Добірка наукової літератури з теми "Activité de chimiste"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Activité de chimiste".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Activité de chimiste"
Ben-Moussa, Mohammed Tahar, Khaled Khelil, Hassina Harkat, Samia Lakehal, and Youcef Hadef. "Chemical composition, antimicrobial and antioxidant activity of the essential oil of Brocchia cinerea VIS. from Algeria." Batna Journal of Medical Sciences (BJMS) 7, no. 2 (November 9, 2020): 122–28. http://dx.doi.org/10.48087/bjmsoa.2020.7213.
Повний текст джерелаKrimat, S., H. Metidji, C. Tigrine, D. Dahmane, A. Nouasri, and T. Dob. "Analyse chimique, activités antioxydante, anti-inflammatoire et cytotoxique d’extrait hydrométhanolique d’Origanum glandulosum Desf." Phytothérapie 17, no. 2 (April 2019): 58–65. http://dx.doi.org/10.3166/phyto-2019-0137.
Повний текст джерелаJarrar, Bashir M., and N. T. Taib. "Caractérisation histochimique et localisation des mucosubstances et leur activité enzymatique dans les glandes salivaires du dromadaire (<em>Camelus dromedarius</em>)." Revue d’élevage et de médecine vétérinaire des pays tropicaux 42, no. 1 (January 1, 1989): 63–71. http://dx.doi.org/10.19182/remvt.8884.
Повний текст джерелаKaloustian, J., J. Chevalier, C. Mikail, M. Martino, L. Abou, and M. F. Vergnes. "Étude de six huiles essentielles : composition chimique et activité antibactérienne." Phytothérapie 6, no. 3 (June 2008): 160–64. http://dx.doi.org/10.1007/s10298-008-0307-1.
Повний текст джерелаGirault, Isabelle, Claire Wajeman, and Cédric D'Ham. "Modèle de construction d'un EIAH pour une activité de conception expérimentaleBuilding model of an EIAH for an experimental design activity." Educação Matemática Pesquisa : Revista do Programa de Estudos Pós-Graduados em Educação Matemática 22, no. 4 (September 15, 2020): 119–37. http://dx.doi.org/10.23925/1983-3156.2020v22i4p119-137.
Повний текст джерелаTine, Yoro, Moussa Diop, Idrissa Ndoye, Alioune Diallo, and Alassane Wele. "Revue bibliographique sur la composition chimique et les activités biologiques de Guiera senegalensis J.F. Gmel. (Combretaceae)." International Journal of Biological and Chemical Sciences 13, no. 7 (February 13, 2020): 3449–62. http://dx.doi.org/10.4314/ijbcs.v13i7.37.
Повний текст джерелаKermen, Isabelle, and Marcia Teixeira Barroso. "Activité ordinaire d’une enseignante de chimie en classe de terminale." RDST, no. 8 (December 31, 2013): 91–114. http://dx.doi.org/10.4000/rdst.785.
Повний текст джерелаBrahimi, S., M. Dahia, B. Azouzi, M. Nasri, and H. Laouer. "Composition chimique et activité antimicrobienne de l’huile essentielle de Deverra reboudii (Coss. & Durieu)." Phytothérapie 18, no. 5 (January 28, 2019): 314–20. http://dx.doi.org/10.3166/phyto-2018-0107.
Повний текст джерелаThouin, Richard. "Les activités de conservation au sein des universités canadiennes et autres organismes." Documentation et bibliothèques 38, no. 1 (February 11, 2015): 43–48. http://dx.doi.org/10.7202/1028561ar.
Повний текст джерелаAlitonou, Guy, Félicien Avlessi, Innocent Bokossa, Edwige Ahoussi, Justine Dangou, and Dominique C. K. Sohounhloué. "Composition chimique et activités biologiques de l'huile essentielle de Lantana camara Linn." Comptes Rendus Chimie 7, no. 10-11 (October 2004): 1101–5. http://dx.doi.org/10.1016/j.crci.2003.11.017.
