Зміст
Добірка наукової літератури з теми "Algèbre de Lie tordue"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Algèbre de Lie tordue".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Algèbre de Lie tordue"
Rota, Gian-Carlo. "Groupes et algèbres de Lie, Algèbre, Algèbre commutative." Advances in Mathematics 56, no. 1 (April 1985): 92. http://dx.doi.org/10.1016/0001-8708(85)90088-x.
Повний текст джерелаIohara, Kenji. "Modules de plus haut poids unitarisables sur la super-algèbre de Virasoro N=2 tordue." Annales de l’institut Fourier 58, no. 3 (2008): 733–54. http://dx.doi.org/10.5802/aif.2367.
Повний текст джерелаPolo, Patrick. "Bimodules sur une algèbre de Lie résoluble." Journal of Algebra 105, no. 1 (January 1987): 271–83. http://dx.doi.org/10.1016/0021-8693(87)90193-1.
Повний текст джерелаOudom, Jean-Michel, and Daniel Guin. "Sur l'algèbre enveloppante d'une algèbre pré-Lie." Comptes Rendus Mathematique 340, no. 5 (March 2005): 331–36. http://dx.doi.org/10.1016/j.crma.2005.01.010.
Повний текст джерелаBonnet, Pierre. "Paramétrisation du dual d'une algèbre de Lie nilpotente." Annales de l’institut Fourier 38, no. 3 (1988): 169–97. http://dx.doi.org/10.5802/aif.1144.
Повний текст джерелаFAUQUANTMILLET, F., and A. JOSEPH. "Semi-centre de l'algèbre enveloppante d'une sous-algèbre parabolique d'une algèbre de Lie semi-simple☆." Annales Scientifiques de l’École Normale Supérieure 38, no. 2 (March 2005): 155–91. http://dx.doi.org/10.1016/j.ansens.2005.01.001.
Повний текст джерелаArnal, Didier, Mabrouk Benammar, and Mohamed Selmi. "Normalisation d'une représentation non linéaire d'une algèbre de Lie." Annales de la faculté des sciences de Toulouse Mathématiques 9, no. 3 (1988): 355–79. http://dx.doi.org/10.5802/afst.664.
Повний текст джерелаBenoist, Yves. "Modules simples sur une algèbre de Lie nilpotente contenant un vecteur propre pour une sous-algèbre." Annales scientifiques de l'École normale supérieure 23, no. 3 (1990): 495–517. http://dx.doi.org/10.24033/asens.1609.
Повний текст джерелаPatsourakos, Alexandros. "Sur la représentation adjointe d'une algèbre de Lie libre. II." Annales de l’institut Fourier 44, no. 2 (1994): 387–400. http://dx.doi.org/10.5802/aif.1402.
Повний текст джерелаHaddi, Aziz. "Homologie des algèbres de lie étendues à une algèbre commutative." Communications in Algebra 20, no. 4 (January 1992): 1145–66. http://dx.doi.org/10.1080/00927879208824396.
Повний текст джерелаДисертації з теми "Algèbre de Lie tordue"
Ayadi, Mohamed. "Propriétés algébriques et combinatoires des espaces topologiques finis." Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2022. http://www.theses.fr/2022UCFAC106.
Повний текст джерелаAuger, Jean. "Extensions des modules de dimension finie pour les algèbres de courants tordues." Master's thesis, Université Laval, 2015. http://hdl.handle.net/20.500.11794/26001.
Повний текст джерелаThis master’s thesis is about the representation theory of a certain class of infinite dimensional Lie algebras, the twisted current algebras. The object of this work is to obtain a classification of the extension blocks of the category of finite dimensional modules for a given twisted current algebra. The principal motivations for this study are the recent classifications of simple finite dimensional modules for these algebras and of the extension blocks of the category of finite dimensional modules in the case of equivariant map algebras. The class of twisted current algebras includes, amongst others, the families of Lie algebras of twisted forms and equivariant map algebras, therefore the key multiloop generalisations, twisted or not, of the affine Kac-Moody setting.
Maassarani, Mohamad. "Formalité pour certains espaces de configurations tordus et connexions de type Knizhnik - Zamolodchikov." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAD039/document.
Повний текст джерелаThe Malcev Lie algebra of the fundamental group of X (or Macev Lie algebra of X) is an algebraic invariant of the space X studied in rational homotopy theory. The space X is 1-formal if its Malcev algebra is quadratic. One can use Knizhnik–Zamolodchikov-type connections to obtain "formality" (1-formality or filtered formality) results for configuration spaces of surfaces. In the thesis we consider a family of orbit configuration spaces X of the complex projective line associated to finite finite groups of homographies. We study the fundamental group of X and constuct Knizhnik– Zamolodchikov-type connections. This allows us to give a presentation of the Malcev Lie algebra of X and to prove the 1-formality of X
Righi, Céline. "Caractérisation et énumération des idéaux ad-nilpotents d'une sous-algèbre parabolique d'une algèbre de Lie simple." Poitiers, 2007. http://www.theses.fr/2007POIT2301.
Повний текст джерелаSaidi, Abdellatif. "Algèbres de Hopf d'arbres et structures pré-Lie." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2011. http://tel.archives-ouvertes.fr/tel-00720201.
Повний текст джерелаBack, Valérie. "Formes réelles presque déployées d'algèbres de Lie affines." Nancy 1, 1995. http://www.theses.fr/1995NAN10090.
