and Peter Korošec. "A Multi–Alphabet Arithmetic Coding Hardware Implementation for Small FPGA Devices." Journal of Electrical Engineering 64, no. 1 (January 1, 2013): 44–49. http://dx.doi.org/10.2478/jee-2013-0006.
Повний текст джерелаMahapatra, Sudipta, and Kuldeep Singh. "An FPGA-Based Implementation of Multi-Alphabet Arithmetic Coding." IEEE Transactions on Circuits and Systems I: Regular Papers 54, no. 8 (August 2007): 1678–86. http://dx.doi.org/10.1109/tcsi.2007.902527.
Повний текст джерелаDelaygue, É. "Arithmetic properties of Apéry-like numbers." Compositio Mathematica 154, no. 2 (October 20, 2017): 249–74. http://dx.doi.org/10.1112/s0010437x17007552.
Повний текст джерелаMüller, Burkhard, and Jürgen Gehrke. "Acquisition and Use of Mental Operators: The Influence of Natural Order of Events." Experimental Psychology 51, no. 1 (January 2004): 33–44. http://dx.doi.org/10.1027/1618-3169.51.1.33.
Повний текст джерелаNatarajan, S., N. Ramadass, and Ramana Y. V. Rao. "State-based dynamic multi-alphabet arithmetic coding for image compression." Imaging Science Journal 57, no. 1 (February 2009): 30–36. http://dx.doi.org/10.1179/174313109x373648.
Повний текст джерелаChen, Yalin, Alicia Orr, and Jamie I. D. Campbell. "What is learned in procedural learning? The case of alphabet arithmetic." Journal of Experimental Psychology: Learning, Memory, and Cognition 46, no. 6 (June 2020): 1165–77. http://dx.doi.org/10.1037/xlm0000775.
Повний текст джерелаLogan, Gordon D., and Stuart T. Klapp. "Automatizing alphabet arithmetic: I. Is extended practice necessary to produce automaticity?" Journal of Experimental Psychology: Learning, Memory, and Cognition 17, no. 2 (March 1991): 179–95. http://dx.doi.org/10.1037/0278-7393.17.2.179.
Повний текст джерелаДисертації з теми "Alphabet arithmetic"
Strickland, Monica Kathleen. "The Effects of Self-evaluation and Response Restriction on Letter and Number Reversal in Young Children." Thesis, University of North Texas, 2004. https://digital.library.unt.edu/ark:/67531/metadc4542/.
Повний текст джерелаRousset, Chouteau Stéphanie. "Apprentissage de l'addition : comptage ou récupération en mémoire ? Approches expérimentale et computationnelle." Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALS027.
Повний текст джерелаAddition, one of the fundamental operations in arithmetic, is among the first operations taught to children. Among the various forms of addition, those involving two single-digit operands, such as 5+3, are ubiquitous in daily life and often require fast mental calculations. To date, the cognitive mechanisms underlying the resolution of these operations remain poorly understood. Two major theoretical models are in opposition. Associationist theories (Ashcraft, 1982; Campbell & Graham, 1985; Logan, 1988; Siegler & Shrager, 1984) posit that learning leads to the retrieval of answers from memory. At the beginning of learning, children use an explicit counting procedure (e.g., 6...7...8) that creates a memory trace associating the problem with its solution. After numerous repetitions, the result can be retrieved directly from memory without requiring calculation. More recently, a theory proposes that learning leads to the automatization of counting for smaller additions (Barrouillet & Thevenot, 2013; Uittenhove et al., 2016; Thevenot & Barrouillet, 2016). Even after significant experience, the result is not retrieved from memory but is calculated using an ultra-fast and unconscious procedure that would scroll the mental number line. The objective of this thesis is to contribute to this field of research by exploring the cognitive mechanisms employed through both experimental and computational approaches. The experimental component aims to determine how counting and retrieval strategies operate during the learning of addition resolution. It also seeks to examine whether factors such as operand magnitude and problem structure can influence these strategies. The experimental component comprises two learning studies based on tasks similar to those of alphabet arithmetic and conducted with adults. The first study explores the automatization of additions by comparing two learning conditions, memorization and counting, using additions built from an artificial sequence, and shows that counting is still used by most participants, while others memorize larger problems. The second study examines the influence of learning material by comparing additions built from contiguous and non-contiguous sequences, demonstrating that the structure of the sequences also affects the strategies used by participants. The computational modeling component aims to explain and reproduce the strategic shifts observed between counting and memory retrieval. A first version of the model, based solely on counting acceleration, does not fully explain the experimental data. A new version of the model, incorporating a dynamic competition mechanism between counting and memory retrieval, more precisely simulates the transition between these two strategies depending on problem size and structure, as observed in the experiments. The results from the two approaches show that no single strategy prevails at the end of learning. The results are more nuanced, revealing that problem size and material structure influence the choice of strategies. Additionally, individual differences were observed, with some individuals favoring memory retrieval, while others continue to use counting procedures even after prolonged practice. These findings highlight the importance of proposing a flexible model to understand the mechanisms underlying the automatization of basic additions
Peng, Jen-Chun, and 彭仁俊. "Implementation of Adaptive Multi-alphabet Arithmetic Decoder." Thesis, 2001. http://ndltd.ncl.edu.tw/handle/60501285706085764930.