Повний текст джерелаДисертації з теми "Activité de chimiste"
Fournier, Etienne. "Intérêt de la prise en compte des variabilités de l’activité et de l’acceptabilité dans le cadre d’une conception centrée utilisateurs des situations de travail collaboratives Humain-Robot." Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALH011.
Повний текст джерелаThe European Commission is encouraging the use of collaborative robots (cobots) to assist humans in their work. However, cobots seem to have difficulty in favorably transforming work situations when they do not consider the variabilities of the situations. The aim of this thesis was therefore to characterize variability in the context of a cobotic implementation, and to guide a design approach focused on future users, using acceptability, acceptance and user experience approaches. An activity analysis was carried out in a chemical laboratory as part of a future cobotic implementation. 11 operators were observed during their activity and 34 took part in semi-directive interviews. The results identified glovebox activity as the workstation that would benefit most from cobotic collaboration. They also showed that certain activities were rendered invisible due to a discrepancy between prescribed work and actual activity, resulting in regular exposure to risks that could be avoided through cobotic implementation. We have thus identified several variabilities with effects on operator activity. These were used to design experimental paradigms to test the effect of cobotic collaboration. Three User Tests were carried out with a total of 212 participants, who were asked to perform industrial assembly tasks where one or more variabilities were considered in the cobotic design. The task was performed either alone, or in pairs with another human or with a cobot (ABB's YuMi). Different types of measurement were carried out: workload (assessed via NASA TLX, Hart, 2006; Hart & Staveland, 1988), number of errors, number of gestures, completion time, degree of acceptability of cobotic collaboration (assessed via TAM, Venkatesh et al., 2012) and simulated risk exposure. Cobotic collaboration reduced the negative effects of several variabilities (e.g. variability in difficulty level, variability in operator expertise) on operator mental load and task success. Participants had a higher task success rate when collaborating with a cobot, even though they otherwise took longer to complete the task. In addition, participants reported enjoying collaborating with a cobot and having confidence in the information it provided (measured via a scale of items from Martin, 2018). Finally, when the cobot adapted to the human's safety constraints, the latter exposed himself to fewer risks. From a theoretical point of view, these empirical studies made it possible to propose a framework integrating models of variability at work, and to shed light on the effects of cobotic collaboration on the human and his task. From a practical point of view, these different studies have enabled us to propose a grid for identifying variabilities and to formulate recommendations designed to support the implementation of cobotic collaboration
Benoit, Valérie. "La brévicine 27, une bactériocine produite par Lactobacillus brevis SB27 : caractérisation, purification et éléments de structure chimique." Vandoeuvre-les-Nancy, INPL, 1996. http://www.theses.fr/1996INPL101N.
Повний текст джерелаHamdaoui, Ahmed. "Estérification par des enzymes solides. Rôle cinétique de l'eau : activité et sélectivité." Toulouse, INPT, 1992. http://www.theses.fr/1992INPT036G.
Повний текст джерелаNasri, Issad. "Synthèse et activité antifongique de thiols polyfonctionnels et dérivés apparentes : relation structure chimique-activité antiadhérente." Nancy 1, 1991. http://www.theses.fr/1991NAN10459.
Повний текст джерелаChamoumi, Mostafa. "Réarrangements d'époxydes par les zéolithes : activité intracristalline et sélectivité de forme." Montpellier 2, 1991. http://www.theses.fr/1991MON20230.
Повний текст джерелаYagi, Sakina. "Etudes phytochimique et biologique de plantes soudanaises : Hydnora johannis Beccari (Hydnoraceae) et Citrullus lanatus (Thunb.) Matsum. et Nakai var. citroides (Bailey) Mansf. (Cucurbitaceae)." Thesis, Nancy 1, 2011. http://www.theses.fr/2011NAN10138.