Повний текст джерелаAmmari, Kaïs. "Sur la stabilité des sous-algèbres paraboliques d'une algèbre de Lie simple." Thesis, Poitiers, 2014. http://www.theses.fr/2014POIT2256.
Повний текст джерелаLet K be an algebraically closed field of characteristic 0. It is well known by work of Duflo, Khalgui and Torasso that any quasi-reductive algebraic Lie algebra (defined over K) is stable. However, there are stable Lie algebras which are not quasi-reductive. This raises the question, if for some particular class of non-reductive Lie algebras, there is equivalence between stability and quasi-reductivity. More generally, biparabolic subalgebras form a very interesting class (including the class of parabolic subalgebras and of Levi subalgebras) of non-reductive Lie algebras. It was conjectured by Panyushev that these two notions are equivalent for biparabolic subalgebras of a reductive Lie algebra. In this thesis, we give by considering the results of Panyushev for parabolic subalgerbras of simple Lie algebra of type A and C a positive answer to this conjecture in the case of parabolic subalgebras. In passing, we prove that these two notions are equivalent for certain subalgebras of gl(n,K) which stabilize an alternating bilinear form of maximal rank and a flag in generic position
Saïdi, Abdellatif. "Algèbres de Hopf d'arbres et structures pré-Lie." Thesis, Clermont-Ferrand 2, 2011. http://www.theses.fr/2011CLF22208/document.
Повний текст джерелаWe investigate in this thesis the Hopf algebra structure on the vector space H spanned by the rooted forests, associated with the pre-Lie operad. The space of primitive elements of the graded dual of this Hopf algebra is endowed with a left pre-Lie product denoted by ⊲, defined in terms of insertion of a tree inside another. In this thesis we retrieve the “derivation” relation between the pre-Lie structure ⊲ and the left pre-Lie product → on the space of primitive elements of the graded dual H0CK of the Connes-Kreimer Hopf algebra HCK, defined by grafting. We also exhibit a coproduct on the tensor product H⊗HCK, making it a Hopf algebra the graded dual of which is isomorphic to the enveloping algebra of the semidirect product of the two (pre-)Lie algebras considered. We prove that the span of the rooted trees with at least one edge endowed with the pre-Lie product ⊲ is generated by two elements. It is not free : we exhibit two families of relations. Moreover we prove a similar result for the pre-Lie algebra associated with the NAP operad. Finally, we introduce current preserving operads and prove that the pre-Lie operad can be obtained as a deformation of the NAP operad in this framework
Drouot, François. "Quelques propriétés des représentations de la super-algèbre de Lie gl(m, n)." Thesis, Nancy 1, 2008. http://www.theses.fr/2008NAN10069/document.
Повний текст джерелаThis thesis is a study of finite dimensional representations of the Lie superalgebra gl(m,n). In the first chapter we recall some results on these Lie superalgebra. In the second chapter we study the simple representations of gl(2.2). These modules can be obtained as quotient of some induced modules, the knowledge of the composition series of these modules allow us to compute an explicit finite character forumula for simple modules. In the third chapter we look at representations of a quantum deformation of the universal enveloping algebra of gl(m,n). We first recall the construction of crystal bases for the direct factors of a tensor power of the standard representation. We show by weakening the definition of crystal, that there exist crystal bases for non-semisimple modules, and we give a way to construct them. The fourth chapter focuses on the understanding of the maximaly atypical block of the category of finite dimensional representations of gl(2.2). Knowing the full subcategory of projective maximally atypical modules allows us to reconstruct the category. First, we study the projective indecomposable modules, and we compute their Loewy series. We then study their morphisms. Finally we make a conjecture on the composition of those morphisms
Hao, Kuangrong. "Algèbre de Lie et cinématique des mécanismes en boucles fermées." Phd thesis, Ecole Nationale des Ponts et Chaussées, 1995. http://pastel.archives-ouvertes.fr/pastel-00569136.
Повний текст джерелаКниги з теми "Algèbre de Lie tordue"
L'endoscopie tordue n'est past si tordue. Providence, R.I: American Mathematical Society, 2008.
Знайти повний текст джерелаNicolas Bourbaki. Elements of mathematics. Berlin: Springer-Verlag, 1989.
Знайти повний текст джерелаNicolas Bourbaki. Elements of mathematics. Berlin: Springer-Verlag, 1990.
Знайти повний текст джерелаMneimné, Rached. Réduction des endomorphismes: Tableaux de Young, Cône nilpotent, représentations des algèbres de Lie semi-simples. Paris: Calvage & Mounet, 2006.
Знайти повний текст джерелаMimura, M. Topology of lie groups, I and II. Providence, R.I: American Mathematical Society, 1991.
Знайти повний текст джерелаIntroduction to quantum control and dynamics. Boca Raton: Chapman & Hall/CRC, 2008.
Знайти повний текст джерелаD'Alessandro, Domenico. Introduction to quantum control and dynamics. Boca Raton, FL: Chapman & Hall/CRC, 2006.
Знайти повний текст джерелаB, Carrell James, and McGovern William M. 1959-, eds. Algebraic quotients: Torus actions and cohomology / J.B. Carrell. The adjoint representation and the adjoint action / W.M. McGovern. Berlin: Springer, 2002.
Знайти повний текст джерелаDieter, Armbruster, ed. Perturbation methods, bifurcation theory, and computer algebra. New York: Springer-Verlag, 1987.
Знайти повний текст джерелаBourbaki, Nicolas. Elements of Mathematics: Lie Groups and Lie Algebras Chapters 1-3. Springer, 2004.
Знайти повний текст джерела