Повний текст джерела國立交通大學
電機與控制工程系
89
Data compression played an important role in the data transmission and data storage. Arithmetic coding is an efficient loseless data compression technique and has been proposed in industrial standards. Traditionally, arithmetic coding applies certain specification for different types of data and results in average performance. To obtain the near-optimal performance, this thesis proposes a parameterized solution for adaptive arithmetic coding with a finite weighted history buffer. The thesis develops six probability models by tuning the size of history buffer and scaling weight. Our proposed decoder will employ one of the models for different files and allow users to set the selection of parameters. In addition to the parameterization, the thesis proposes a bit-wise binary searching algorithm to reduce the number of bit-compare operations. The reduction of operations can speed up our decoder significantly. As shown in the thesis, our decoder chip operates at 71.4 MHz clock rate and costs the area of 2.86*2.86 .
Книги з теми "Alphabet arithmetic"
Īraj, Afshār, та Markaz-i Dāʼirat al-Maʻārif-i Buzurg-i Islāmī (Iran), ред. Shams al-ḥisāb al-Fakhrī. Tihrān: Markaz-i Dāʼirat-al-Maʻārif-i Buzurg-i Islāmī, 2008.
Знайти повний текст джерелаManuel de Andrade de Figueiredo. Nova escola: Para aprender a ler, escrever e contar. Rio de Janeiro: Ministério da Cultura, Fundação Biblioteca Nacional, 2010.
Знайти повний текст джерелаJuster, Norton. The annotated Phantom tollbooth. New York: Alfred A. Knopf, 2011.
Знайти повний текст джерелаJuster, Norton. The Phantom Tollbooth. 3rd ed. New York: Random House, 1996.
Знайти повний текст джерелаJuster, Norton. The phantom tollbooth. 5th ed. New York: Alfred A. Knopf, 2011.
Знайти повний текст джерелаJuster, Norton. The Phantom Tollbooth. New York, USA: Bullseye Books/Alfred A. Knopf, 1989.
Знайти повний текст джерелаJuster, Norton. The Phantom Tollbooth. 5th ed. New York: Alfred A. Knopf, 1996.
Знайти повний текст джерелаЧастини книг з теми "Alphabet arithmetic"
Jeż, Artur, Anthony W. Lin, Oliver Markgraf, and Philipp Rümmer. "Decision Procedures for Sequence Theories." In Computer Aided Verification, 18–40. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-37703-7_2.
Повний текст джерелаStarchak, Mikhail R. "On the Existential Arithmetics with Addition and Bitwise Minimum." In Lecture Notes in Computer Science, 176–95. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30829-1_9.
Повний текст джерелаSmullyan, Raymond M. "Tarski’s Theorem for Arithmetic." In Gödel's Incompleteness Theorems. Oxford University Press, 1992. http://dx.doi.org/10.1093/oso/9780195046724.003.0005.
Повний текст джерелаTarski, Alfred. "On the Theory of Classes." In Introduction to Logic and to the Methodology of the Deductive Sciences, 63–80. Oxford University PressNew York, NY, 1994. http://dx.doi.org/10.1093/oso/9780195044720.003.0004.
Повний текст джерелаMazur, Joseph. "Symbol Infancy." In Enlightening Symbols. Princeton University Press, 2016. http://dx.doi.org/10.23943/princeton/9780691173375.003.0012.
Повний текст джерелаChandio, Asghar Ali, Zahid Hussain, Muhammad Saleem Vighio, and Mehwish Leghari. "Interactive Learning System for Primary Schools using Tablet PC." In Advances in Civil and Industrial Engineering, 446–71. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-8803-2.ch020.
Повний текст джерелаТези доповідей конференцій з теми "Alphabet arithmetic"
Apparaju, Rakesh, and Suneeta Agarwal. "An Arithmetic Coding Scheme by Converting the Multisymbol Alphabet to M-ary Alphabet." In International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007). IEEE, 2007. http://dx.doi.org/10.1109/iccima.2007.317.
Повний текст джерелаGuo, Muling, Takahumi Oka, Shigeo Kato, Hiroshi Kajiwara, and Naoto Kawamura. "Encoding of multi-alphabet sources by binary arithmetic coding." In Electronic Imaging '99, edited by Kiyoharu Aizawa, Robert L. Stevenson, and Ya-Qin Zhang. SPIE, 1998. http://dx.doi.org/10.1117/12.334610.
Повний текст джерелаGomes, Jiovana Sousa, and Fabio Luis Livi Ramos. "High-Performance Design for the AV1 Multi - Alphabet Arithmetic Decoder." In 2021 34th SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits and Systems Design (SBCCI). IEEE, 2021. http://dx.doi.org/10.1109/sbcci53441.2021.9529970.
Повний текст джерелаBorodzhieva, Adriana. "MS EXCEL-BASED APPLICATION FOR ENCRYPTION AND DECRYPTION USING THE HILL CIPHER ON THE BASIS OF 2X2-MATRIX AND 64-SYMBOL ALPHABET." In eLSE 2017. Carol I National Defence University Publishing House, 2017. http://dx.doi.org/10.12753/2066-026x-17-049.
Повний текст джерелаAhmed, F., A. A. S. Awwal, and P. Chen. "Experiment with the storage capacity and shift invariance of trinary associative memory for character recognition." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.thx6.
Повний текст джерелаSharma, Saurabh, Sonali Aatrai, and Rajlakshmi Guha. "Impact of Anxiety on Eye Markers: Role of Visual Task Complexity." In 15th International Conference on Applied Human Factors and Ergonomics (AHFE 2024). AHFE International, 2024. http://dx.doi.org/10.54941/ahfe1004746.
Повний текст джерелаXiaohui Xue and Wen Gao. "High performance arithmetic coding for small alphabets." In Proceedings DCC '97. Data Compression Conference. IEEE, 1997. http://dx.doi.org/10.1109/dcc.1997.582149.
Повний текст джерела