Повний текст джерелаDifferent extracts were prepared from the roots of H. johannis and different biological tests were performed. Water extract exhibited significant activity against Enterococcus fecalis, Staphylococcus aureus and Bacillus. Water extract devoid from tannin or the tannin fraction did not show any antibacterial activity reflecting the synergistic property of active compounds. Both extracts showed antifungal, antiradical capacity as well as antiglycation activity. Toxicological study of the powder and ethanol extract on rats showed toxicity to the liver and kidney tissues. Five compounds were isolated namely; 3,4,5- Trihydroxy- 6,7-dimethoxy flavone ; 3,5-Dihydroxy- 4,7- dimethoxy dihydroflavonol, Catechin, Vanillin and Protocatechuic acid. Stigmasterol, Oleic acid, Myristic acid and Palmitic acid were also identified. A study on the fruit pulps of C. lanatus var. citroides revealed that the methanolic extract displayed an antibacterial activity against B. subtilis, S. aureus and E. coli. The butanolic extract showed antiradical capacity and was not toxic to brine shrimps larvae. Two compounds were isolated namely; Cucurbitacine E 2-O-[bêta]-glucopyranoside and Cucurbitacine L 2-O- [bêta] -glucopyranoside. Both compounds showed antibacterial activity against E.coli whereas, Cucurbitacine L 2-O-[bêta]-glucopyranoside showed antibacterial activity against P. aeruginosa as well as antiradical activity
Kadri, Nabil. "Graines de Pinus SP : caractérisation physico-chimique et activité anticancéreuse." Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20143/document.
Повний текст джерелаThe pine (Pinus halepensis Mill., Pinus pinea L., Pinus pinaster and Pinus canariensis) seeds are the four most available species in the Mediterranean basin. They are widely used by North African populations in traditional medicine and gastronomy where they adorn the traditional dishes (salads, rice, fish ... etc) because they are well known for their excellent taste salty. However, the biochemical composition, nutritional value, and the cellular and molecular mechanisms of action through which these seeds exert their therapeutic effects remain poorly understood. The aim of our study was to investigate the physicochemical properties of pine seed species and nutritional and pharmaceutical value of lipid fractions of Pinus halepensis Mill. Seeds using different separation and analysis techniques such as (XRD, FTIR, CC, LC/MS, GC, GC/MS and NMR) and examining the main pathway involved in the development of cancer which is angiogenesis through biological tests in vitro on the proliferation and migration of endothelial cells on Matrigel and in vivo on a chorioallantoic membrane (CAM) of chicken eggs, thus that their toxicity on healthy cell cultures (human myeloma HL60, Adenocarcinoma of human coulon, HCT15, human epithelial cells, A549 and cells melanoma, B16F1). The results of the physico-chemical characterization showed that four seeds are rich in primary metabolites (sugars, proteins, protein reserves) and secondary (total phenolic and flavonoids) as they have a high concentration of trace elements (phosphorus, potassium, magnesium, zinc, iron, copper and manganese). Their essential oils are rich in limonene. The main unsaturated fatty acids of all species are linoleic acid and oleic acid. The chemical and physical properties of their fixed oils are the in standard food quality. Pinus halepensis Mill. seeds are the richest in total lipids which achieved a rate of 36% chemically diverse with non polar lipids (neutral lipids) and polar lipids (Four classes of glycolipids and six classes of phospholipids). These results are good indicators of the nutritional quality of pine seeds and imply that the neutral lipids, glycolipids and phospholipids of Pinus halepensis Mill. seeds devoid of toxicity at the concentrations of 1, 10, 25, 50, 100 and 200µg/ml and having cytotoxic activity at 500 and 1000µg/ml and anti-angiogenic effect in vitro at the concentrations of 100 and 500 µM and in vivo at the concentrations of 1 mg/ml and 10 mg/ml may be useful in prevention of angiogenesis-related and the fight against cancer diseases
Lamour, Éric. "Synthèse et étude physico-chimique de métallosalènes à activité nucléasique." Lille 1, 1999. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/1999/50376-1999-173.pdf.
Повний текст джерелаVerquin, Géraldine. "Dérivés du salène : synthèse, étude physico-chimique et activité biologique." Lille 1, 2004. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/2004/50376-2004-95-96.pdf.
Повний текст джерелаDebord, Jean. "Relation structure chimique-activité biologique pour quelques phosphoramides et benzamides." Poitiers, 1988. http://www.theses.fr/1988POIT2331.
Повний текст джерелаКниги з теми "Activité de chimiste"
Taillefer, Jacques. Chimie en laboratoire. Ottawa, Ont: Centre franco-ontarien de ressources pédagogiques, 1991.
Знайти повний текст джерелаBidal, Daniel. Chimie appliquée, 11e. Projet coopératif de développement (Sciences) de l'est de l'Ontario: Centre franco-ontarien de ressources pédagogiques, 1990.
Знайти повний текст джерелаSevin, Alain. Liaisons chimiques: Structure et re activite. Paris: Dunod, 2006.
Знайти повний текст джерелаGoffard, Monique. Les activités de documentation en physique et chimie. Paris: Colin, 1998.
Знайти повний текст джерелаA, Hodge C., and Popovici Neculai N. 1928-, eds. Pollution control in fertilizer production. New York: Dekker, 1994.
Знайти повний текст джерелаn, Trong Anh Nguye. Orbitales frontie res: Manuel pratique. 2nd ed. Les Ulis [France]: EDP Sciences, 2007.
Знайти повний текст джерелаTsujii, Kaoru. Surface activity: Principles, phenomena, and applications. San Diego: Academic Press, 1998.
Знайти повний текст джерелаMerton, Sandler, and Smith H. J. 1930-, eds. Design of enzyme inhibitors as drugs. Oxford: Oxford University Press, 1994.
Знайти повний текст джерела1947-, Abe Masahiko, and Scamehorn John F. 1953-, eds. Mixed surfactant systems. 2nd ed. New York: Marcel Dekker, 2005.
Знайти повний текст джерелаD, Cronin Mark T., and Livingstone D, eds. Predicting chemical toxicity and fate. Boca Raton, Fla: CRC Press, 2004.
Знайти повний текст джерелаЧастини книг з теми "Activité de chimiste"
"Chapitre 10. Activité des gaz." In Le concept d'activité en chimie, 89–98. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2449-6-012.
Повний текст джерела"Chapitre 10. Activité des gaz." In Le concept d'activité en chimie, 89–98. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2449-6.c012.
Повний текст джерелаSigg, Laura, Philippe Behra, and Werner Stumm. "7. Précipitation et dissolution ; activité des phases solides." In Chimie des milieux aquatiques, 183–215. Dunod, 2014. http://dx.doi.org/10.3917/dunod.sigg.2014.01.0183.
Повний текст джерела"Chapitre 12. Activités des électrolytes." In Le concept d'activité en chimie, 113–28. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2449-6-014.
Повний текст джерела"Chapitre 12. Activités des électrolytes." In Le concept d'activité en chimie, 113–28. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2449-6.c014.
Повний текст джерела"Chapitre 12 - L’interaction des activités anthropiques avec la biosphère." In Biosphère et chimie, 203–16. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1698-9-017.
Повний текст джерела"Chapitre 12 - L’interaction des activités anthropiques avec la biosphère." In Biosphère et chimie, 203–16. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1698-9.c017.
Повний текст джерела"Chapitre 16. Énergie de Gibbs d’excès et activités." In Le concept d'activité en chimie, 177–92. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2449-6-018.
Повний текст джерела"Chapitre 16. Énergie de Gibbs d’excès et activités." In Le concept d'activité en chimie, 177–92. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2449-6.c018.
Повний текст джерелаBoutevin, B., B. Ameduri, F. Guida-Pietrasanta, and A. Rousseau. "Activités dans la chimie du fluor au Laboratoire de Chimie Macromoléculaire-UMR-CNRS-5076." In Formulation des composés siliconés et fluorés, 204–6. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0240-1-020.
Повний текст джерела