Добірка наукової літератури з теми "Algebraic Circuits"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Algebraic Circuits".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Algebraic Circuits"
Limaye, Nutan, Srikanth Srinivasan, and Sébastien Tavenas. "Superpolynomial Lower Bounds Against Low-Depth Algebraic Circuits." Communications of the ACM 67, no. 2 (January 25, 2024): 101–8. http://dx.doi.org/10.1145/3611094.
Повний текст джерелаSopena, Alejandro, Max Hunter Gordon, Diego García-Martín, Germán Sierra, and Esperanza López. "Algebraic Bethe Circuits." Quantum 6 (September 8, 2022): 796. http://dx.doi.org/10.22331/q-2022-09-08-796.
Повний текст джерелаSarangapani, P., T. Thiessen, and W. Mathis. "Differential Algebraic Equations of MOS Circuits and Jump Behavior." Advances in Radio Science 10 (October 2, 2012): 327–32. http://dx.doi.org/10.5194/ars-10-327-2012.
Повний текст джерелаDUMITRIU, LUCIA, and MIHAI IORDACHE. "NUMERICAL STEADY-STATE ANALYSIS OF NONLINEAR ANALOG CIRCUITS DRIVEN BY MULTITONE SIGNALS." International Journal of Bifurcation and Chaos 17, no. 10 (October 2007): 3595–601. http://dx.doi.org/10.1142/s0218127407019421.
Повний текст джерелаSaima Yasin. "Analysis of Reachable and Positive Electrical Circuits Modelled by differential Algebraic System." Mathematical Sciences and Applications 3, no. 1 (June 30, 2024): 1–17. http://dx.doi.org/10.52700/msa.v3i1.23.
Повний текст джерелаAgrawal, Manindra, Sumanta Ghosh, and Nitin Saxena. "Bootstrapping variables in algebraic circuits." Proceedings of the National Academy of Sciences 116, no. 17 (April 11, 2019): 8107–18. http://dx.doi.org/10.1073/pnas.1901272116.
Повний текст джерелаOzawa, Kazuhiro, Kaoru Hirota, LászlóT Kóczy, and Ken Ōmori. "Algebraic fuzzy flip-flop circuits." Fuzzy Sets and Systems 39, no. 2 (January 1991): 215–26. http://dx.doi.org/10.1016/0165-0114(91)90214-b.
Повний текст джерелаTykhovod, Sergii, and Ihor Orlovskyi. "Development and Research of Method in the Calculation of Transients in Electrical Circuits Based on Polynomials." Energies 15, no. 22 (November 15, 2022): 8550. http://dx.doi.org/10.3390/en15228550.
Повний текст джерелаSiegal-Gaskins, Dan, Elisa Franco, Tiffany Zhou, and Richard M. Murray. "An analytical approach to bistable biological circuit discrimination using real algebraic geometry." Journal of The Royal Society Interface 12, no. 108 (July 2015): 20150288. http://dx.doi.org/10.1098/rsif.2015.0288.
Повний текст джерелаErata, Ferhat, Chuanqi Xu, Ruzica Piskac, and Jakub Szefer. "Quantum Circuit Reconstruction from Power Side-Channel Attacks on Quantum Computer Controllers." IACR Transactions on Cryptographic Hardware and Embedded Systems 2024, no. 2 (March 12, 2024): 735–68. http://dx.doi.org/10.46586/tches.v2024.i2.735-768.
Повний текст джерелаДисертації з теми "Algebraic Circuits"
König, Daniel [Verfasser]. "Parallel evaluation of algebraic circuits / Daniel König." Siegen : Universitätsbibliothek der Universität Siegen, 2017. http://d-nb.info/1138836931/34.
Повний текст джерелаPade, Jonas. "Analysis and waveform relaxation for a differential-algebraic electrical circuit model." Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/23044.
Повний текст джерелаThe main topics of this thesis are firstly a thorough analysis of nonlinear differential-algebraic equations (DAEs) of index 2 which arise from the modified nodal analysis (MNA) for electrical circuits and secondly the derivation of convergence criteria for waveform relaxation (WR) methods on coupled problems. In both topics, a particular focus is put on the relations between a circuit's topology and the mathematical properties of the corresponding DAE. The analysis encompasses a detailed description of a normal form for circuit DAEs of index 2 and consequences for the sensitivity of the circuit with respect to its input source terms. More precisely, we provide bounds which describe how strongly changes in the input sources of the circuit affect its behaviour. Crucial constants in these bounds are determined in terms of the topological position of the input sources in the circuit. The increasingly complex electrical circuits in technological devices often call for coupled systems modelling. Allowing for each subsystem to be solved by dedicated numerical solvers and time scales, WR is an adequate method in this setting. It is well-known that while WR converges on ordinary differential equations if a Lipschitz condition is satisfied, an additional convergence criterion is required to guarantee convergence on DAEs. We present general convergence criteria for WR on higher index DAEs. Furthermore, based on our results of the analysis part, we derive topological convergence criteria for coupled circuit/circuit problems and field/circuit problems. Examples illustrate how to practically check if the criteria are satisfied. If a sufficient convergence criterion holds, we specify at which rate of convergence the Jacobi and Gauss-Seidel WR methods converge. Simulations of simple benchmark systems illustrate the drastically different convergence behaviour of WR depending on whether or not the circuit topological convergence conditions are satisfied.
Tavenas, Sébastien. "Bornes inférieures et supérieures dans les circuits arithmétiques." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2014. http://tel.archives-ouvertes.fr/tel-01066752.
Повний текст джерелаJain, Divyanshu. "MVHAM an extension of the homotopy analysis method for improving convergence of the multivariate solution of nonlinear algebraic equations as typically encountered in analog circuits /." Cincinnati, Ohio : University of Cincinnati, 2007. http://www.ohiolink.edu/etd/view.cgi?acc%5Fnum=ucin1194974755.
Повний текст джерелаAdvisor: Harold W. Carter. Title from electronic thesis title page (viewed Feb. 18, 2008). Includes abstract. Keywords: Homotopy Analysis Method; Solution of Nonlinear Algebraic Equations; Convergence. Includes bibliographical references.
Lagarde, Guillaume. "Contributions to arithmetic complexity and compression." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCC192/document.
Повний текст джерелаThis thesis explores two territories of computer science: complexity and compression. More precisely, in a first part, we investigate the power of non-commutative arithmetic circuits, which compute multivariate non-commutative polynomials. For that, we introduce various models of computation that are restricted in the way they are allowed to compute monomials. These models generalize previous ones that have been widely studied, such as algebraic branching programs. The results are of three different types. First, we give strong lower bounds on the number of arithmetic operations needed to compute some polynomials such as the determinant or the permanent. Second, we design some deterministic polynomial-time algorithm to solve the white-box polynomial identity problem. Third, we exhibit a link between automata theory and non-commutative arithmetic circuits that allows us to derive some old and new tight lower bounds for some classes of non-commutative circuits, using a measure based on the rank of a so-called Hankel matrix. A second part is concerned with the analysis of the data compression algorithm called Lempel-Ziv. Although this algorithm is widely used in practice, we know little about its stability. Our main result is to show that an infinite word compressible by LZ’78 can become incompressible by adding a single bit in front of it, thus closing a question proposed by Jack Lutz in the late 90s under the name “one-bit catastrophe”. We also give tight bounds on the maximal possible variation between the compression ratio of a finite word and its perturbation—when one bit is added in front of it
Remscrim, Zachary (Zachary N. ). "Algebraic methods in pseudorandomness and circuit complexity." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/106089.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (pages 93-96).
In this thesis, we apply tools from algebra and algebraic geometry to prove new results concerning extractors for algebraic sets, AC⁰-pseudorandomness, the recursive Fourier sampling problem, and VC dimension. We present a new construction of an extractor which works for algebraic sets defined by polynomials over F₂ of substantially higher degree than the previous state-of-the-art construction. We exhibit a collection of natural functions that behave pseudorandomly with regards to AC⁰ tests. We also exactly determine the F₂-polynomial degree of the recursive Fourier sampling problem and use this to provide new partial results towards a circuit lower bound for this problem. Finally, we answer a question posed in [MR15] concerning VC dimension, interpolation degree and the Hilbert function.
by Zachary Remscrim.
Ph. D.
Ramponi, Marco. "Clifford index and gonality of curves on special K3 surfaces." Thesis, Poitiers, 2017. http://www.theses.fr/2017POIT2317/document.
Повний текст джерелаWe study the properties of algebraic curves lying on special K3 surfaces, from the viewpoint of Brill-Noether theory.Lazarsfeld's proof of the Gieseker-Petri theorem has revealed the importance of the Brill-Noether theory of curves which admit an embedding in a K3 surface. We give a proof of this classical result, inspired by the ideas of Pareschi. We then describe the theorem of Green and Lazarsfeld, a key result for our work, which establishes the behaviour of the Clifford index of curves on K3 surfaces.Watanabe showed that the Clifford index of curves lying on certain special K3 surfaces, realizable as a double covering of a smooth del Pezzo surface, can be determined by a direct use of the non-simplectic involution carried by these surfaces. We study a similar situation for some K3 surfaces having a Picard lattice isomorphic to U(m), with m>0 any integer. We show that the gonality and the Clifford index of all smooth curves on these surfaces, with a single, explicitly determined exception, are obtained by restriction of the elliptic fibrations of the surface. This work is based on the following article:M. Ramponi, Gonality and Clifford index of curves on elliptic K3 surfaces with Picard number two, Archiv der Mathematik, 106(4), p. 355-362, 2016.Knutsen and Lopez have studied in detail the Brill-Noether theory of curves lying on Enriques surfaces. Applying their results, we are able to determine and compute the gonality and Clifford index of any smooth curve lying on the general K3 surface which is the universal covering of an Enriques surface. This work is based on the following article:M. Ramponi, Special divisors on curves on K3 surfaces carrying an Enriques involution, Manuscripta Mathematica, 153(1), p. 315-322, 2017
Reich, Sebastian. "Differential-algebraic equations and applications in circuit theory." Universität Potsdam, 1992. http://opus.kobv.de/ubp/volltexte/2010/4664/.
Повний текст джерелаDie mathematische Modellierung technisch physikalischer Systeme wie elektrische Netzwerke, führt häufig auf ein System von Differentialgleichungen und nichtlinearen impliziten Gleichungen sogenannten Algebrodifferentialgleichungen (ADGL). Es zeigt sich, daß die numerischen und analytischen Eigenschaften von ADGL durch den Index des Problems charakterisiert werden können. Insbesondere können die bekannten Integrationsformeln von Gear im allgemeinen nur auf ADGL mit dem Index eins angewendet werden. In diesem Beitrag wird eine geometrische Interpretation von ADGL mit einem höheren Index gegeben sowie auf Probleme im Zusammenhang mit derartigen ADGL an Hand verschiedener Beispiele hingewiesen.
Bächle, Simone. "Numerical solution of differential-algebraic systems arising in circuit simulation." [S.l.] : [s.n.], 2007. http://opus.kobv.de/tuberlin/volltexte/2007/1524.
Повний текст джерелаGrenet, Bruno. "Représentations des polynômes, algorithmes et bornes inférieures." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2012. http://tel.archives-ouvertes.fr/tel-00770148.
Повний текст джерелаКниги з теми "Algebraic Circuits"
Lloris Ruiz, Antonio, Encarnación Castillo Morales, Luis Parrilla Roure, and Antonio García Ríos. Algebraic Circuits. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54649-5.
Повний текст джерелаLloris Ruiz, Antonio, Encarnación Castillo Morales, Luis Parrilla Roure, Antonio García Ríos, and María José Lloris Meseguer. Arithmetic and Algebraic Circuits. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67266-9.
Повний текст джерелаKrishnaswamy, Smita. Design, Analysis and Test of Logic Circuits Under Uncertainty. Dordrecht: Springer Netherlands, 2013.
