Добірка наукової літератури з теми "Aimants van der Waals"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Aimants van der Waals".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Aimants van der Waals":

1

Arunan, E. "van der Waals." Resonance 15, no. 7 (July 2010): 584–87. http://dx.doi.org/10.1007/s12045-010-0043-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Han, Jianing. "Two-Dimensional Six-Body van der Waals Interactions." Atoms 10, no. 1 (January 24, 2022): 12. http://dx.doi.org/10.3390/atoms10010012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Van der Waals interactions, primarily attractive van der Waals interactions, have been studied over one and half centuries. However, repulsive van der Waals interactions are less widely studied than attractive van der Waals interactions. In this article, we focus on repulsive van der Waals interactions. Van der Waals interactions are dipole–dipole interactions. In this article, we study the van der Waals interactions between multiple dipoles. Specifically, we focus on two-dimensional six-body van der Waals interactions. This study has many potential applications. For example, the result may be applied to physics, chemistry, chemical engineering, and other fields of sciences and engineering, such as breaking molecules.
3

Bernasek, Steven L. "Van der Waals rectifiers." Nature Nanotechnology 8, no. 2 (January 6, 2013): 80–81. http://dx.doi.org/10.1038/nnano.2012.242.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Geim, A. K., and I. V. Grigorieva. "Van der Waals heterostructures." Nature 499, no. 7459 (July 2013): 419–25. http://dx.doi.org/10.1038/nature12385.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Levitov, L. S. "Van Der Waals' Friction." Europhysics Letters (EPL) 8, no. 6 (March 15, 1989): 499–504. http://dx.doi.org/10.1209/0295-5075/8/6/002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Capozziello, S., S. De Martino, and M. Falanga. "Van der Waals quintessence." Physics Letters A 299, no. 5-6 (July 2002): 494–98. http://dx.doi.org/10.1016/s0375-9601(02)00753-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bärwinkel, Klaus, and Jürgen Schnack. "van der Waals revisited." Physica A: Statistical Mechanics and its Applications 387, no. 18 (July 2008): 4581–88. http://dx.doi.org/10.1016/j.physa.2008.03.019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Levelt Sengers, J. M. H., and J. V. Sengers. "van der Waals fund, van der Waals laboratory and Dutch high-pressure science." Physica A: Statistical Mechanics and its Applications 156, no. 1 (March 1989): 1–14. http://dx.doi.org/10.1016/0378-4371(89)90107-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wu, Yan-Fei, Meng-Yuan Zhu, Rui-Jie Zhao, Xin-Jie Liu, Yun-Chi Zhao, Hong-Xiang Wei, Jing-Yan Zhang, et al. "The fabrication and physical properties of two-dimensional van der Waals heterostructures." Acta Physica Sinica 71, no. 4 (2022): 048502. http://dx.doi.org/10.7498/aps.71.20212033.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Two-dimensional van der Waals materials (2D materials for short) have developed into a novel material family that has attracted much attention, and thus the integration, performance and application of 2D van der Waals heterostructures has been one of the research hotspots in the field of condensed matter physics and materials science. The 2D van der Waals heterostructures provide a flexible and extensive platform for exploring diverse physical effects and novel physical phenomena, as well as for constructing novel spintronic devices. In this topical review article, starting with the transfer technology of 2D materials, we will introduce the construction, performance and application of 2D van der Waals heterostructures. Firstly, the preparation technology of 2D van der Waals heterostructures in detail will be presented according to the two classifications of wet transfer and dry transfer, including general equipment for transfer technology, the detailed steps of widely used transfer methods, a three-dimensional manipulating method for 2D materials, and hetero-interface cleaning methods. Then, we will introduce the performance and application of 2D van der Waals heterostructures, with a focus on 2D magnetic van der Waals heterostructures and their applications in the field of 2D van der Waals magnetic tunnel junctions and moiré superlattices. The development and optimization of 2D materials transfer technology will boost 2D van der Waals heterostructures to achieve breakthrough results in fundamental science research and practical application.
10

Ao, Hong Rui, Ming Dong, Xi Chao Wang, and Hong Yuan Jiang. "Analysis of Pressure Distribution on Head Disk Air Bearing Slider Involved Van der Waals Force." Applied Mechanics and Materials 419 (October 2013): 111–16. http://dx.doi.org/10.4028/www.scientific.net/amm.419.111.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper focuses on the pressure distribution on the surface of slider in hard disk drive when its flying height is in nanoscale. The gas rarefaction effect and van der Waals force are involved in the analysis process. Here the air bearing force model is based on F-K model and we establish the equation of van der Waals force between the head and disk. Using the finite element method, the modified Reynolds equation and the van der Waals force were obtained. The air bearing force on slider before and after the van der Waals force involved were compared. The results illustrate that the effect of van der Waals force on the air bearing force is different according to the slider shapes and flying heights. As a result, van der Waals force plays an important role when the flying height of slider is below 10 nm.

Дисертації з теми "Aimants van der Waals":

1

Wang, Hangtian. "Interfacial Engineering of the Magnetism in 2D Magnets, Topological Insulators, and Their Heterostructures." Electronic Thesis or Diss., Université de Lorraine, 2023. http://www.theses.fr/2023LORR0206.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Alors que le nœud critique des circuits intégrés (CI) entre dans la phase 1 nm, les matériaux tridimensionnels traditionnels ne peuvent pas conserver leurs propriétés physiques d'origine et ne peuvent donc pas répondre aux besoins des processus de fabrication des circuits intégrés. Parallèlement, la diminution de la largeur des lignes entraîne également une augmentation inévitable de la consommation d'énergie statique. Par conséquent, la recherche de nouveaux matériaux et de nouvelles technologies pour briser le « mur de taille » et le « mur de puissance » est devenue une direction cruciale dans l'industrie des circuits intégrés. En tant que nouveau membre de la famille des matériaux bidimensionnels (2D), les aimants 2D peuvent maintenir leur ordre magnétique à longue portée à l'échelle atomique avec leurs propriétés physiques facilement contrôlées par des stimuli externes, ce qui constitue une plate-forme idéale pour la haute densité et les dispositifs spintroniques de faible puissance. Cependant, en raison de l'effet dimensionnel, le magnétisme 2D ne peut pas exister à haute température. Bien que plusieurs méthodes puissent améliorer la température de Curie (Tc) des aimants 2D (comme le dopage, l'intercalation ionique ou le pompage laser), elles sont loin d'être faciles à contrôler et à haut rendement. Plus important encore, la méthode de préparation largement utilisée par exfoliation mécanique abandonne le mérite de l'effet interfacial 2D, qui s'est avéré être une approche importante pour une manipulation magnétique 2D efficace. Par conséquent, l'étude de l'effet interfacial dans les aimants 2D épitaxiaux est considérée comme un domaine clé pour obtenir un ordre ferromagnétique 2D stable, à grande échelle, à haute Tc, facile à contrôler. L'isolant topologique (TI) est un autre matériau 2D avec un fort couplage spin-orbital. Les états de surface protégés par la topologie ont fourni à TI de nombreux effets fascinants liés au spin, tels que le verrouillage de l'impulsion de spin, l'effet d'échange de spin, etc., ce qui fait de ce matériau un candidat potentiel pour fabriquer des dispositifs spintroniques efficaces. De plus, le TI peut être intégré à des aimants 2D pour former une hétérostructure 2D, dans laquelle non seulement le magnétisme peut être amélioré via l'effet d'interface, mais également les propriétés liées au spin de l'hétérostructure peuvent être manipulées grâce aux avantages de ces aimants
With the critical node of integrated circuits (IC) entering the 1 nm stage, traditional three-dimensional materials cannot maintain their original physical properties, and thus cannot meet the needs of IC manufacturing processes. Meanwhile, the shrinking line width also introduces an inevitable increase in static power consumption. Therefore, researching new materials and new technologies to break through the "Size Wall" and "Power Wall" has become a crucial direction in the IC industry. As a new member of the two-dimensional (2D) material family, the 2D magnets can maintain its long-range magnetic order at the atomic scale with its physical properties easily controlled by external stimuli, which provides an ideal platform for the high-density and low-power spintronic devices. However, due to the dimensional effect, 2D magnetism cannot exist at high temperatures. Although several methods can enhance the Curie temperature (Tc) of 2D magnets (such as doping, ion intercalation, or laser pumping), they are far from easy-controllability and high-efficiency. More importantly, the widely-used preparation method via mechanical exfoliation abandons the merit of 2D interfacial effect, which was proved to be an important approach to efficient 2D magnetic manipulation. Therefore, studying the interfacial effect in epitaxial 2D magnets is regarded as a key field to achieving large-scale, high-Tc, easy-controlling, and stable 2D ferromagnetic order. Topological insulator (TI) is another 2D material with strong spin-orbital coupling. The topology-protected surface states provided TI with numerous fascinates spin-related effects, such as spin-momentum locking, spin exchange effect, etc., which makes this material a potential candidate to fabricate effective spintronic devices. In addition, the TI can be integrated with 2D magnets to form a 2D heterostructure, in which not only the magnetism can be enhanced via the interfacial effect, but also the spin-related properties of the heterostructure can be manipulated due to the advantages of these two materials
2

Bezzi, Luca. "Materiali 2D van der Waals." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dalla scoperta del grafene, molte ricerche sono state condotte sui cosiddetti “materiali 2D”. Questo elaborato si focalizza sulle proprietà strutturali, elettroniche, ottiche ed eccitoniche di due materiali bidimensionali, ossia il grafene il disolfuro di molibdeno (MoS2-1H), quest’ultimo un importante semiconduttore. Le proprietà di questi materiali sono diverse rispetto alla loro controparte massiva (bulk) grafite e MoS2-2H, e un loro confronto è stato preso in considerazione. Come metodo di indagine sono state scelte simulazioni quanto- meccaniche ab initio dei sistemi in esame, un approccio che, negli ultimi decenni, sta avendo un impatto sempre più importante sulla fisica, sulla chimica dello stato solido e sulla scienza dei materiali, promuovendo non solo una comprensione più profonda, ma anche la possibilità di contribuire in modo significativo alla progettazione di materiali per nuove tecnologie. Questo importante passo avanti è stato possibile grazie a: (i) una descrizione migliorata ed efficiente degli effetti elettronici a molti corpi (many-body) nella teoria del funzionale della densità (DFT), nonché lo sviluppo di metodi post-DFT per lo studio di proprietà specifiche; (ii) un’accurata implementazione di questi metodi in software altamente efficienti, stabili e versatili, capaci di sfruttare il potenziale delle architetture informatiche moderne. Tra i possibili software ab initio basati su DFT, abbiamo scelto il pacchetto di simulazione di Vienna ab initio VASP, considerato un gold standard per questo tipo di indagini. I risultati ottenuti per le varie proprietà di bulk e di superficie (bidimensionale) dei materiali scelti sono in ottimo accordo con dati ottenuti in precedenza, sia a livello teorico, sia sperimentale. Questo elaborato getta quindi le basi per futuri studi nel campo dei materiali 2D per comprendere, analizzare, ingegnerizzare nuovi materiali con proprietà desiderabili e per sviluppare nuove applicazioni degli stessi.
3

Boddison-Chouinard, Justin. "Fabricating van der Waals Heterostructures." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38511.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The isolation of single layer graphene in 2004 by Geim and Novoselov introduced a method that researchers could extend to other van der Waals materials. Interesting and new properties arise when we reduce a crystal to two dimensions where they are often different from their bulk counterpart. Due to the van der Waals bonding between layers, these single sheets of crystal can be combined and stacked with diferent sheets to create novel materials. With the goal to study the interesting physics associated to these stacks, the focus of this work is on the fabrication and characterization of van der Waals heterostructures. In this work, we first present a brief history of 2D materials, the fabrication of heterostructures, and the various tools used to characterize these materials. We then give a description of the custom-built instrument that was used to assemble various 2D heterostructures followed by the findings associated with the optimization of the cleanliness of the stack's interface and surface. Finally, we discuss the results related to the twisting of adjacent layers of stacked MoS2 and its relation to the interlayer coupling between said layers.
4

Tiller, Andrew R. "Spectra of Van der Waals complexes." Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333415.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mauro, Diego. "Electronic properties of Van der Waals heterostructures." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/10565/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L’interazione spin-orbita (SOI) nel grafene è attualmente oggetto di intensa ricerca grazie alla recente scoperta di una nuova classe di materiali chiamati isolanti topologici. Questi materiali, la cui esistenza è strettamente legata alla presenza di una forte SOI, sono caratterizzati dall’interessante proprietà di avere un bulk isolante ed allo stesso tempo superfici conduttrici. La scoperta teorica degli isolanti topologici la si deve ad un lavoro nato con l’intento di studiare l’influenza dell’interazione spin-orbita sulle proprietà del grafene. Poichè questa interazione nel grafene è però intrinsecamente troppo piccola, non è mai stato possibile effettuare verifiche sperimentali. Per questa ragione, vari lavori di ricerca hanno recentemente proposto tecniche volte ad aumentare questa interazione. Sebbene alcuni di questi studi abbiano mostrato un effettivo aumento dell’interazione spin-orbita rispetto al piccolo valore intrinseco, sfortunatamente hanno anche evidenziato una consistente riduzione della qualità del grafene. L’obbiettivo che ci si pone in questa tesi è di determinare se sia possibile aumentare l’interazione spin-orbita nel grafene preservandone allo stesso tempo le qualità. La soluzione proposta in questo lavoro si basa sull’utilizzo di due materiali semiconduttori, diselenio di tungsteno WSe2 e solfuro di molibdeno MoS2, utilizzati da substrato su cui sopra verrà posizionato il grafene formando così un’eterostruttura -nota anche di “van der Waal” (vdW)-. Il motivo di questa scelta è dovuto al fatto che questi materiali, appartenenti alla famiglia dei metalli di transizione dicalcogenuri (TMDS), mostrano una struttura reticolare simile a quella del grafene, rendendoli ideali per formare eterostrutture e ancora più importante, presentano una SOI estremamente grande. Sostanzialmente l’idea è quindi di sfruttare questa grande interazione spin-orbita del substrato per indurla nel grafene aumentandone così il suo piccolo valore intrinseco.
6

Klein, Andreas. "Energietransferprozesse in matrixisolierten van-der-Waals-Komplexen." [S.l. : s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=962344761.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Odeyemi, Tinuade A. "Numerical Modelling of van der Waals Fluids." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/22661.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Many problems in fluid mechanics and material sciences deal with liquid-vapour flows. In these flows, the ideal gas assumption is not accurate and the van der Waals equation of state is usually used. This equation of state is non-convex and causes the solution domain to have two hyperbolic regions separated by an elliptic region. Therefore, the governing equations of these flows have a mixed elliptic-hyperbolic nature. Numerical oscillations usually appear with standard finite-difference space discretization schemes, and they persist when the order of accuracy of the semi-discrete scheme is increased. In this study, we propose to use a Chebyshev pseudospectral method for solving the governing equations. A comparison of the results of this method with very high-order (up to tenth-order accurate) finite difference schemes is presented, which shows that the proposed method leads to a lower level of numerical oscillations than other high-order finite difference schemes, and also does not exhibit fast-traveling packages of short waves which are usually observed in high-order finite difference methods. The proposed method can thus successfully capture various complex regimes of waves and phase transitions in both elliptic and hyperbolic regimes
8

Marsden, Alexander J. "Van der Waals epitaxy in graphene heterostructures." Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/77193/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Graphene — a two-dimensional sheet of carbon atoms — has surged into recent interest with its host of remarkable properties and its ultimate thinness. However, graphene combined with other materials is starting to attract more attention. These heterostructures can be important for production routes, incorporating graphene into existing technologies, or for modifying its intrinsic properties. This thesis aims to examine the role of van der Waals epitaxy within these heterostructures. First, the graphene-copper interaction during chemical vapour deposition of graphene is investigated. Graphene is found to grow with a mismatch epitaxy of 8 relative to the [001] direction of the Cu(100) surface, despite a mismatch in symmetry and lattice parameter between two. Further, the electronic structure of both graphene and copper is unchanged by the interaction. This highlights the weak interaction between the two, owing to its van der Waals nature. Functionalised graphene is another important heterostructure, and is intensively studied for both graphene production routes and for altering graphene’s properties. Here, it is the change to the homogeneous graphene surface that makes it interesting for van der Waals epitaxy. The effect of functionalisation of graphene with atomic oxygen and nitrogen is presented next. In both cases, only small amounts of functionalisation ( 5 at%) is sufficient to significantly deteriorate the -band structure of the graphene through localisation. For small amounts of nitrogen functionalisation, and greater amounts of oxygen functionalisation, extended topological defects are formed in the graphene lattice. Unlike epoxide oxygen groups, these disruptions to the pristine graphene are found to be irreversible by annealing. Next, the interaction between graphene and the organic semiconducting molecule vanadyl-phthalocyanine (VOPc) is presented. As a result of the van der Waals nature of the graphene surface, VOPc molecules can form crystals microns in size when deposited onto a substrate with an elevated temperature of 155 C; at ambient temperatures, the crystals are only tens of nanometres across. In contrast, the functionalised graphene oxide surface prevents large crystal growth, even at elevated temperatures, because surface functionalities inhibit molecule diffusion. This highlights the importance of graphene as a substrate for molecular crystal growth, even when the growth is not epitaxial. Finally, the supramolecular assembly of trimesic acid (TMA) and terephthalic acid (TPA) is presented. Despite their chemical similarity they display different behaviour as they transition from monolayers to three-dimensional structures: for TMA, the epitaxial chicken wire structure seen at a monolayer templates up through the layers as molecules stack, until a thickness of 20 nm, when random in-plane orientations appear; on the other hand, TPA forms a brickwork structure at the monolayer, which quickly transitions to fibre-like crystals with a bulk structure for the thin films. However, the TPA orientation is still determined by the epitaxy with the graphene substrate, although this is significantly weaker than for TMA.
9

Connelly, James Patrick. "Microwave studies of Van der Waals complexes." Thesis, University of Oxford, 1993. http://ora.ox.ac.uk/objects/uuid:3865eb1d-d288-44c9-8d42-84f7ff2c0608.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis describes the commissioning and development of a pulsed supersonic nozzle, Fourier-transform microwave spectrometer and its application to the study of several weakly bound van der Waals complexes. A pulsed supersonic expansion, Fourier-transform microwave spectrometer based on the Flygare design with a number of modifications has been constructed with an operating range of 6-18 GHz. A homodyne detection circuit mixing signals to modulus values between dc and 1 MHz is used, requiring two measurements to determine absolute transition frequencies. Transition frequencies are measured from the power spectrum by determining the first derivative zero crossing point in a least squares fitting procedure. Semiautomation of many of the spectrometer operations has been achieved allowing unattended data collection over scans of up to 300 MHz. The microwave spectrum of Ar2-OCS and Ar2-OC34S has been observed and analysed using conventional Watson S reduction hamiltonian parameters. Effective structural parameters are derived and used in a harmonic force field analysis, based on the centrifugal distortion constants, to compare the trimer interations with a model based on the sum of dimer interactions. A series of complexes containing the nitrogen molecule undergoing tunnelling motions have been studied. Hyperfine matrix elements for the first order nuclear quadrupole interaction are derived for the coupled identical nuclei case appropriate to the rapid tunnelling motions observed. The microwave spectrum of N2-OCS is described. Tunnelling and nuclear spin statistical effects for two symmetry states are observed arising from the interchange of nitrogen nuclei. Rotational and quadrupole constants are derived; an accidental near degeneracy of two rotational levels allows the off-diagonal quadrupole coupling constant to be determined from second order effects. A tunnelling hamiltonian fitting the quadrupole coupling constants to an angular potential has been used to calculate the tunnelling frequency and barrier to N2 rotation. The microwave spectrum of N2-O3 and a preliminary spectrum of N2-SO3 have been observed. Rotation-inversion motions of the O3 and SO2 moieties must be considered in addition to the N2 tunnelling to fit the spectrum. Tunnelling frequencies for the O3/SO2 and geared motions with the N2 are derived as well as structural parameters. Modifications for production of refractory molecules and complexes by laser ablation have been made. A modified nozzle employing rods of material is used with the ablation process taking place in the nozzle throat. Modifications to obtain an expansion along the axis of the microwave cavity employ a hemispherical Fabry-Perot cavity configuration. The system has been tested on a number of diatomic molecules including PbS and CuCl.
10

Wright, Nicholas J. "Bound states of Van der Waals trimers." Thesis, Durham University, 1998. http://etheses.dur.ac.uk/5048/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A method for calculating the energy levels and wave functions of floppy tri- atomic systems such as rare-gas trimers has been developed. It is based upon a potential-optimized discrete variable representation and takes into account the wide-amplitude vibrations that occur in such systems. The quadrature error that occurs in DVR calculations is analysed and a method of correction implemented. The diagonalisation procedure is based upon a combination of successive diagonalisation and truncation and a Lanczos diagonaliser. Using this method the wave functions of the Ar(_3) Van der Waals trimer have been calculated. The wave functions for the low-lying states show very regular behaviour. Above the barrier to linearity, most of the wave functions are irregular but some have simple nodal patterns that suggest localization along periodic orbits. In addition to the "horseshoe" states previously described for H(^+)(_3), localized features corresponding to symmetric and antisym metric stretching vibrations around a linear configuration have been identified. The different localized modes can be combined to form more complex states in a manner analogous to normal modes. A preliminary study of the rotational states of Ar(_3) has also been performed. The rotational constants for the low lying states of Ar(_3) reflect the increasing average size of Ar(_3) with increasing vibrational excitation. The rotational constants are obtained from two methods, expectation values and energy level differences. The results for the levels above the barrier to isomerisation reveal that the simple models used for obtaining the rotational constants are no longer valid and indicate that a more sophisticated treatment is necessary.

Книги з теми "Aimants van der Waals":

1

Parsegian, V. Adrian. Van der Waals forces. New York: Cambridge University Press, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Holwill, Matthew. Nanomechanics in van der Waals Heterostructures. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18529-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

L, Neal Brian, Lenhoff Abraham M, and United States. National Aeronautics and Space Administration., eds. Van der Waals interactions involving proteins. New York: Biophysical Society, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kipnis, Aleksandr I͡Akovlevich. Van der Waals and molecular sciences. Oxford: Clarendon Press, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kipnis, Aleksandr I︠A︡kovlevich. Van der Waals and molecular science. Oxford: Clarendon Press, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Barash, I͡U S. Sily Van-der-Vaalʹsa. Moskva: "Nauka," Glav. red. fiziko-matematicheskoĭ lit-ry, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Halberstadt, Nadine, and Kenneth C. Janda, eds. Dynamics of Polyatomic Van der Waals Complexes. New York, NY: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-8009-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Halberstadt, Nadine. Dynamics of Polyatomic Van der Waals Complexes. Boston, MA: Springer US, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

NATO Advanced Research Workshop on Dynamics of Polyatomic Van der Waals Complexes (1989 Castéra-Verduzan, France). Dynamics of polyatomic Van der Waals complexes. New York: Plenum Press, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

M, Smirnov B. Cluster ions and Van der Waals molecules. Philadelphia: Gordon and Breach Science Publishers, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Aimants van der Waals":

1

Tsuchiya, Taku. "Van der Waals Force." In Encyclopedia of Earth Sciences Series, 1–2. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-39193-9_329-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tsuchiya, Taku. "Van der Waals Force." In Encyclopedia of Earth Sciences Series, 1473–74. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-39312-4_329.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bruylants, Gilles. "Van Der Waals Forces." In Encyclopedia of Astrobiology, 1728–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1647.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhang, Xiang-Jun. "Van der Waals Forces." In Encyclopedia of Tribology, 3945–47. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_457.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Arndt, T. "Van-der-Waals-Kräfte." In Springer Reference Medizin, 2429–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-48986-4_3207.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gooch, Jan W. "Van der Waals Forces." In Encyclopedic Dictionary of Polymers, 788. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_12442.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bruylants, Gilles. "Van der Waals Forces." In Encyclopedia of Astrobiology, 2583–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_1647.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tadros, Tharwat. "Van der Waals Attraction." In Encyclopedia of Colloid and Interface Science, 1395–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-20665-8_159.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Arndt, T. "Van-der-Waals-Kräfte." In Lexikon der Medizinischen Laboratoriumsdiagnostik, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49054-9_3207-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Thompson, M. L. "Van Der Waals Complexes." In Inorganic Reactions and Methods, 196. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145227.ch142.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Aimants van der Waals":

1

CAPOZZIELLO, S., V. F. CARDONE, S. CARLONI, and A. TROISI. "VAN DER WAALS QUINTESSENCE." In Proceedings of the International Conference. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702999_0038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Neundorf, Dörte. "Van-der-Waals-interaction constant." In The 13th international conference on spectral line shapes. AIP, 1997. http://dx.doi.org/10.1063/1.51852.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Davoyan, Artur R. "All-van der Waals metadevices." In Active Photonic Platforms (APP) 2023, edited by Ganapathi S. Subramania and Stavroula Foteinopoulou. SPIE, 2023. http://dx.doi.org/10.1117/12.2678158.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Liu, Chang-Hua. "van der Waals materials integrated nanophotonics." In Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XVIII, edited by Takuo Tanaka and Din Ping Tsai. SPIE, 2020. http://dx.doi.org/10.1117/12.2567598.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shtabovenko, Vladyslav. "Van der Waals forces in pNRQED." In XITH CONFERENCE ON QUARK CONFINEMENT AND HADRON SPECTRUM. AIP Publishing LLC, 2016. http://dx.doi.org/10.1063/1.4938701.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Majumdar, Arka. "Van der Waals material integrated nanophotonics." In 2D Photonic Materials and Devices IV, edited by Arka Majumdar, Carlos M. Torres, and Hui Deng. SPIE, 2021. http://dx.doi.org/10.1117/12.2581864.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Davoyan, Artur. "Nanophotonics with Van der Waals metastructures." In Active Photonic Platforms (APP) 2022, edited by Ganapathi S. Subramania and Stavroula Foteinopoulou. SPIE, 2022. http://dx.doi.org/10.1117/12.2632814.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Heinz, Tony F. "Optical Properties of van der Waals Heterostructures." In Laser Science. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/ls.2015.lw4h.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Roy, T., M. Tosun, M. Amani, D. H. Lien, D. Kiriya, P. Zhao, S. Desai, A. Sachid, S. R. Madhvapathy, and A. Javey. "Van der Waals heterostructures for tunnel transistors." In 2015 Fourth Berkeley Symposium on Energy Efficient Electronic Systems (E3S). IEEE, 2015. http://dx.doi.org/10.1109/e3s.2015.7336791.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Astapenko, V. A., A. V. Demura, G. V. Demchenko, B. V. Potapkin, A. V. Scherbinin, S. Ya Umanskii, A. V. Zaitsevskii, John Lewis, and Adriana Predoi-Cross. "Estimation of Van der Waals Broadening Coefficients." In 20TH INTERNATIONAL CONFERENCE ON SPECTRAL LINE SHAPES. AIP, 2010. http://dx.doi.org/10.1063/1.3517579.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Aimants van der Waals":

1

Klots, C. E. (Physics and chemistry of van der Waals particles). Office of Scientific and Technical Information (OSTI), October 1990. http://dx.doi.org/10.2172/6608231.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mak, Kin Fai. Understanding Topological Pseudospin Transport in Van Der Waals' Materials. Office of Scientific and Technical Information (OSTI), May 2021. http://dx.doi.org/10.2172/1782672.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kim, Philip. Nano Electronics on Atomically Controlled van der Waals Quantum Heterostructures. Fort Belvoir, VA: Defense Technical Information Center, March 2015. http://dx.doi.org/10.21236/ada616377.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sandler, S. I. The generalized van der Waals theory of pure fluids and mixtures. Office of Scientific and Technical Information (OSTI), June 1990. http://dx.doi.org/10.2172/6382645.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sandler, S. I. (The generalized van der Waals theory of pure fluids and mixtures). Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/5610422.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

O'Hara, D. J. Molecular Beam Epitaxy and High-Pressure Studies of van der Waals Magnets. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1562380.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Menezes, W. J. C., and M. B. Knickelbein. Metal cluster-rare gas van der Waals complexes: Microscopic models of physisorption. Office of Scientific and Technical Information (OSTI), March 1994. http://dx.doi.org/10.2172/10132910.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Martinez Milian, Luis. Manipulation of the magnetic properties of van der Waals materials through external stimuli. Office of Scientific and Technical Information (OSTI), May 2024. http://dx.doi.org/10.2172/2350595.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gwo, Dz-Hung. Tunable far infrared laser spectroscopy of van der Waals bonds: Ar-NH sub 3. Office of Scientific and Technical Information (OSTI), November 1989. http://dx.doi.org/10.2172/7188608.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

French, Roger H., Nicole F. Steinmetz, and Yingfang Ma. Long Range van der Waals - London Dispersion Interactions For Biomolecular and Inorganic Nanoscale Assembly. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1431216.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії