Добірка наукової літератури з теми "Adsorbeur"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Adsorbeur".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Adsorbeur":

1

Agustiani, Tia, Asep Saefumillah, and Hanies Ambarsari. "Studi Pemanfaatan Limbah Biomassa sebagai Raw Material Adsorben SiC dalam Penurunan Konsentrasi Amonia sebagai Parameter Bau dalam Air Limbah." Jurnal Teknologi Lingkungan 22, no. 2 (July 31, 2021): 190–98. http://dx.doi.org/10.29122/jtl.v22i2.4838.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
ABSTRACT Biomass as raw material is one solution that can be developed in the management of agricultural, plantation, and industrial waste. The utilization of biomass-derived from waste can help reduce pollution and environmental pollution. This research was conducted to make Silicon Carbide (SiC) adsorbent from wood biomass using Sengon sawdust as a source of carbon and non-wood biomass, namely coconut husk, as a source of silica. SiC adsorbent is applied for ammonium adsorption, which has implications on reducing ammonia gas from wastewater, reducing odor. The research methods included isolation of silica and carbon, the production of SiC adsorbent by magnesiothermic reduction, and the characterization of SiC adsorbents with XRD and SEM-EDX. Adsorption capacities of SiC to ammonium were determined according to SiO2:C adsorbent ratios (1:3 and 5:3), adsorbent mass variations, and ammonium concentrations in simulated wastewater using the spectrophotometric method. The results showed that SiC could be used as an adsorbent because there are pores on the surface structure. The optimum SiO2:C adsorbent ratio in adsorbing ammonium was 1:3 (SiC 136) with 45% adsorbed ammonium and an adsorption capacity of 0.47 mg/g. The optimum adsorbent mass in adsorbing ammonium was 0.1 g with 41.77% adsorbed ammonium. The optimum concentration of ammonium in simulated wastewater for ammonium adsorption was 20 mg/L with 46.25% adsorbed ammonium. The adsorption isotherm pattern during the ammonium adsorption process follows the Freundlich isotherm, which means that the adsorption process occurs physically. Keywords: adsorbent, adsorption, ammonia, biomass, coconut husk, SiC ABSTRAK Biomassa sebagai raw material merupakan salah satu solusi yang dapat dikembangkan dalam pengelolaan limbah hasil pertanian, perkebunan, dan industri. Pemanfaatan biomassa yang berasal dari limbah dapat membantu mengurangi tingkat polusi dan pencemaran lingkungan. Penelitian ini dilakukan untuk membuat adsorben Silikon Carbida (SiC) dari biomassa kayu yaitu memanfaatkan serbuk gergaji kayu Sengon sebagai sumber karbon dan biomassa non kayu yaitu sabut kelapa sebagai sumber silika. Adsorben SiC diaplikasikan dalam penjerapan amonium yang berimplikasi pada potensi penurunan gas amonia dari air limbah sehingga adsorben SiC berpotensi mengurangi bau dalam air limbah. Metode penelitian meliputi isolasi silika, isolasi karbon, pembuatan adsorben SiC secara reduksi magnesiotermik dan karakterisasi adsorben SiC dengan XRD dan SEM-EDX. Penentuan daya adsorpsi SiC sebagai adsorben terhadap variasi rasio adsorben SiO2:C (1:3 dan 5:3), variasi massa adsorben, variasi konsentrasi limbah simulasi menggunakan metode spektrofotometri. Hasil penelitian menunjukkan bahwa SiC dapat digunakan sebagai adsorben karena terdapat pori-pori pada struktur permukaan. Variasi rasio adsorben SiO2:C optimum dalam mengadsorpsi amonium ialah SiC 136 dengan amonium teradsorpsi sebanyak 45% dan kapasitas adsorpsi sebesar 0,47 mg/g. Massa adsorben optimum dalam mengadsorpsi amonium ialah 0,1 g dengan amonium teradsorpsi 41,77%. Konsentrasi optimum limbah simulasi dalam adsorpsi amonium 20 mg/L dengan amonium teradsorpsi 46,25%. Pola isoterm adsorpsi selama proses adsorpsi amonium mengikuti isoterm Freundlich, yang berarti proses adsorpsi cenderung terjadi secara fisika. Kata kunci: adsorben, adsorpsi, amonia, biomassa, sabut kelapa, SiC
2

Rybarchuk, O. V., V. I. Dudarev, and G. N. Dudareva. "Adsorptive extraction of chromium (VI) ions from corrosive aqueous solutions." Proceedings of Universities. Applied Chemistry and Biotechnology 11, no. 1 (April 6, 2021): 159–64. http://dx.doi.org/10.21285/2227-2925-2021-11-1-159-164.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Chromium is one of the most effective metals used for protection and decorative coating of various products. However, chrome plating typically occurs in a strongly acid medium, thus involving the formation of dangerous and corrosive solutions. In this article, we investigate the possibility of removing chromium from such solutions using carbon adsorbents, which allow for almost complete extraction of the metal from production solutions up to a residual content of no more than 0.05 mg/dm3. A significant advantage of carbon adsorbents is their ability to extract chromium (VI) ions without chromium reduction to the trivalent state. It was established that the sorbent under study exhibits the maximum sorption capacity in a strongly acidic medium at pH = 1.2–2.5. This medium causes the formation of a Cr2O7 2- dimer in the solution, which is an adsorbed ion. A scheme of a production unit for chromium adsorption from solutions of electrochemical production was proposed. The choice of an adsorber with a fluidized bed was determined by the maximal interaction of the flow with the adsorbent in such reactors. The adsorber design in the form of a cylindrical column with tapered upper and lower parts assumes installation of distribution grids inside the apparatus. It is proposed to forward the chromium-containing solution of electrochemical production remained after the averaging tank directly to the adsorber with the loading of the carbon adsorbent. In order to ensure the continuity of the extraction mode, it is necessary to apply two parallel working adsorbers, whose technical parameters were calculated to be as follows: the diameter of 1.2 m; the height of 7.5 m; the loading volume of 5.9 m3; and the loading height of 6 m. The calculated process parameters were determined: the linear flow rate along the walls of the adsorber – 12.75 m/h; the duration of the apparatus operation before coal regeneration – 21 days. The proposed scheme can be recommended for recycling water supply.
3

Titova, Liubov Mikhailovna, and Diana Zamerovna Naurzgalieva. "Improving the design of devices with random packing due to the uniform distribution of the gas flow." Oil and gas technologies and environmental safety 2023, no. 4 (December 4, 2023): 540–61. http://dx.doi.org/10.24143/1812-9498-2023-4-54-61.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The modern technical level of solving the problem of efficient operation of adsorbers due to the uniform distri-bution of gas inside the apparatus is considered in detail and ways to improve the adsorbers are proposed. The disadvantages of modern designs of adsorbers and the areas of their use are noted. A brief critical analysis of the designs of devices for uniform loading of adsorbent is given. Based on the analysis and experimental studies, the design of the apparatus has been developed, which ensures a uniform distribution of gas flows inside the apparatus. The objective of the experimental studies was to evaluate the characteristics of the developed design of the apparatus for gas adsorption from gas mixtures. Simplicity of dense uniform loading of adsorbent, increase of process efficiency, low hydraulic resistance of the device are provided. To solve these tasks, an experimental setup has been developed to study the efficiency of the adsorption process using the example of adsorption silica gel of water vapor from a mixture with air. It has been experimentally confirmed that the device has competitive advantages. The design provides a tightly packed adsorbent layer, without voids, which means that the uniformity of the load layer in terms of wear and moisture is ensured. In the design of the adsorber, the possibility of entrainment of adsorbent particles during reverse purging is excluded. The design allows you to flexibly change the performance. The total cross-sectional area of the adsorbent increases in proportion to the vertically number of adsorption baskets. An increase in the number of cycles of the adsorption process will entail an increase in the adsorption capacity of the adsorbent. The design of the device helps to reduce energy consumption, reduce capital costs and increase the productivity of the adsorption plant. The introduction of the adsorber into the technology will ensure reliable operation, energy efficiency and high quality of the process.
4

Al-Hemiri, Adil A., Mohammed A. Atiya, and Farkad A. Lattieff. "Study of Dynamic Sorption in Adsorption Refrigeration Cycle." Journal of Engineering 20, no. 07 (June 19, 2023): 158–73. http://dx.doi.org/10.31026/j.eng.2014.07.11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper shows the characteristics of temperature and adsorbed (water vapor) mass rate distribution in the adsorber unit which is the key part to any adsorption refrigeration system. The temperature profiles of adsorption/desorption phases (Dynamic Sorption) are measured experimentally under the operating conditions of 90oC hot water temperature, 30oC cooling water temperature, 35oC adsorption temperature and cycle time of 40 min. Based on the temperature profiles, The mass transfer equations for the annulus adsorbent bed are solved to obtain the distribution of adsorption velocity and adsorbate concentration using non-equilibriummodel. The relation between the adsorption velocity with time is investigated during the process of adsorption. The practical cycles of adsorption and desorption were stated dependent on the variables obtained from the experiment and equations calculations.The results show that the adsorption velocity is diminished after a period of 20 min. The maximum value of the adsorbed water vapor concentration on silica gel is 0.12 kg water/kg adsorbent (adsorption phase) and the minimum value of the water content into silica gel is 0.04 kg water/kg adsorbent (desorption phase) producing a dynamic sorption of kg water/kg adsorbent.
5

Strizhenov, Evgeny M., Sergey S. Chugaev, Ilya E. Men’shchikov, Andrey V. Shkolin, and Anatoly A. Zherdev. "Heat and Mass Transfer in an Adsorbed Natural Gas Storage System Filled with Monolithic Carbon Adsorbent during Circulating Gas Charging." Nanomaterials 11, no. 12 (December 2, 2021): 3274. http://dx.doi.org/10.3390/nano11123274.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Adsorbed natural gas (ANG) technology is a promising alternative to traditional compressed (CNG) and liquefied (LNG) natural gas systems. Nevertheless, the energy efficiency and storage capacity of an ANG system strongly depends on the thermal management of its inner volume because of significant heat effects occurring during adsorption/desorption processes. In the present work, a prototype of a circulating charging system for an ANG storage tank filled with a monolithic nanoporous carbon adsorbent was studied experimentally under isobaric conditions (0.5–3.5 MPa) at a constant volumetric flow rate (8–18 m3/h) or flow mode (Reynolds number at the adsorber inlet from 100,000 to 220,000). The study of the thermal state of the monolithic adsorbent layer and internal heat exchange processes during the circulating charging of an adsorbed natural gas storage system was carried out. The correlation between the gas flow mode, the dynamic gas flow temperature, and the heat transfer coefficient between the gas and adsorbent was determined. A one-dimensional mathematical model of the circulating low-temperature charging process was developed, the results of which correspond to the experimental measurements.
6

Nour, A., H. Tazerouti, and Y. Ouragh. "Identification of Parameters W0, n, and D of the Dubinin–Radushkevich Equation." International Journal of Mechanical Engineering Education 31, no. 3 (July 2003): 245–57. http://dx.doi.org/10.7227/ijmee.31.3.6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper considers a cooling system for a thermal engine using heat from exhaust gas. This system uses a physical adsorption process of solid—gas (active carbon and ammonia). An adsorber tubular element of real scale is submitted to heat flux by electrical air heating, simulating exhaust gas. Temperatures and adsorbed mass are measured. Desorption and adsorption phenomena are described by the Dubinin—Radushkevich model equation, m = W0ρ( T) exp[– D( TIn( Ps( T)/ P)) n], where W0, n, and D are parameters characterising the adsorbent—adsorbate couple. These three parameters can be identified from a simple mite method (using data and models) characterising the adsorbent—adsorbate couple chosen.
7

Rokhati, Nur, Aji Prasetyaningrum, Nur ‘Aini Hamada, Adi Lamda Cahyo Utomo, Hery Budiarto Kurniawan, and Imam Husnan Nugroho. "PEMANFAATAN TONGKOL JAGUNG SEBAGAI ADSORBEN LIMBAH LOGAM BERAT." Jurnal Inovasi Teknik Kimia 6, no. 2 (October 29, 2021): 89. http://dx.doi.org/10.31942/inteka.v6i2.5508.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Logam berat adalah istilah untuk logam-logam seperti Cd, Cr, Cu, Hg, Ni, Pb, dan Zn yang sering berhubungan dengan polusi dan toksisitas. Adsorpsi merupakan metode yang paling sering digunakan untuk menghilangkan ion logam. Tongkol jagung berpotensi menjadi adsorben karena kadar selulosanya yang tinggi. Penelitian ini bertujuan untuk mengkaji performa tongkol jagung sebagai adsorben ion Cr(VI) dan Cd(II). Penelitian dimulai dengan perlakuan awal adsorben dan dilanjutkan dengan proses adsorbsi. Kadar logam berat dihitung dengan metode spektrofotometri. Nilai efisiensi penyerapan Cd(II) meningkat dengan adanya perlakuan awal menggunakan suhu tinggi. Jumlah logam yang terserap semakin banyak seiring dengan lamanya waktu adsorpsi dengan efisiensi penyerapan sebesar 94,76% untuk Cr(VI) dan 83,96% untuk Cd(II). Penambahan jumlah adsorben tongkol jagung juga meningkatkan efisiensi penyerapan logam kromium hingga 82,33% dan kadmium sebesar 83,98%. Sedangkan jumlah ion Cr(VI) yang terserap tidak linear dengan penambahan kecepatan pengadukan. Berdasarkan hasil penelitian, dapat disimpulkan bahwa tongkol jagung berpotensi digunakan sebagai adsorben ion logam berat dengan efisiensi di atas 80%. Kata kunci: adsorpsi, kadmium, kromium, tongkol jagung AbstractHeavy metal is a term for metals such as Cd, Cr, Cu, Hg, Ni, Pb, and Zn, often associated with pollution and toxicity. Adsorption is the most commonly used method to remove metal ions. Corncob have the potential to be an adsorbent because of their high cellulose content. This study aimed to examine the performance of corncob as an adsorbent of Cr(VI) and Cd(II) ions. The study began with the pretreatment of the adsorbent and continued with the adsorption process. Heavy metal concentration was calculated by the spectrophotometric method. The value of the absorption efficiency of Cd(II) increased with the pretreatment using high temperature. The amount of metal adsorbed increased with the length of adsorption time with the absorption efficiency of 94.76% for Cr(VI) and 83.96% for Cd(II). The addition of corncob adsorbent also increased the efficiency of chromium metal absorption up to 82.33% and cadmium by 83.98%. Meanwhile, the amount of Cr(VI) ion adsorbed was not linear with increasing stirring speed. Based on the results, it can be concluded that corncob could be used as heavy metal ion adsorbents with an efficiency above 80%. Keywords: adsorption, cadmium, chromium, corn cob
8

Irdhawati, Irdhawati, Alling Andini, and Made Arsa. "DAYA SERAP KULIT KACANG TANAH TERAKTIVASI ASAM BASA DALAM MENYERAP ION FOSFAT SECARA BATH DENGAN METODE BATH." Jurnal Kimia Riset 1, no. 1 (August 29, 2016): 52. http://dx.doi.org/10.20473/jkr.v1i1.2443.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstrakKulit kacang tanah digunakan sebagai adsorben untuk menyerap ion fosfat dalam larutan. Sebelum digunakan sebagai adsorben, kulit kacang tanah dicuci, dikeringkan, dihaluskan menggunakan blender dan diayak dengan ukuran partikel ≤ 100 mesh. Serbuk halus diaktifkan dengan asam (H2SO4) dan basa (NaOH) pada berbagai konsentrasi. Selanjutnya, adsorben dengan dan tanpa aktivasi digunakan untuk menentukan kadar fosfat yang terserap secara optimum. Parameter adsorpsi yang digunakan adalah waktu kontak dan kapasitas adsorpsi. Kapasitas adsorpsi diukur dengan mereaksikan ion fosfat dengan adsorben, dan sisa analit dalam larutan ditambahkan dengan amonium molibdat membentuk senyawa kompleks amonium fosfomolibdat berwarna biru dalam larutan asam. Konsentrasi senyawa kompleks ditentukan dengan metode spektrofotometri UV-Visible.Hasil dalam proses aktivasi menunjukkan konsentrasi optimum asam adalah 0,05 M, dan basa sebesar 0,5 M. Waktu kontak optimum diperoleh 45 menit untuk adsorben tanpa aktivasi dan aktivasi basa, sedangkan untuk aktivasi asam 30 menit. Kapasitas adsorpsi optimum berturut-turut adalah 8,5 mg/g; 8,8 mg/g, dan 10,4 mg/g menggunakan adsorben tanpa aktivasi, teraktivasi asam dan teraktivasi basa. Adsorben teraktivasi basa memiliki kapasitas adsorpsi tertinggi dibandingkan adsorben tanpa aktivasi dan teraktivasi asam. Kata kunci: kulit kacang tanah, ion fosfat, adsorpsi, amonium fosfomolibdat AbstractPeanut shell was used as adsorbent to adsorb phosphate ion in solution. Before using as adsorbent, the peanut shell was washed, dried, mashed and sifted with particle size <100 mesh. The fine powder was activated by acid (H2SO4) and base (NaOH) with various concentrations. Furthermore, the adsorbent with and without activation was used to determine the optimum phosphate concentration that can be adsorbed. The parameters adsorption such as contact time and adsorption capacity, were examined. The adsorption capacity was measured by reacting the phosphate ion with adsorbent, and the rest of analyte in the solution reacted with ammonium molybdate formed ammonium phospho molybdate complex compound whose blue color in acidic solution. The concentration of complex compound can be determined by UV-Visible spectrophotometry method. The results in activation process showed the optimum concentration of acid is 0.05 M, and base is 0.5 M. The optimum contact time obtained 45 minutes for adsorbent without and base activated, while 30 minutes for acid activated. The optimum adsorption capacity is 8.5 mg/g, 8.8 mg/g, and 10.4 mg/g using adsorbent without, acid, and base activated, respectively. Adsorbent in base activated has the highest adsorption capacity compared with no and acid activated. Keywords: peanut shell, phosphate ion, adsorption, ammonium phospho molybdate
9

Amne, Dinda Prihatini Fitri, Hery Gunawan Togatorop, Putri Sintiani, and Lisnawaty Simatupang. "Penjernihan Minyak Jelantah menggunakan Adsorben Kulit Durian (Durio zibethinus) Teraktivasi Kalium Hidroksida." Jurnal Sains dan Terapan Kimia 14, no. 1 (February 2, 2020): 29. http://dx.doi.org/10.20527/jstk.v14i1.6626.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Minyak jelantah merupakan sisa penggunaan bahan pangan, jika di konsumsi akan berbahaya bagi kesehatan. Kegiatan penelitian ini bertujuan untuk menjernihkan minyak jelantah menggunakan adsorben kitozenus yaitu dari limbah kulit durian. Metode penelitian secara laboratorium dengan metode fisika dan kimia. Hasil penelitian dilihat dari kualitas minyak jelantah setelah dijernihkan, yaitu dengan mengetahui bilangan iod dan perubahan warna. Proses pembuatan adsorben kitozenus menggunakan limbah kulit durian dengan diaktivasi KOH variasi konsentrasi 25%, 27% dan 30%. Yang sebelumnya adsorben melalui tahap karbonisasi dan setelahnya dilanjutkan dengan tahap kalsinasi pada suhu 900oC. Adsorben kitozenus yang telah diperoleh kemudian dikarakterisasi dengan uji FTIR, SEM dan XRD. Hasil FTIR menunjukkan pada sampel adsorben Kitozenus dapat diketahui bahwa pada adsorben Kitozenus tampak pola yang hampir sama, diperoleh dengan variasi konsentrasi 30% puncak serapan pada bilangan gelombang 1033,85 cm-1 yang merupakan vibrasi ulur asimetri dari gugus Si-O pada gugus siloksan (Si-O-Si). Variasi konsentrasi alkalis (KOH) 25%, 27%, dan 30% untuk aktivasi adsorben kitozenus menunjukkan semakin tinggi konsentrasi KOH (Alkalis) maka puncak serapan untuk Si-O pada adsorben semakin rendah. Hal ini menunjukkan bahwa semakin banyak silaka yang lepas dari adsorben (proses desilikalisasi). Hasil uji SEM menunjukkan dengan konsentrasi 30% lebih baik diantara semua variasi yaitu terlihat bahwa adsorben kitozenus memiliki rongga-rongga pori yang banyak dan tampak lebih jelas. Hasil bilangan iod yang diperoleh dari ketiga variasi yaitu 6,143 (25%), 5,314 (27%) dan 7,906 (30%). dan menunjukkan perubahan warna setelah penjernihan menggunakan adsorben kitozenus.Kata Kunci: adsorben, bilangan iod, minyak jelantah.Used cooking oil is the rest of the use of food, if consumed will be harmful to health. The purpose of this research is to purify used cooking oil using adsorbent kitozenus, which is from durian skin waste. Laboratory research methods using physical and chemical methods. The results of the study are seen from the quality of used cooking oil after being cleared, namely by knowing iodine numbers and color changes. The process of making kitozenus adsorbent uses durian skin waste by activating KOH variations in concentrations of 25%, 27% and 30%. The previous one was adsorbed through the carbonization stage and after that it was continued with the calcination stage at 900oC. The obtained kitozenus adsorbent was then characterized by FTIR, SEM and XRD tests. FTIR results showed that in the Kitozenus adsorbent sample it can be seen that on the Kitozenus adsorbent there was a similar pattern, obtained by varying the concentration of 30% absorption peak at wave number 1033.85 cm-1 which is the asymmetric stretching vibration of the Si-O group in the siloxane group ( Si-O-Si). The variations in alkaline concentration (KOH) of 25%, 27%, and 30% for activation of the kitozenus adsorbent showed that the higher the concentration of KOH (Alkalis), the higher the absorption peak for Si-O on the adsorbent. This shows that more and more silaka are separated from the adsorbent (desilicalization process). The SEM test results showed that with a concentration of 30% better among all variations, it was seen that the adsorbent kitozenus had many pores. The iodine numbers obtained from the three variations were 6,143 (25%), 5,314 (27%) and 7,906 (30%) and showed color changes after purification using the kitozenus adsorbent.Keywords: adsorbent, iodine number, used cooking oil
10

Allouache, Nadia, Rachid Bennacer, Salahs Chikh, A. Al Mers, and N. Mimouni. "Modeling of Heat and Mass Transfer in an Annular Adsorber for Solar Cooling Machine: Performance Coefficients." Defect and Diffusion Forum 312-315 (April 2011): 641–46. http://dx.doi.org/10.4028/www.scientific.net/ddf.312-315.641.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The primary aim of this study is to simulate numerically the heat and mass transfer characteristics in the annular adsorber that is the most important component of the solar cooling machine, and to evaluate the solar and thermal coefficients of performance as an optimisation criterion of the system, for different adsorbent/adsorbate pairs. The porous medium constituted of the adsorbent/adsorbate is contained in the annular space and it is heated by solar energy. A general model equation is used for modeling the transient heat and mass transfer. The adsorption phenomenon is described by using different models of solid-adsorbate equilibrium. Effects of the key parameters on the adsorbed quantity, the generating temperature, the performance coefficients and thus on the system performances are investigated.

Дисертації з теми "Adsorbeur":

1

Soudani, Allaoua. "Conception et développement d’un processus innovant pour l’intensification des transferts de chaleur et de masse dans un adsorbeur de machine frigorifique à adsorption et intégration des prototypes expérimentaux dans une plateforme d'émulation de la Grande Région." Electronic Thesis or Diss., Université de Lorraine, 2022. http://www.theses.fr/2022LORR0001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le dérèglement climatique auquel nous assistons nous oblige à repenser nos unités de production d’énergie. En 2050 le besoin en froid dans le monde engloutira 37% de la production mondiale d’électricité et ajoutera plus de 2 milliards de tonnes de CO₂ par an dans l’atmosphère. Les machines frigorifiques à adsorption sont une alternative avec un grand potentiel mais la technologie de l’adsorption est encore mal comprise. Cette thèse apporte une nouvelle approche par l’analyse fréquentielle des dynamiques de transfert de chaleur et de masse au sein du matériau d’un adsorbeur et pose les premiers éléments de construction d’un modèle numérique du phénomène d’adsorption dans un grain de silica gel. La construction d’un banc prototype pour les tests des futurs adsorbeurs a permis d’identifier les problèmes complexes lors des couplages entre adsorbeur, évaporateur et condenseur. L’intégration par émulation d’une machine prototype dans le réseau de la grande région RCC|Kn a contribué à approfondir le futur modèle numérique global dans toutes ses dimensions. L’interconnexion des plateformes de la grande région a posé les premiers jalons importants du réseau RCC|Kn. Le test de plus de 60 h a démontré une grande stabilité tant dans les infrastructures matérielles que logicielles. Ce nouveau réseau apporte de nouvelles perspectives dans divers domaines tels que l’analyse des données, l’apprentissage automatique, les centres de données, les jumeaux numériques ou l’intégration de flux de données externes
The climate change we are witnessing is forcing us to rethink our energy production units. By 2050 the world's need for cooling will consume 37% of the world's electricity production and add more than 2 billion tonnes of CO₂ per year to the atmosphere. Adsorption refrigeration machines are an alternative with great potential but the adsorption technology is still poorly understood. This thesis provides a new approach to the frequency analysis of heat and mass transfer dynamics within the material of an adsorber and lays the foundation for the construction of a numerical model of the adsorption phenomenon in a silica gel grain. The construction of a prototype bench for the testing of future adsorbers has made it possible to identify the complex problems in the coupling between adsorbers, evaporators and condensers. The integration by emulation of a prototype machine in the RCC|Kn large area network has contributed to deepen the future global numerical model in all its dimensions. The interconnection of the platforms of the large region has laid the first important milestones of the RCC|Kn network. The test of more than 60 hours has shown a high stability in both hardware and software infrastructures. This new network opens up new perspectives in various fields such as data analysis, machine learning, data centres, digital twins or the integration of external data streams
2

Hamou, Mohamed. "Evaluation of the reverse flow reactor concept for the homogeneous molecular catalysis and case study of methyl oleate metathesis." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1122.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le réacteur à inversion de flux pour retenir et recycler la chaleur est une technologie efficace qui intègre la réaction chimique et la réutilisation de la chaleur dégagée lors de la réaction. Cette technologie a été considérablement commercialisée et industrialisée, vue l'amélioration de la productivité du réacteur et vue l'intensification du procédé qu'elle offrirait. Par analogie chaleur-matière, il a été voulu, par l'actuel travail de doctorat, évaluer la technologie d'inversion de flux et la combinaison de la réaction chimique et de la séparation et la rétention du catalyseur (matière) dans un seul réacteur adsorbeur multifonctionnel. La métathèse des oléfines qui utilise des catalyseurs moléculaires -qui ne sont pas/ ne peuvent pas être efficacement et parfaitement immobilisés et hétérogénéisés sur un support solide- peut être réalisée dans le réacteur adsorbeur à inversion de flux, qui prétend permettre de séparer, de recycler et de retenir les catalyseurs. La réaction cible dans cette thèse est l'homo-métathèse de l'oléate de méthyle. D'abord, un modèle cinétique pour décrire cette réaction et la transformation du réactif a été développé et proposé en suivant une approche micro-cinétique. Ensuite, ce modèle a été ajusté par rapport aux résultats expérimentaux pour optimiser et accéder aux paramètres cinétiques de la réaction. Le modèle cinétique, ainsi obtenu, permettra après son intégration dans le modèle du réacteur adsorbeur à inversion de flux, de prédire la conversion du réactif et sa concentration à la sortie. Le réacteur adsorbeur à inversion de flux, a été étudié et évalué, par la modélisation et par une étude théorique calculatoire, pour avoir une meilleure compréhension de son comportement, et aussi de l'influence des conditions opératoires sur le procédé (perte de catalyseur, conversion, productivité, etc.). Le design de réacteur qui a été proposé dans cette étude et ce travail est une colonne à lit fixe d'adsorbant, avec inversion de flux. Les résultats de simulation du réacteur adsorbeur à inversion de flux pour retenir et recycler les catalyseurs moléculaires ont montré l'intensification du procédé que peut offrir cette technologie en se référant à un réacteur continu conventionnel (réacteur tubulaire monophasique). Il a été montré aussi qu'il n'est pas possible d'atteindre un régime permanent, sans appoint et rajout du catalyseur pour compenser les pertes, dues aux phénomènes physiques indissociables au réacteur. Par la suite, un dispositif expérimental a été construit pour vérifier et valider les résultats de simulations ainsi obtenus, et aussi pour démonter, à l'échelle pilote, la faisabilité de la technologie d'inversion de flux avec adsorption pour séparer l'adsorbé et le retenir à l'intérieur de la colonne. Et similairement au réacteur à inversion de flux pour le recyclage et la réutilisation de la chaleur, le réacteur adsorbeur à inversion de flux pour séparer et recycler le catalyseur, peut lui aussi, avoir un comportement asymptotique sous certaines conditions opératoires, et s'approcher du fonctionnement du réacteur adsorbeur à contre-courant. Par la modélisation et le calcul numérique, il a été établi le domaine des conditions opératoires dans lesquelles, les réacteurs adsorbeurs à inversion de flux et à contre-courant sont équivalents. Le modèle asymptotique à contre-courant permet de calculer et de pré-dimensionner plus rapidement le réacteur à inversion de flux
The reverse flow reactor for heat trapping is an efficient technology that integrates the chemical reaction and the recovery of the heat of the reaction. This technology was widely commercialized and applied in industry because of the reactor productivity enhancement and the process intensification it offers. By heat-matter analogy, we wanted, in this thesis, to evaluate the reverse flow technique and the combination of the chemical reaction with the trapping and the recycling of the catalyst (matter) in one single multi-functional adsorber reactor. The metathesis of olefins that uses molecular catalysts -which are imperfectly immobilized and heterogeneized on the solid support- can be performed in the reverse flow adsorber reactor that claims to separate, recycle and trap the catalyst. The targeted reaction is the self-metathesis of methyl oleate. Thus, a kinetic model of the reaction was developed using a micro-kinetic approach. The obtained kinetic model was fitted to the experiences to get the kinetic parameters values. Then, the kinetic model can be integrated in the reverse flow adsorber reactor model to predict the conversion and the outlet methyl oleate concentration. The reverse flow reactor adsorber was evaluated and studied (by modeling and theoretical study) to have a better understanding of its behavior, and of the operating parameters influence on the process (catalyst leaching, conversion, productivity, etc.). A single fixed bed adsorption column is proposed as a design for the reverse flow adsorber reactor. The simulation results show the process intensification that offers the reverse flow adsorber reactor for catalyst trapping in comparison with a conventional continuous reactor (continuous flow tubular reactor). They also show that it is not possible to reach a stable operation and a permanent regime without catalyst makeup that compensate the leaching. Then, an experimental setup was built to verify, to validate the simulations results, and to demonstrate, at the pilot scale, the feasibility of the reverse flow technology to separate and to trap the adsorbate inside the adsorber. And similarly to the reverse flow reactor for heat trapping, the reverse flow adsorber reactor for catalyst trapping and separation can have an asymptotic behavior under certain operating conditions, and approaches the operation of a counter current adsorber reactor. By modeling and numerical calculation, it has been determined the operating conditions, at which, the reverse flow and the counter current adsorber reactors are equivalents. The counter current asymptotic model allow a rapid reverse flow reactor computing and pre-design
3

Štěpánek, Josef. "Konstrukční návrh adsorbéru." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231295.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Reinhardt, Sylvia. "Herstellung und Modifizierung massgeschneiderter Adsorberpolymere für die Reinigung von Abwässern und Abluft." [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=975903691.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Müller, Dirk. "Herstellung von kohlenstoffhaltigen Adsorbentien aus polymeren Ausgangsprodukten unter Anwendung eines neuentwickelten Pyrolysereaktors." [S.l. : s.n.], 2000. https://fridolin.tu-freiberg.de/archiv/html/VerfahrenstechnikMullerDirk916838.html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tai, Chi-Chih. "Novel adsorbent hollow fibres." Thesis, University of Bath, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.437601.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Whiley, G. S. "Dynamics of adsorbed polymers." Thesis, University of Cambridge, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382705.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Abufares, Assanousi. "Optimal operation of the Claus process in a cyclic adsorptive reactor." Aachen Shaker, 2008. http://d-nb.info/992750407/04.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mackensen, Alexander [Verfasser]. "NOx-Minimierung durch Einsatz passiver NOx-Adsorber / Alexander Mackensen." Clausthal-Zellerfeld : Universitätsbibliothek Clausthal, 2012. http://d-nb.info/1026658756/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lascelles, Dominique. "Quantification of adsorbed flotation reagents." Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=80118.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Collector interaction with mineral surfaces has long been studied. Little work has been done, however, on directly quantifying reagent adsorption, certainly under industrial process conditions. The use of a novel surface analysis technique, Headspace Analysis Gas-phase Infrared Spectroscopy (HAGIS), is suggested for quantification of adsorbed reagents in mineral processing.
As a first exercise, a test system of xanthate adsorption onto lead sulphide minerals was studied. A survey of possible calibration standards (pure xanthate, a synthetic lead-xanthate, galena (PbS) and a lead sulphide ore conditioned with xanthate) resulted in linear curves for all four cases. The quantification of isopropyl xanthate adsorption onto batch flotation products (concentrate and tail) was used to determine that ore standards gave the most accurate results.
The technique was also tested for quantification of adsorbed amines. Two collectors, dodecylamine and diphenylguanidine, and a depressant, triethylenetetramine, were studied. A common calibration curve was prepared using diphenylguanidine adsorbed on Inco matte. Results show that the HAGIS technique can easily be used to quantify adsorbed amines.
It is concluded that the HAGIS technique is a powerful new tool for the quantitative determination of adsorbed reagents. The xanthate study showed the use of ores as standards produces the best calibration. The amine study introduced the possibility of analyzing reagent mixtures.

Книги з теми "Adsorbeur":

1

Graese, Sandra L. GAC filter-adsorbers. Denver, Colo: American Water Works Association, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Clean Air Technology Center (U.S.), ed. Zeolite, a versatile air pollutant adsorber. Research Triangle Park, NC: The Office, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Smith, Erika. Inorganic microporous adsorbent materials. Norwalk, CT: Business Communications Co., 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bonzel, H. P., ed. Adsorbed Layers on Surfaces. Berlin/Heidelberg: Springer-Verlag, 2005. http://dx.doi.org/10.1007/b12050.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bonzel, A. P., ed. Adsorbed Layers on Surfaces. Berlin/Heidelberg: Springer-Verlag, 2003. http://dx.doi.org/10.1007/b82990.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

M, DiGiano Francis, and AWWA Research Foundation, eds. Microbial activity on filter-adsorbers. Denver, CO: The Foundation, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Smith, Linda J. Structural studies of adsorbed proteins. Norwich: University of East Anglia, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

L, Amy Gary, ed. Adsorbent treatment technologies for arsenic removal. Denver, CO: AWWA Research Foundation [and] American Water Works Association, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lascelles, Dominique. Qu antification of adsorbed flotation reagents. Montréal, Qué: Dept. of Mining, Metals and Materials Engineering, McGill University, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

United States. Environmental Protection Agency, ed. Demonstration of Ambersorb® 563 adsorbent technology. Cincinnati, OH: U.S. Environmental Protection Agency, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Adsorbeur":

1

Li, Chenglong, Chengsi Xie, Yi Zong, Richard Chahine, Tianqi Yang, Feng Ye, and Jinsheng Xiao. "Deep Neural Network for Prediction of Adsorbent Selectivity on Hydrogen Purification." In Proceedings of the 10th Hydrogen Technology Convention, Volume 1, 214–21. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8631-6_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractWith emergence of new materials, more and more materials are available for adsorption and separation processes. The adsorption selectivity of adsorbent to adsorbate is one of the important indicators in choosing materials. Because the adsorption experiment of the mixture is time-consuming and difficult, the selectivity of the adsorbent is generally calculated by the ideal adsorbed solution theory (IAST). Taking the CO2/H2 gas mixture as an example, this paper proposes a new adsorption selectivity calculation method based on a deep neural network (DNN) with 5 hidden layers, which takes the molar fraction of CO2, adsorption pressure and Langmuir adsorption isotherm parameters as the inputs of DNN. Combining the DNN and the NIST/ARPA-E database to quickly and accurately calculate the adsorption selectivity, the hydrogen purification and carbon dioxide storage materials can be quickly screened.
2

Gooch, Jan W. "Adsorbent." In Encyclopedic Dictionary of Polymers, 21. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_292.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wynne, Ron G., and Lori P. Spencer. "Adsorbers." In Air Pollution Control Equipment, 73–131. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-85144-5_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Boyadjiev, Christo, Maria Doichinova, Boyan Boyadjiev, and Petya Popova-Krumova. "Industrial Column Adsorber." In Modeling of Column Apparatus Processes, 343–65. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89966-4_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gooch, Jan W. "Adsorbed Water." In Encyclopedic Dictionary of Polymers, 21. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_291.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Godfrin, H. "Adsorbed Quantum Gases." In Excitations in Two-Dimensional and Three-Dimensional Quantum Fluids, 445–51. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-5937-1_43.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Machado, Fernando Machado, and Carlos Pérez Bergmann. "Materials for Adsorbent Applications." In Nanostructured Materials for Engineering Applications, 141–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19131-2_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yefremova, S., A. Kablanbekov, K. Anarbekov, L. Bunchuk, A. Terlikbayeva, and A. Zharmenov. "Coke-Based Carbon Adsorbent." In Proceedings of the 18th Symposium on Environmental Issues and Waste Management in Energy and Mineral Production, 217–24. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99903-6_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zoroufchi Benis, Khaled, Jafar Soltan, and Kerry N. McPhedran. "Biochar: A Potent Adsorbent." In Biochar and its Composites, 49–72. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-5239-7_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

de Gennes, P. G. "Dynamics of Adsorbed Polymers." In New Trends in Physics and Physucal Chemistry of Polymers, 9–18. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0543-9_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Adsorbeur":

1

KWAK, A. "Application of Zinc-Silver Impregnated Activated Carbons in Removal of Lead(II) and Mercury(II) Compounds from Groundwater." In Quality Production Improvement and System Safety. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902691-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. Nowadays activated carbon is a material generating great interest, as it is characterized by a vast surface area due to a high number of pores in its structure. Therefore, the main purpose behind its use is the filtration of impurities from air and water that can be adsorbed with high efficiency. Activated carbon can be easily modified as well. The paper describes activated carbon modification with copper-, manganese-, silver- and zinc salts. The effects of the selected impregnates and their concentrations were examined. The products included 5 adsorbent samples: four universal adsorbents, impregnated with all the above-mentioned salts, and one specific adsorbent sample, designed to adsorb lead(II) and mercury(II) ions and impregnated with zinc- and silver salts only. The premise was to obtain pure drinking water. Properties, such as bulk density, methylene blue number or iodine number were determined for the modified activated carbons. To test the efficiency of an improved adsorbent, an experiment with water highly contaminated with Pb(II) and Hg(II) was carried out, and its results revealed that absorption efficiency for these heavy metals exceeded 99.9%. The adsorber samples were also observed under a digital microscope to compare their appearance.
2

Chan, K. C., Christopher Y. H. Chao, and M. Bahrami. "Heat and Mass Transfer Characteristics of a Zeolite 13X/CaCl2 Composite Adsorbent in Adsorption Cooling Systems." In ASME 2012 6th International Conference on Energy Sustainability collocated with the ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/es2012-91246.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The performance of the adsorption cooling system using the zeolite 13X/CaCl2 composite adsorbent was studied using a numerical simulation. The novel zeolite 13X/CaCl2 composite adsorbent with superior adsorption properties was developed in previous studies [11]. It has high equilibrium water uptake of 0.404 g/g between 25°C and 100°C under 870Pa. The system specific cooling power (SCP) and coefficient of performance (COP) were successfully predicted for different operation parameters. The simulated COP with the composite adsorbent is 0.76, which is 81% higher than a system using pure zeolite 13X under desorption temperature of 75°C. The SCP is also increased by 34% to 18.4 W/kg. The actual COP can be up to 0.56 compared to 0.2 for zeolite 13X-water systems, an increase of 180%. It is predicted that an adsorption cooling system using the composite adsorbent could be powered by a low grade thermal energy source, like solar energy or waste heat, using the temperature range of 75°C to 100°C. The performance of the adsorber with different design parameters was also studied in the present numerical simulation. Adsorbents with smaller porosity can have higher thermal conductivity and may result in better system performance. The zeolite bed thickness should be limited to 10mm to reduce the thermal response time of the adsorber. Addition of high thermal conductivity materials, for example carbon nanotube, can also improve the performance of the adsorber. Multi-adsorber tube connected in parallel can be employed to provide large heat transfer surface and maintain a large SCP and COP. The desorption temperature also showed a large effect on the system performance.
3

AlDossary, Nouf, Fatimah AlKhowildi, Jory Mayoof, Kawthar AlHajji, Mukarram Zubair, and Ismail Anil. "Design of Biochar Based Adsorber (Bio-Sorb) for Direct Carbon Capture." In International Petroleum Technology Conference. IPTC, 2024. http://dx.doi.org/10.2523/iptc-24550-ea.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The most widespread human-caused greenhouse gas is carbon dioxide (CO2). The automotive sector significantly contributes to CO2 emissions in the atmosphere due to the usage of fossil fuels, which is challenging to decarbonize. In addition, emissions from agricultural waste yield billions of tonnes of CO2 equivalent globally. These emissions results in an increase in the global average temperature. Direct carbon capture (DCC) technology eliminates CO2 from source and is predicted to achieve a net-zero carbon world when used on a wide scale. The sustainable and cost-effective CO2 collection by DCC has been achieved through the characteristics of the materials, high CO2 selectivity, regeneration performance, and appropriate design. Biochar is known for its richness in carbon and low-cost material made from various biomass wastes and exhibited favorable surface characteristics (porous nature, high surface area, and pore volume) for an effective and sustainable CO2 adsorbent. The aim of this work is to investigate the potential of biochar derived from Saudi Arabia’s agricultural waste for CO2 capture. The biochar-CO2 adsorber (bio-sorb) system is designed and tested for direct carbon capture for sustainable mitigation of climate change. The CO2 adsorber design results demonstrated that in order to achieve maximum CO2 adsorption the most appropriate design parameter are gas flowrate (100 mL/min) and, biochar particle size (0.35 mm), and temperature (25°C). The breakthrough adsorption results indicated 70% of CO2 was removed by biochar at the breakthrough time (102 min) and 5g of biochar saturated at 420 min. The adsorption capacity of biochar at breakthrough and saturated time is 5.1g/g CO2 and 21g/g. The biochar-adsorber system was designed for the direct capture of CO2 (concentration 2500 mg/L) and gas flow rate of 1000 m3/day. The biochar adsorber system should of size (height= 230.87 cm and diameter= 124.99 cm) with a minimum carbon requirement of 840.20 kg of biochar and a biochar saturation time of 1.73 days. The total amount of CO2 adsorbed onto biochar using one large-scale biochar adsorber system is estimated to be 1000.18 ton/per. The final prototype of direct carbon capture system-design contains three main sections supported with (&lt;0.5 µm mesh, fan, sensor, silica gel, and fibric filter).
4

Kuroki, Tomoyuki, Kiyoyuki Hirai, Ryouhei Kawabata, Masaaki Okubo, and Toshiaki Yamamoto. "Decomposition of Adsorbed Xylene on Adsorbent Using Nonthermal Plasma and Gas Circulation." In 2008 IEEE Industry Applications Society Annual Meeting (IAS). IEEE, 2008. http://dx.doi.org/10.1109/08ias.2008.118.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Grzebielec, Andrzej, Adam Szelągowski, and Adam Ruciński. "Energy Recovery Methods in Adsorption Refrigeration Units." In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.256.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Adsorption refrigeration systems, as opposed to absorption type operate in a cyclic manner. The result is that at the beginning of each process must be fed into the adsorber state in which they will adsorb or desorb a refrigerant. In the case of two adsorbers at the start of a cycle, the one of the adsorber must be refrigerated while the second has to be heated. These processes are causing unnecessary energy loss. The aim of the work is to show how these processes can be connected and the heat received from one adsorber is transported to another adsorber. As part of the study, the heat and mass recovery processes will be considered. It turns out that in the thermal wave type systems, it is possible to recover more than 25% of the energy lost to bring the adsorber to the states in which they will operate efficiently to desorb and adsorb refrigerant. That is, it is possible to improve the efficiency of the adsorption refrigeration unit using the proposed improvements.
6

Chakraborty, Anutosh, Bidyut Baran Saha, Shigeru Koyama, Ibrahim Ibrahim El-Sharkawy, and Kim Choon Ng. "Theoretical Insight of Physical Adsorption for a Single Component Adsorbent+Adsorbate System." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-42943.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The thermodynamic property surfaces for a single-component adsorbent + adsorbate system have been derived and developed from the view point of classical thermodynamics. These thermodynamic frameworks enable us to compute the specific heat capacity, partial enthalpy and entropy for the analyses of adsorption processes thoroughly. A theoretical framework for the estimation of the isosteric heat of adsorption between an adsorbate (vapor) and an adsorbent (solid) is also derived for the thermodynamic requirements of chemical equilibrium, Maxwell relations and the entropy of the adsorbed phase. Conventionally, the specific heat capacity of the adsorbate is assumed to correspond to its liquid phase specific heat capacity and more recently to that of its gas phase. We have shown here that the derived specific heat capacity fills up the information gap with respect to the state of adsorbed phase to dispel the confusion as to what is the actual state of the adsorbed phase.
7

ALFARO, NATALIA MARCIAL, OLIVIER BARDOUX, DANIEL GARY, SOPHIE WASTIAUX, VALENTIN PERRET, and HUGO CENCE. "ULTRASONIC CONNECTED PROBE FOR IN-SERVICE MONITORING OF PRESSURE EQUIPMENT." In Structural Health Monitoring 2023. Destech Publications, Inc., 2023. http://dx.doi.org/10.12783/shm2023/37021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In order to guarantee the safety of the gas production plants, Air Liquide conducts NDT inspections regularly closely following the assets’ maintenance plans. One high criticality asset is the Pressure Swing Adsorber (PSA), found in the last stages of the hydrogen production process, where product purification takes place. These adsorbers are pressure vessels and need to be inspected for hydrogen enhanced fatigue cracks. The PSA adsorbers are inspected for cracks regularly by INTACT following a dedicated inspection plan. When indications or cracks are found, a Fitness For Service (FFS) assessment is done to determine the stability of the crack, and if stable, propagate the crack over time calculating the number of cycles before the crack reaches its critical size, in other words, the time up until this crack will go through the complete thickness of the adsorber creating a leak. As an output of the FFS assessment, certain cracks could require a close monitoring, with high frequency intervals of inspection, this necessity is what drove Air Liquide R&D and INTACT to partner up to develop the “Ultrasonic connected probe for in-service monitoring of pressure equipment”.
8

Kannan, Pravin, Pal Priyabrata, Fawzi Banat, Satyadileep Dara, Ibrahim Khan, Eisa AlJenaibi, and Marwan AlAwlqi. "Calcium Alginate-Based Carbon Composite Adsorbents for Lean Methyldiethanolamine Reclamation: Laboratory to Pilot Scale Testing and Validation." In Abu Dhabi International Petroleum Exhibition & Conference. SPE, 2021. http://dx.doi.org/10.2118/207754-ms.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Calcium alginate-based carbon composite (CAC) adsorbents have been proved to effectively remove total organic acid anions as HSS anions, metal ions, and organic degraded products from lean methyldiethanolamine (MDEA solvents) used as solvent in natural gas sweetening unit. During the material developmental phase, the CAC adsorbent was synthesized and utilized to remove various contaminants, including heat stable salts (HSS), organic degraded products, and heavy metal ions from lean MDEA using a lab-scale adsorption setup. Based on the results, a "demo-scale" fixed bed adsorption unit was designed and simulated using adsorption model to predict breakthrough behavior. In the current work, the efficiency of the CAC adsorbent in removing HSS and total organic acid anions were investigated. Analysis of treated samples demonstrated the removal efficiency of the adsorbent under plant scale conditions. Further experiments performed at lab scale indicated the effectiveness of the adsorbent in the removal of bicine from lean MDEA samples. This work provides a framework for future testing and comprehensive process performance evaluation of adsorbents for lean MDEA reclamation in actual plant conditions. A fast, simple, and reliable scale up procedure for fixed bed adsorber developed earlier was validated through this work.
9

Kariya, Keishi, Ryo Tateishi, Ken Kuwahara, Bidyut Baran Saha, and Shigeru Koyama. "Adsorption Performance of Round Fin and Tube Type Adsorber Employing Activated Carbon Fiber/Ethanol Pair." In ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ht2007-32719.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The severity of the ozone layer destruction problem has been calling for rapid developments in environment friendly adsorption cooling systems. However, the widespread dissemination of adsorption system is hindered due to its poor performance, which mainly results from the inadequate design of adsorber/desorber heat exchanger. The present paper deals with the numerical investigation on the adsorption performance of a round fin-and-tube type adsorber/desorber heat exchanger using activated carbon fiber (ACF)-ethanol as adsorbent-refrigerant pair. The effects of the local heat and mass transfer as well as the fin geometry of the adsorber/desorber are accounted in the present two-dimensional modeling. Adsorption performance have been determined varying five parameters, such as the ACF bed apparent density, fin thickness, fin pitch, fin height and tube diameter along with evaporator and cooling water inlet temperatures. The results show that the adsorption performances increase by optimizing the tube diameter, fin height and fin pitch. It is also found that all parameters have some influence on the optimum adsorption cycle time and the optimum cycle time is found to be around 150 s.
10

Bause, Daniel, Gary Bilski, Michael Herald, and Philip Treier. "Hydrocarbon Adsorber Technology." In SAE World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2007. http://dx.doi.org/10.4271/2007-01-1434.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Adsorbeur":

1

Janke, Chris, Oyola Yatsandra, Richard Mayes, none,, Gary Gill, Kuo Li-Jung, Jordana Wood, and Das Sadananda. Complete braided adsorbent for marine testing to demonstrate 3g-U/kg-adsorbent. Office of Scientific and Technical Information (OSTI), April 2014. http://dx.doi.org/10.2172/1148692.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Simon, M. I. [Melting in adsorbed films]. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/7183243.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tsouris, Costas, Richard T. Mayes, Christopher James Janke, Sheng Dai, S. Das, W. P. Liao, Li-Jung Kuo, et al. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1253238.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Overmyer, Donald L., Michael P. Siegal, Alan W. Staton, Paula Polyak Provencio, and William Graham Yelton. Nanoporous-carbon adsorbers for chemical microsensors. Office of Scientific and Technical Information (OSTI), November 2004. http://dx.doi.org/10.2172/920117.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Janke, Christopher, Sadananda Das, Yatsandra Oyola, Richard Mayes, Tomonori Saito, Suree Brown, Gary Gill, Li-Jung Kuo, and Jordana Wood. Milestone Report - Complete New Adsorbent Materials for Marine Testing to Demonstrate 4.5 g-U/kg Adsorbent. Office of Scientific and Technical Information (OSTI), August 2014. http://dx.doi.org/10.2172/1162052.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sackinger, W. M. Plasma-induced conversion of surface-adsorbed hydrocarbons. Office of Scientific and Technical Information (OSTI), July 1992. http://dx.doi.org/10.2172/10156508.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Riley, Brian J., David A. Pierce, and Jaehun Chun. Efforts to Consolidate Chalcogels with Adsorbed Iodine. Office of Scientific and Technical Information (OSTI), August 2013. http://dx.doi.org/10.2172/1097940.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Simon, M. I. [Melting in adsorbed films]. Progress report 1992. Office of Scientific and Technical Information (OSTI), December 1992. http://dx.doi.org/10.2172/10116476.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kim, Do Heui, George G. Muntean, Charles H. F. Peden, Ken Howden, Randy Stafford, John Stang, Aleksey Yezerets, Neal Currier, H. Y. Chen, and H. Hess. CRADA Final Report: Mechanisms of Sulfur Poisoning of NOx Adsorber Materials. Office of Scientific and Technical Information (OSTI), March 2009. http://dx.doi.org/10.2172/1334911.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mayes, Richard T., and Sheng Dai. M4FT-15OR03100415 - Update on COF-based Adsorbent Survey. Office of Scientific and Technical Information (OSTI), February 2015. http://dx.doi.org/10.2172/1253234.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії