Добірка наукової літератури з теми "Algal Protein"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Algal Protein".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Algal Protein"
Hirakawa, Yoshihisa, Fabien Burki, and Patrick J. Keeling. "Genome-Based Reconstruction of the Protein Import Machinery in the Secondary Plastid of a Chlorarachniophyte Alga." Eukaryotic Cell 11, no. 3 (January 20, 2012): 324–33. http://dx.doi.org/10.1128/ec.05264-11.
Повний текст джерелаBlaby-Haas, Crysten E., and Sabeeha S. Merchant. "Comparative and Functional Algal Genomics." Annual Review of Plant Biology 70, no. 1 (April 29, 2019): 605–38. http://dx.doi.org/10.1146/annurev-arplant-050718-095841.
Повний текст джерелаSproles, Ashley E., Anthony Berndt, Francis J. Fields, and Stephen P. Mayfield. "Improved high-throughput screening technique to rapidly isolate Chlamydomonas transformants expressing recombinant proteins." Applied Microbiology and Biotechnology 106, no. 4 (February 2022): 1677–89. http://dx.doi.org/10.1007/s00253-022-11790-9.
Повний текст джерелаK., Santhoshkumar, Prasanthkumar S., and J. G. Ray. "Chlorococcum humicola (Nageli) Rabenhorst as a Renewable Source of Bioproducts and Biofuel." Journal of Plant Studies 5, no. 1 (February 29, 2016): 48. http://dx.doi.org/10.5539/jps.v5n1p48.
Повний текст джерелаZivanovic, Ana, and Danielle Skropeta. "c-AMP Dependent Protein Kinase a Inhibitory Activity of Six Algal Extracts from South Eastern Australia and Their Fatty Acid Composition." Natural Product Communications 7, no. 7 (July 2012): 1934578X1200700. http://dx.doi.org/10.1177/1934578x1200700731.
Повний текст джерелаTipsukhon Pimpimol, Burassakorn Tongmee, Padivarada Lomlai, Prsert Prasongpol, Niwooti Whangchai, Yuwalee Unpaprom, and Rameshprabu Ramaraj. "Spirogyra cultured in fishpond wastewater for biomass generation." Maejo International Journal of Energy and Environmental Communication 2, no. 3 (December 31, 2020): 58–65. http://dx.doi.org/10.54279/mijeec.v2i3.245041.
Повний текст джерелаCavalier-Smith, T. "Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae)." Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 358, no. 1429 (January 29, 2003): 109–34. http://dx.doi.org/10.1098/rstb.2002.1194.
Повний текст джерелаVasileva, Iv, and J. Ivanova. "BIOCHEMICAL PROFILE OF GREEN AND RED ALGAE – A KEY FOR UNDERSTANDING THEIR POTENTIAL APPLICATION AS FOOD ADDITIVES." Trakia Journal of Sciences 17, no. 1 (2019): 1–7. http://dx.doi.org/10.15547/tjs.2019.01.001.
Повний текст джерелаBocanegra, Aránzazu, Adrián Macho-González, Alba Garcimartín, Juana Benedí, and Francisco José Sánchez-Muniz. "Whole Alga, Algal Extracts, and Compounds as Ingredients of Functional Foods: Composition and Action Mechanism Relationships in the Prevention and Treatment of Type-2 Diabetes Mellitus." International Journal of Molecular Sciences 22, no. 8 (April 7, 2021): 3816. http://dx.doi.org/10.3390/ijms22083816.
Повний текст джерелаMakwana, Hiren V., Priyanka G. Pandey, and Binita A. Desai. "Phytochemical Analysis and Evaluation of Total Phenolic Content of Algal Biomass Found in Tapi River in Surat." International Journal for Research in Applied Science and Engineering Technology 10, no. 4 (April 30, 2022): 2783–87. http://dx.doi.org/10.22214/ijraset.2022.41897.
Повний текст джерелаДисертації з теми "Algal Protein"
Turkina, Maria. "Functional proteomics of protein phosphorylation in algal photosynthetic membranes." Doctoral thesis, Linköping : Univ, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-10708.
Повний текст джерелаBosley, Amber L. "Algae Characterization and Processing Techniques." University of Toledo / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1321538296.
Повний текст джерелаCasey, Diane M. "DC3, a Calcium-Binding Protein Important for Assembly of the Chlamydomonas Outer Dynein Arm: a Dissertation." eScholarship@UMMS, 2005. http://escholarship.umassmed.edu/gsbs_diss/156.
Повний текст джерелаCasey, Diane M. "DC3, a Calcium-Binding Protein Important for Assembly of the Chlamydomonas Outer Dynein Arm: a Dissertation." eScholarship@UMMS, 2003. https://escholarship.umassmed.edu/gsbs_diss/156.
Повний текст джерелаRonzitti, Giuseppe <1979>. "Le tossine algali alterano proteine dell'adesione cellulare." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2008. http://amsdottorato.unibo.it/644/1/Tesi_Ronzitti_Giuseppe.pdf.
Повний текст джерелаRonzitti, Giuseppe <1979>. "Le tossine algali alterano proteine dell'adesione cellulare." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2008. http://amsdottorato.unibo.it/644/.
Повний текст джерелаBorgen, Kelly. "Evaluation of physicochemical properties of modified algae protein adhesives." Thesis, Kansas State University, 2012. http://hdl.handle.net/2097/13634.
Повний текст джерелаDepartment of Biological and Agricultural Engineering
Donghai Wang
Algae proteins have similar amino acid compositions as conventional plant proteins, and are comparatively richer in the essential amino acids. Algae protein has the potential to be used in the development of a wide variety of products, including foods, animal feeds, bioplastics, and adhesives. The utilization of algae protein for value-added products would increase the economic feasibility of algae biodiesel. This research evaluated the adhesion, rheological, morphological, and thermal properties of adhesives made from algae protein extracted from Cladophora sp. and modified with either sodium hydroxide (pH 9, 10, 11) or sodium dodecyl sulfate (SDS, 0.5, 1, and 3%). Both alkali-modified and SDS-modified algae protein adhesives displayed improved dry shear strength compared to unmodified algae protein. However, only 3% SDS-modified algae protein significantly improved the water resistance as shown in wet and soak shear strength tests. Thermal analysis using differential scanning calorimetry showed that SDS modification caused complete denaturation of the algae protein. SDS modification also increased the viscosity of the adhesive and created rougher particle surface texture. These data suggest that SDS modification can effectively increase shear strength and water resistance of algae protein adhesives caused by protein denaturation and protein structure change.
Azevedo, Brian. "Algae as an economical protein source for dairy cattle nutrition." Click here to view, 2009. http://digitalcommons.calpoly.edu/dscisp/23/.
Повний текст джерелаProject advisor: Edwin H. Jaster. Title from PDF title page; viewed on Jan. 28, 2010. Includes bibliographical references. Also available on microfiche.
Djabayan-Djibeyan, Pablo. "A comparison of lectins in green Venezuelan marine algae." Thesis, University of Portsmouth, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343338.
Повний текст джерелаLupatini, Anne Luize. "Extração de proteínas e carboidratos da biomassa de Spirulina platensis e caracterização da fração proteica." Universidade Tecnológica Federal do Paraná, 2016. http://repositorio.utfpr.edu.br/jspui/handle/1/2180.
Повний текст джерелаA Spirulina platensis é reconhecida como uma fonte não convencional de proteínas, em função da sua constituição favorável deste nutriente (46 a 63%), possuindo concentração superior a das carnes e da soja. Além disso, apresenta potencial como matéria-prima para a produção de bioetanol, podendo acumular entre 8,0 e 14,0% de carboidratos. A fim de abranger o conceito de Biorrefinarias Integradas, o objetivo deste trabalho consistiu em avaliar a extração conjunta de proteínas e carboidratos da biomassa de Spirulina platensis utilizando tratamento ultrassônico e agitação em meio alcalino, e a posterior produção e caracterização do concentrado proteico. Na primeira etapa do trabalho, aplicou-se uma estratégia sequencial de planejamento experimental (Planejamento Fatorial Fracionário (PFF) seguido de Delineamentos Compostos Centrais Rotacionais (DCCR)) para seleção e maximização das variáveis com influência significativa sobre o processo de extração. Com as condições de extração otimizadas, foi possível atingir recuperação final de 75,85% e de 41,54% de proteínas e carboidratos, respectivamente. Na segunda etapa do trabalho foi realizada a precipitação de proteínas, para a separação da fase líquida contendo os carboidratos e obtenção do concentrado proteico, o qual foi caracterizado quimicamente e de acordo com sua funcionalidade tecnológica. O concentrado proteico apresentou coloração verde azulada com 75,97% de proteínas (b.s.), concentrações apreciáveis de aminoácidos, sendo o que o triptofano apresentou o maior escore químico (1,71) e o aminoácido limitante foi a histidina; na análise da estrutura secundária das proteínas, as conformações mais abundantes foram β-folha e α-hélice. Na etapa de avaliação da funcionalidade tecnológica observou-se que o pH apresentou influência nas propriedades de capacidade de absorção de água, capacidade de formação e estabilidade de espuma e emulsão, e capacidade de formação de gel, o que pode ser justificado pela solubilidade desta proteína, que é mínima em pH 3,0 e máxima em 9,0. A concentração de concentrado proteico também interferiu no desempenho destas propriedades; melhores resultados foram obtidos em maiores níveis de concentração, exceto para a capacidade de absorção de água e de óleo. Desta forma foi possível determinar que as proteínas de Spirulina platensis podem contribuir na formulação de alimentos, possuindo características eficazes de formação de emulsões, espumas ou géis, bem como pode ser utilizada como fonte suplementar de proteínas.
Spirulina platensis is considered an unconventional source of protein, because its avorably constitution on this component (46 to 63%), which is higher than the meat and soy. Furthermore, it has potential as a feedstock for bioethanol production and can accumulate between 8.0 to 14.0% of carbohydrate. In order to cover the concept of Integrated Biorefineries, the aim of this study was to evaluate the combined extraction of proteins and carbohydrates from Spirulina platensis biomass using sonication and agitation, under alkaline conditions, and the subsequent production and characterization of protein concentrate. The first stage of this work consisted of applying a sequential strategy of experimental design (Fractional Factorial Design FFD) and Central Composite Rotatable Design (CCRD)) by selecting and maximizing variables with significant influence on the protein and carbohydrates extraction. With the extraction conditions established, a final yield of 75.85% and 41.54% from protein and carbohydrate, respectively, was reached. In the second step, the protein concentrate obtained by precipitation was submitted to chemical and echnological functionality analyzes. The protein concentrate showed blue-green color with 75.97% of proteins (dry weight), appreciable concentrations of amino acids, where tryptophan had the highest chemical score (1.71) and the limiting amino acid was histidine; the secondary structure of proteins showed that the most abundant conformations present were β-sheet and α-helice. At the step of echnological functionality evaluation it was observed that the pH influenced on the properties of water absorption capacity, foaming and emulsion capacity and stability, and gelation capacity; it can be justified by the solubility of this protein which is minimal at pH 3.0 and maximum at 9.0. The level of addition of protein concentrate also interfered on the performance of these properties; better results have been obtained at higher concentrations levels, except for water and oil absorption capacity. Thus, it was confirmed that the Spirulina platensis proteins may contribute in different ormulations of foods, having effective characteristics to form emulsions, foams or gels, and can be used as a supplemental source of protein.
Книги з теми "Algal Protein"
Lohrenz, Steven E. Primary production of particulate protien amino acids: Algal protein metabolism and its relationship to the composition of particulate organic matter. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1985.
Знайти повний текст джерелаKarel, Marcus. Utilization of non-conventional systems for conversion of biomass to food components: Potential for utilization of algae in engineered foods. Cambridge, MA: Dept. of Applied Biological Sciences, Massachusetts Institute of Technology, 1985.
Знайти повний текст джерелаKarel, Marcus. Utilization of non-conventional systems for conversion of biomass to food components: Final report. Cambridge, MA: Dept. of Chemical Engineering, Massachusetts Institute of Technology, 1989.
Знайти повний текст джерелаUnited States. National Aeronautics and Space Administration, ed. Utilization of non-conventional systems for conversion of biomass to food components: Potential for utilization of algae in engineered foods. Cambridge, MA: Dept. of Applied Biological Sciences, Massachusetts Institute of Technology, 1985.
Знайти повний текст джерелаKarel, Marcus. Utilization of non-conventional systems for conversion of biomass to food components: Potential for utilization of algae in engineered foods. Cambridge, MA: Dept. of Applied Biological Sciences, Massachusetts Institute of Technology, 1985.
Знайти повний текст джерелаUnited States. National Aeronautics and Space Administration., ed. Utilization of non-conventional systems for conversion of biomass to food components: Potential for utilization of algae in engineered foods. Cambridge, MA: Dept. of Applied Biological Sciences, Massachusetts Institute of Technology, 1985.
Знайти повний текст джерелаKarel, Marcus. Utilization of non-conventional systems for conversion of biomass to food components: Recovery optimization and characterization of algal proteins and lipids ; status report (March 1985 to June 1986). Cambridge, MA: Dept. of Applied Biological Sciences, Massachusetts Institute of Technology, 1986.
Знайти повний текст джерелаZ, Nakhost, and United States. National Aeronautics and Space Administration, eds. Utilization of non-conventional systems for conversion of biomass to food components: Recovery optimization and characterization of algal proteins and lipids ; status report (March 1985 to June 1986). Cambridge, MA: Dept. of Applied Biological Sciences, Massachusetts Institute of Technology, 1986.
Знайти повний текст джерелаUnited States. National Aeronautics and Space Administration, ed. Utilization of non-conventional systems for conversion of biomass to food components: Final report. Cambridge, MA: Dept. of Chemical Engineering, Massachusetts Institute of Technology, 1989.
Знайти повний текст джерелаUnited States. National Aeronautics and Space Administration., ed. Utilization of non-conventional systems for conversion of biomass to food components: Final report. Cambridge, MA: Dept. of Chemical Engineering, Massachusetts Institute of Technology, 1989.
Знайти повний текст джерелаЧастини книг з теми "Algal Protein"
Richard, Hamilton, Nizovtseva Irina, Chernuskin Dmitri, and Marina G. Kalyuzhnaya. "C1-Proteins Prospect for Production of Industrial Proteins and Protein-Based Materials from Methane." In Algal Biorefineries and the Circular Bioeconomy, 251–76. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003195429-7.
Повний текст джерелаRojo, Elena M., Alejandro Filipigh, David Moldes, Marisol Vega, and Silvia Bolado. "Potential of Microalgae for Protein Production." In Algal Biorefineries and the Circular Bioeconomy, 91–132. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003195405-4.
Повний текст джерелаKnoshaug, Eric P., Alida T. Gerritsen, Calvin A. Henard, and Michael T. Guarnieri. "Methods for Algal Protein Isolation and Proteome Analysis." In Methods in Molecular Biology, 51–59. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0195-2_5.
Повний текст джерелаNigam, Mohit, Ruchi Yadav, and Garima Awasthi. "In-Silico Construction of Hybrid ORF Protein to Enhance Algal Oil Content for Biofuel." In Advances in Biomedical Engineering and Technology, 67–89. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6329-4_8.
Повний текст джерелаYucetepe, Aysun. "Strategies for Nanoencapsulation of Algal Proteins, Protein Hydrolysates and Bioactive Peptides: The Effect of Encapsulation Techniques on Bioactive Properties." In Nanotechnology in the Life Sciences, 211–27. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81557-8_9.
Повний текст джерелаChirdon, William M. "Utilization of Biorefinery Waste Proteins as Feed, Glues, Composites, and Other Co-Products." In Algal Biorefineries, 367–92. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20200-6_11.
Повний текст джерелаIrvani, Neda, Alan Carne, Dominic Agyei, and Indrawati Oey. "Algae as an Alternative Source of Protein." In Alternative Proteins, 65–84. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429299834-4.
Повний текст джерелаOlatunji, Ololade. "Aquatic Plants and Algae Proteins." In Springer Series on Polymer and Composite Materials, 211–32. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34709-3_10.
Повний текст джерелаJeon, You-Jin, and Kalpa Samarakoon. "Recovery of Proteins and their Biofunctionalities from Marine Algae." In Marine Proteins and Peptides, 253–69. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118375082.ch12.
Повний текст джерелаGrimme, L. H., I. Damm, D. Steinmetz, and B. Scheffczyk. "Pigment-Protein Complexes of Algal Thylakoid Membranes: Variations in Pattern, Pigment Composition and Reaction Centre II Types During The Cell Cycle of Chlorella Fusca and after Adaptation to Low Light Intensities." In Progress in Photosynthesis Research, 347–50. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3535-8_84.
Повний текст джерелаТези доповідей конференцій з теми "Algal Protein"
Quiroz-Arita, Carlos. "High-protein algal bioproducts: An economic and environmental sustainability review and risk analysis." In Proposed for presentation at the International Conference on Algal Biomass, Biofuels & Bioproducts held June 14-16, 2021, Virtual, United States. US DOE, 2021. http://dx.doi.org/10.2172/1873059.
Повний текст джерелаFreeman, Eric, Lisa Mauck Weiland, and Ryan Soncini. "Water Purification Through Selective Transport." In ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/smasis2011-5062.
Повний текст джерелаCalinescu, Ioan, Alin Vintila, Aurel Diacon, Mircea Vinatoru, Ana Maria Galan, and Sanda Velea. "GROWTH OF NANNOCHLORIS ALGAE IN THE PRESENCE OF MICROWAVES (CONTINUOUS REACTOR)." In Ampere 2019. Valencia: Universitat Politècnica de València, 2019. http://dx.doi.org/10.4995/ampere2019.2019.9820.
Повний текст джерелаBounnit, Touria, Imen Saadaoui, Rihab Rasheed, Hareb Al jabri, Sami Sayadi, and Ahmad Ayesh. "Assessment of SnO2 Nanoparticles’ Impact on local Pichoclorum Atomus Growth Performance, Cell Morphology and Metabolites Content." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2021. http://dx.doi.org/10.29117/quarfe.2021.0034.
Повний текст джерелаB.C., Meskhi, Mozgovoy A.V., Rudoy D.V., Olshevskaya A.V., Smirnova O.A., Sarkisian D.S., and Maltseva T.A. "ALTERNATIVE SOURCES OF PROTEIN AS A RAW MATERIAL FOR THE PRODUCTION OF NEW FOOD PRODUCTS: PROBLEMS AND PROSPECTS." In OF THE ANNIVERSARY Х INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE «INNOVATIVE TECHNOLOGIES IN SCIENCE AND EDUCATION» («ITSE 2022» CONFERENCE). DSTU-Print, 2022. http://dx.doi.org/10.23947/itse.2022.160-166.
Повний текст джерелаHobbs, Raymond, and Xiaolei Sun. "Integrated Wind, Sun, Fossil, Biomass and Nuclear for Energy Sustainability." In ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/es2009-90129.
Повний текст джерелаBeaulieu, Lucie. "Algae: A Key Protein Source for the Development of New Functional Ingredients." In Virtual 2021 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2021. http://dx.doi.org/10.21748/am21.150.
Повний текст джерелаNatsir, Hasnah, Marinda, Ahyar Ahmad, Abdul Wahid Wahab, Nunuk Hariani Soekamto, Siti Fauziah, Yusriadi, Rafsanjany Ramadan, Harningsih Karim, and Fatahu. "Hydrolisis enzymatic protein from microsimbiont red algae Eucheuma cottonii as an antibacterial." In INTERNATIONAL CONFERENCE ON ENERGY AND ENVIRONMENT (ICEE 2021). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0059610.
Повний текст джерелаSethi, Purnima, Mohit Prasad, and Sukhdev Roy. "All-optical switching in LOV2-C250S protein mutant from Chlamydomonas reinhardtii green algae." In 2009 International Conference on Emerging Trends in Electronic and Photonic Devices & Systems (ELECTRO-2009). IEEE, 2009. http://dx.doi.org/10.1109/electro.2009.5441039.
Повний текст джерелаKhairunnur, Siti, Ahyar Ahmad, Rugaiyah A. Arfah, Firdaus Zenta, Nursiah La Nafie, Hasnah Natsir, and Andi Akbar. "Isolation and identification of anticancer-protein-producing symbiotic bacteria from green algae Caulerpa lentillifera." In THE 9TH INTERNATIONAL CONFERENCE OF THE INDONESIAN CHEMICAL SOCIETY ICICS 2021: Toward a Meaningful Society. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0104089.
Повний текст джерелаЗвіти організацій з теми "Algal Protein"
Mitchell, Brian G., Amir Neori, Charles Yarish, D. Allen Davis, Tzachi Samocha, and Lior Guttman. The use of aquaculture effluents in spray culture for the production of high protein macroalgae for shrimp aqua-feeds. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7597934.bard.
Повний текст джерелаChristopher, David A., and Avihai Danon. Plant Adaptation to Light Stress: Genetic Regulatory Mechanisms. United States Department of Agriculture, May 2004. http://dx.doi.org/10.32747/2004.7586534.bard.
Повний текст джерелаNango, Mamoru. Assembly of Photosynthetic Antenna Protein Complexes from Algae for Development of Nano-biodevice and Its Fuelization. Fort Belvoir, VA: Defense Technical Information Center, May 2013. http://dx.doi.org/10.21236/ada586787.
Повний текст джерелаVakharia, Vikram, Shoshana Arad, Yonathan Zohar, Yacob Weinstein, Shamila Yusuff, and Arun Ammayappan. Development of Fish Edible Vaccines on the Yeast and Redmicroalgae Platforms. United States Department of Agriculture, February 2013. http://dx.doi.org/10.32747/2013.7699839.bard.
Повний текст джерелаOhad, Itzhak, and Himadri Pakrasi. Role of Cytochrome B559 in Photoinhibition. United States Department of Agriculture, December 1995. http://dx.doi.org/10.32747/1995.7613031.bard.
Повний текст джерелаStern, David B., and Gadi Schuster. Manipulation of Gene Expression in the Chloroplast: Control of mRNA Stability and Transcription Termination. United States Department of Agriculture, December 1993. http://dx.doi.org/10.32747/1993.7568750.bard.
Повний текст джерелаSchuster, Gadi, and David Stern. Integrated Studies of Chloroplast Ribonucleases. United States Department of Agriculture, September 2011. http://dx.doi.org/10.32747/2011.7697125.bard.
Повний текст джерелаNREL Discovers Novel Protein Interaction in Green Algae that Suggests New Strategies to Improve Hydrogen Photoproduction (Fact Sheet). Office of Scientific and Technical Information (OSTI), February 2011. http://dx.doi.org/10.2172/1009293.
Повний текст джерела