Знайти повний текст джерелаBarg, Alexander, and O. R. Musin. Discrete geometry and algebraic combinatorics. Providence, Rhode Island: American Mathematical Society, 2014.
Знайти повний текст джерелаTsfasman, M. A. Algebraic geometry codes: Basic notions. Providence, R.I: American Mathematical Society, 2007.
Знайти повний текст джерелаInternational Conference Arithmetic, Geometry, Cryptography and Coding Theory (14th 2013 Marseille, France). Algorithmic arithmetic, geometry, and coding theory: 14th International Conference, Arithmetic, Geometry, Cryptography, and Coding Theory, June 3-7 2013, CIRM, Marseille, France. Edited by Ballet Stéphane 1971 editor, Perret, M. (Marc), 1963- editor, and Zaytsev, Alexey (Alexey I.), 1976- editor. Providence, Rhode Island: American Mathematical Society, 2015.
Знайти повний текст джерелаThornton, Mitchell Aaron. Spectral techniques in VLSI CAD. Boston: Kluwer Academic Publishers, 2001.
Знайти повний текст джерелаAlta.) WIN (Conference) (2nd 2011 Banff. Women in Numbers 2: Research directions in number theory : BIRS Workshop, WIN2 - Women in Numbers 2, November 6-11, 2011, Banff International Research Station, Banff, Alberta, Canada. Edited by David Chantal 1964-, Lalín Matilde 1977-, and Manes Michelle 1970-. Providence, Rhode Island: American Mathematical Society, 2013.
Знайти повний текст джерелаViamontes, George F. Quantum Circuit Simulation. Dordrecht: Springer Science+Business Media B.V., 2009.
Знайти повний текст джерелаStanković, Radomir S. From Boolean logic to switching circuits and automata: Towards modern information technology. Berlin: Springer Verlag, 2011.
Знайти повний текст джерелаЧастини книг з теми "Algebraic Circuits"
Lloris Ruiz, Antonio, Encarnación Castillo Morales, Luis Parrilla Roure, and Antonio García Ríos. "Basic Algebraic Circuits." In Intelligent Systems Reference Library, 159–215. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54649-5_4.
Повний текст джерелаLloris Ruiz, Antonio, Encarnación Castillo Morales, Luis Parrilla Roure, Antonio García Ríos, and María José Lloris Meseguer. "Basic Algebraic Circuits." In Arithmetic and Algebraic Circuits, 379–457. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67266-9_9.
Повний текст джерелаLloris Ruiz, Antonio, Encarnación Castillo Morales, Luis Parrilla Roure, Antonio García Ríos, and María José Lloris Meseguer. "Basic Arithmetic Circuits." In Arithmetic and Algebraic Circuits, 77–131. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67266-9_2.
Повний текст джерелаLloris Ruiz, Antonio, Encarnación Castillo Morales, Luis Parrilla Roure, Antonio García Ríos, and María José Lloris Meseguer. "Galois Fields GF(pn)." In Arithmetic and Algebraic Circuits, 515–50. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67266-9_11.
Повний текст джерелаLloris Ruiz, Antonio, Encarnación Castillo Morales, Luis Parrilla Roure, Antonio García Ríos, and María José Lloris Meseguer. "Multiplication." In Arithmetic and Algebraic Circuits, 257–85. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67266-9_6.
Повний текст джерелаLloris Ruiz, Antonio, Encarnación Castillo Morales, Luis Parrilla Roure, Antonio García Ríos, and María José Lloris Meseguer. "Special Functions." In Arithmetic and Algebraic Circuits, 317–77. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67266-9_8.
Повний текст джерелаLloris Ruiz, Antonio, Encarnación Castillo Morales, Luis Parrilla Roure, Antonio García Ríos, and María José Lloris Meseguer. "Number Systems." In Arithmetic and Algebraic Circuits, 1–75. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67266-9_1.
Повний текст джерелаLloris Ruiz, Antonio, Encarnación Castillo Morales, Luis Parrilla Roure, Antonio García Ríos, and María José Lloris Meseguer. "Residue Number Systems." In Arithmetic and Algebraic Circuits, 133–72. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67266-9_3.
Повний текст джерелаLloris Ruiz, Antonio, Encarnación Castillo Morales, Luis Parrilla Roure, Antonio García Ríos, and María José Lloris Meseguer. "Addition and Subtraction." In Arithmetic and Algebraic Circuits, 221–56. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67266-9_5.
Повний текст джерелаLloris Ruiz, Antonio, Encarnación Castillo Morales, Luis Parrilla Roure, Antonio García Ríos, and María José Lloris Meseguer. "Two Galois Fields Cryptographic Applications." In Arithmetic and Algebraic Circuits, 551–65. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67266-9_12.
Повний текст джерелаТези доповідей конференцій з теми "Algebraic Circuits"
Andrews, Robert, and Avi Wigderson. "Constant-Depth Arithmetic Circuits for Linear Algebra Problems." In 2024 IEEE 65th Annual Symposium on Foundations of Computer Science (FOCS), 2367–86. IEEE, 2024. http://dx.doi.org/10.1109/focs61266.2024.00138.
Повний текст джерелаAgrawal, Manindra, Sumanta Ghosh, and Nitin Saxena. "Bootstrapping variables in algebraic circuits." In STOC '18: Symposium on Theory of Computing. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3188745.3188762.
Повний текст джерелаMan, Ka Lok, Abhinav Asthana, K. Kapoor Hemangee, Tomas Krilavicius, and Jian Chang. "Process algebraic specification of DI circuits." In 2010 International SoC Design Conference (ISOCC 2010). IEEE, 2010. http://dx.doi.org/10.1109/socdc.2010.5682885.
Повний текст джерелаBen-Asher, Yosi, and Gady Haber. "Efficient parallel solutions of linear algebraic circuits." In the eleventh annual ACM symposium. New York, New York, USA: ACM Press, 1999. http://dx.doi.org/10.1145/305619.305644.
Повний текст джерелаRao, Vikas, Haden Ondricek, Priyank Kalla, and Florian Enescu. "Algebraic Techniques for Rectification of Finite Field Circuits." In 2021 IFIP/IEEE 29th International Conference on Very Large Scale Integration (VLSI-SoC). IEEE, 2021. http://dx.doi.org/10.1109/vlsi-soc53125.2021.9606976.
Повний текст джерелаLimaye, Nutan, Srikanth Srinivasan, and Sebastien Tavenas. "Superpolynomial Lower Bounds Against Low-Depth Algebraic Circuits." In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 2022. http://dx.doi.org/10.1109/focs52979.2021.00083.
Повний текст джерелаDutta, Pranjal, Prateek Dwivedi, and Nitin Saxena. "Demystifying the border of depth-3 algebraic circuits." In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 2022. http://dx.doi.org/10.1109/focs52979.2021.00018.
Повний текст джерелаCalvino, Alessandro Tempia, and Giovanni De Micheli. "Algebraic and Boolean Methods for SFQ Superconducting Circuits." In 2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 2024. http://dx.doi.org/10.1109/asp-dac58780.2024.10473899.
Повний текст джерелаGrigoraş, Victor, and Carmen Grigoraş. "Nonlinear System with Adaptive Algebraic Function." In 2023 International Symposium on Signals, Circuits and Systems (ISSCS). IEEE, 2023. http://dx.doi.org/10.1109/isscs58449.2023.10190933.
Повний текст джерелаHiroaki Yoshida, Makoto Ikeda, and Kunihiro Asada. "An algebraic approach for transistor circuit synthesis." In 2005 12th IEEE International Conference on Electronics, Circuits and Systems - (ICECS 2005). IEEE, 2005. http://dx.doi.org/10.1109/icecs.2005.4633590.
Повний текст джерелаЗвіти організацій з теми "Algebraic Circuits"
Barnett, Janet Heine. Applications of Boolean Algebra: Claude Shannon and Circuit Design. Washington, DC: The MAA Mathematical Sciences Digital Library, July 2013. http://dx.doi.org/10.4169/loci004000.
Повний текст джерела