Добірка наукової літератури з теми "Active and passive circuits"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Active and passive circuits".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Active and passive circuits"

1

Abuelmaatti, Muhammad Taher, and Muhammad Ali Al-Qahtani. "Active-Only Sinusoidal Oscillator Circuits." Active and Passive Electronic Components 24, no. 4 (2001): 223–32. http://dx.doi.org/10.1155/2001/69690.

Повний текст джерела
Анотація:
Two new active-only sinusoidal oscillator circuits are proposed. The first circuit uses one current feedback operational amplifier (CFOA) and four operational transconductance amplifiers (OTAs). The second circuit uses only four OTAs. Without using any external passive elements, voltage (or current) control of the frequency and condition of oscillation, of the two circuits, can be achieved by adjusting the bias currents of the OTAs. The proposed circuits enjoy low sensitivities.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

ITOH, MAKOTO, and LEON O. CHUA. "MEMRISTOR HAMILTONIAN CIRCUITS." International Journal of Bifurcation and Chaos 21, no. 09 (September 2011): 2395–425. http://dx.doi.org/10.1142/s021812741103012x.

Повний текст джерела
Анотація:
We prove analytically that 2-element memristive circuits consisting of a passive linear inductor in parallel with a passive memristor, or an active memristive device, can be described explicitly by a Hamiltonian equation, whose solutions can be periodic or damped, and can be represented analytically by the constants of the motion along the circuit Hamiltonian. Generalizations to 3-element and 2N-element memristive Hamiltonian circuits are also presented where complex bifurcation phenomena including chaos, abound.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Maheshwari, Sudhanshu. "Voltage-Mode All-Pass Filters Including Minimum Component Count Circuits." Active and Passive Electronic Components 2007 (2007): 1–5. http://dx.doi.org/10.1155/2007/79159.

Повний текст джерела
Анотація:
This paper presents two new first-order voltage-mode all-pass filters using a single-current differencing buffered amplifier and four passive components. Each circuit is compatible to a current-controlled current differencing buffered amplifier with only two passive elements, thus resulting in two more circuits, which employ a capacitor, a resistor, and an active element, thus using a minimum of active and passive component counts. The proposed circuits possess low output impedance, and hence can be easily cascaded for voltage-mode systems. PSPICE simulation results are given to confirm the theory.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jagodzińska, Katarzyna, Stanisław Dziura, and Maciej Walkowiak. "Active Impedance Matching." Solid State Phenomena 210 (October 2013): 3–8. http://dx.doi.org/10.4028/www.scientific.net/ssp.210.3.

Повний текст джерела
Анотація:
Electrically small antenna suffer from the high Q impedance such as narrow bandwidth and poor gain. To improve them, passive impedance matching is often used but it is restricted to a Bode-Fano limit. To skip it, active matching incorporating non-Foster circuits can provide a good solution. Using non-Foster theory, in this paper an active reactance circuit (ARC) design is proposed for application to electrically small antenna prototypes.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kalkur, T. S., Tibor Berceli, and Fahrettin Yakuphanoglu. "Active and Passive Microwave Devices and Circuits." Active and Passive Electronic Components 2008 (2008): 1–2. http://dx.doi.org/10.1155/2008/320956.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pal, Kirat, and Seema Rana. "Some New First-Order All-Pass Realizations Using CCII." Active and Passive Electronic Components 27, no. 2 (2004): 91–94. http://dx.doi.org/10.1080/0882751031000116188.

Повний текст джерела
Анотація:
Some new first-order all-pass filters using a second-generation current conveyor are reported. Two circuits have higher input impedance than reported very recently and use a grounded capacitor. Additionally two more circuits have been reported, one of which has minimum passive and active components and has the facility of single resistance tuning. The other circuit has high input impedance and uses two current conveyors but has one passive component less than the similar circuits reported earlier.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Barboni, Leonardo. "A Novel Passive Circuit Emulator for a Current-Controlled Memristor." Active and Passive Electronic Components 2021 (April 22, 2021): 1–8. http://dx.doi.org/10.1155/2021/5582774.

Повний текст джерела
Анотація:
A memristor is an electrical element, which has been conjectured in 1971 to complete the lumped circuit theory. Currently, researchers use memristor emulators through diodes, inductors, and other passive (or active) elements to study circuits with possible attractors, chaos, and ways of implementing nonlinear transformations for low-voltage novel computing paradigms. However, to date, such passive memristor emulators have been voltage-controlled. In this study, a novel circuit realization of a passive current-controlled passive inductorless emulator is established. It overcomes the lack of passive current-controlled memristor commercial devices, and it can be used as part of more sophisticated circuits. Moreover, it covers a gap in the state of the art because, currently, only passive circuit voltage-controlled memristor emulators and active current-controlled emulators have been developed and used. The emulator only uses two diodes, two resistors, and one capacitance and is passive. The formal theory and simulations validate the proposed circuit, and experimental measurements were performed. The parameter conditions of numerical simulations and experiments are consistent. Simulations were performed with an input current amplitude of 15 mA and frequencies of up to 3 kHz and measurements were carried out with an input current amplitude of 0.74 mA and frequency of 1.5 kHz in order to compare with the state of the art.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zhang, Shao Hua. "Study and Design of PFC Circuit of LED Driver Power." Applied Mechanics and Materials 602-605 (August 2014): 3001–4. http://dx.doi.org/10.4028/www.scientific.net/amm.602-605.3001.

Повний текст джерела
Анотація:
Based on the full analysis of the LED drive power of active and passive (PFC) circuit, the active and passive (PFC) circuits of the LED drive power are performed a detailed analysis, and the types, series and mode of the PFC circuit are also described in detail, the working principles of the valley fill circuit and APFC boost converter are mainly analyzed. Based on those studies, an APFC circuit is given by the use of L6562A and a simple application of APFC circuit presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Baratchart, Laurent, Sylvain Chevillard, Adam Cooman, Martine Olivi, and Fabien Seyfert. "Linearized active circuits: transfer functions and stability." Mathematics in Engineering 4, no. 5 (2021): 1–18. http://dx.doi.org/10.3934/mine.2022039.

Повний текст джерела
Анотація:
<abstract><p>We study the properties of electronic circuits after linearization around a fixed operating point in the context of closed-loop stability analysis. When distributed elements, like transmission lines, are present in the circuit it is known that unstable circuits can be created without poles in the complex right half-plane. This undermines existing closed-loop stability analysis techniques that determine stability by looking for right half-plane poles. We observed that the problematic circuits rely on unrealistic elements with an infinite bandwidth. In this paper, we therefore define a class of realistic linearized components and show that a circuit composed of realistic elements is only unstable with poles in the complex right half-plane. Furthermore, we show that the amount of right half-plane poles in a realistic circuit is finite, even when distributed elements are present. In the second part of the paper, we provide examples of component models that are realistic and show that the class includes many existing models, including ones for passive devices, active devices and transmission lines.</p></abstract>
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Teng, Jianfu, J. K. Fidler, and Yichuang Sun. "Symbolic Circuit Analysis Using Mathematica." International Journal of Electrical Engineering & Education 31, no. 4 (October 1994): 324–33. http://dx.doi.org/10.1177/002072099403100405.

Повний текст джерела
Анотація:
Symbolic circuit analysis using Mathematics A method of symbolic circuit analysis using Mathematica is reported. With the powerful symbolic manipulation capacity of Mathematica, symbolic circuit analysis is significantly simplified. The analysed circuits can be passive or active, with active devices modelled by nullors. Non-trivial circuit analysis examples are presented and the program list is given.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Active and passive circuits"

1

Cho, Seong-Ho 1966. "Laser micromachining of active and passive photonic integrated circuits." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/30086.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2004.
Includes bibliographical references (leaves 149-158).
This thesis describes the development of advanced laser resonators and applications of laser-induced micromachining for photonic circuit fabrication. Two major advantages of laser-induced micromachining are direct patterning and writing on large areas of substrates at high speed following the exposure of laser light, without using complicated photomask steps. For passive photonic devices fabrication, a novel femtosecond laser with unprecedented low repetition rates of 4 MHz is demonstrated to generate high intensity pulses, as high as 1.25 MW with 100 nJ pulse energies and 80 fs pulse durations directly from this laser resonator, without using any active devices or amplifiers. These high intensity pulses are applied to transparent glass materials to demonstrate micromachining of waveguides, gratings, couplers, and three dimensional waveguides and their beam couplings. Active and passive semiconductor devices can be monolithically integrated by employing high energy laser pulses to locally disorder quantum well regions. The 45 nm bandgap shifts at 1.55 ptm with a standard Q-switched Nd:YAG laser at 535 nm are realized. Finally, unidirectional semiconductor ring lasers for high-density integration are developed as a potential application to photonic integrated circuits. Hybrid semiconductor S-crossover and retro-reflected ring lasers, as prototypes for unidirectional operation, are built and result in up to 21.5 dB and 24.5 dB of counter-mode suppression ratio, respectively, which is in good agreement with theoretical predictions.
by Seong-Ho Cho.
Ph.D.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

McCullough, Denis. "Active and passive filters in the control of industrial harmonics." Thesis, Queen's University Belfast, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334582.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tee, Chyng Wen. "Vertically-coupled microring architecture for large-scale active-passive integration of photonic circuits." Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612543.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chirala, Mohan Krishna. "Passive and active circuits in cmos technology for rf, microwave and millimeter wave applications." [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-2069.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sarmiento, Leon Mayra Susana. "Testing platform implementation and system integration for an active/passive imager system including readout circuit design." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file 5.32 Mb., 170 p, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3220740.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zanzi, Andrea. "Passive and active silicon photonics devices at TLC telecommunication wavelengths for on-chip optical interconnects." Doctoral thesis, Universitat Politècnica de València, 2020. http://hdl.handle.net/10251/149377.

Повний текст джерела
Анотація:
[EN] Optical technologies are the backbone of modern communication systems providing high-speed access to the Internet, efficient inter and intra-data center interconnects and are expending towards growing research fields and new markets such as satel- lite communications, LIDARs (Laser Imaging Detection and Ranging) applications, Neuromorphic computing, and programable photonic circuits, to name a few. Be- cause of its maturity and low-cost, silicon photonics is being leveraged to allow these new technologies to reach their full potential.As a result, there is a strong need for innovative, high-speed and energy-efficient photonic integrated building blocks on the silicon platform to increase the readiness of silicon photonic integrated circuits. The work developed and presented in this thesis is focused on the design and char- acterization of advanced passive and active devices, for photonic integrated circuits. The thesis consists of three main chapters as well as a motivation and concluding sections exposing the rationale and the accomplishments of this work. Chapter one describes the design and characterization of an electro-optical Mach-Zehnder mod- ulator embedded in highly efficient vertical pn junction exploiting the free-carrier dispersion effect in the O-band.. Chapter two is devoted to the design and charac- terization of a novel geometry of asymmetrical multimode interference device and its implementation in a Mach-Zehnder modulator. Chapter three is dedicated to the design and characterization of innovative 1-dimensional photonic crystal designs for slow- lightmodulation applications. An extensive analysis of the main trade-off arising from the use of slow light is presented.
[ES] Las tecnologías ópticas son el eje vertebrador de los sistemas de comunicación mod- ernos que proporcionan acceso de alta velocidad a la Internet, interconexiones efi- cientes entre centros de datos y dentro de ellos. Además, se están expandiendo hacia campos de investigación crecientes y nuevos mercados como son las aplicaciones de comunicaciones por satélite, los LIDAR (Laser Imaging Detection and Ranging), la computación neuromórfica y los circuitos fotónicos programables, por nombrar algunos. La fotónica de silicio está considerada y aceptada ampliamente como una de las tecnologías clave para que dichas aplicaciones puedan desarrollarse. Como resultado, hay una fuerte necesidad de estructuras fotónicas básicas integradas que sean innovadoras, que soporten altas velocidades de transmisión y que sean más eficientes en términos de consumo de potencia, a fin de aumentar la capacidad de los circuitos integrados fotónicos de silicio. El trabajo desarrollado y presentado en esta tesis se centra en el diseño y la car- acterización de dispositivos avanzados pasivos y activos, para circuitos fotónicos integrados. La tesis consta de tres capítulos principales, así como de sendas sec- ciones de motivación y conclusiones que exponen los fundamentos y los logros de este trabajo. El capítulo uno describe el diseño y la caracterización de un modulador electro-óptico Mach-Zehnder incorporado en una unión pn vertical altamente eficien- ciente que explota el efecto de dispersión de plasma en banda O. El capítulo dos está dedicado al diseño y caracterización de una nueva geometría de dispositivo de interferencia multimodo asimétrico y su aplicación en un modulador Mach-Zehnder. El capítulo tres está dedicado al diseño y caracterización de innovadores cristales fotónicos unidimensionales para aplicaciones de modulación con luz lenta. Se pre- senta un amplio análisis de los principales retos derivados del uso de la misma.
[CA] Les tecnologies òptiques són l'eix vertebrador d'aquells sistemes de comunicació moderns que proporcionen accés d'alta velocitat a la Internet, així com intercon- nexions eficients inter i entre centres de dades. A més a més, s'estan expandint cap a camps d'investigació creixents i nous mercats com són les aplicacions de co- municacions per satèl·lit, els LIDAR (Laser Imaging Detection and Ranging), la computació neuromòrfica i els circuits fotònics programables, entre d'altres. La fotònica de silici és considerada i acceptada àmpliament com una de les tecnologies clau i necessàries perquè aquestes aplicacions puguen desenvolupar-se. Per aquest motiu, es fa necessària l'existència d'estructures fotòniques bàsiques integrades que siguen innovadores, que suporten altes velocitats de transmissió i que siguen més eficients en termes de consum de potència, a fi d'augmentar la capacitat dels cir- cuits integrats fotònics de silici. El treball desenvolupat i presentat en aquesta tesi se centra en el disseny i la caracterització de dispositius avançats passius i actius, per a circuits fotònics integrats. La tesi consta de tres capítols principals, així com d'una secció de motivació i una altra de conclusions que exposen els fonaments i els assoliments d'aquest treball. El capítol u descriu el disseny i la caracterització d'un modulador electro-òptic Mach-Zehnder incorporat en una unió pn vertical d'alta efi- ciència que explota l'efecte de dispersió de plasma en la banda O. El capítol dos està dedicat al disseny i caracterització d'una nova geometria de dispositiu d'interferència multimode asimètric així com a la seua aplicació en un modulador Mach-Zehnder. El capítol tres està dedicat al disseny i caracterització d'innovadors cristalls fotònics unidimensionals per a aplicacions de modulació amb llum lenta. S'inclou també una anàlisi detallada dels principals reptes derivats de l'ús d'aquest tipus de llum.
I want to thank you the Generelitat Valenciana and the European Project L3MATRIX for the funding, without them my doctorate would not taken place.
Zanzi, A. (2020). Passive and active silicon photonics devices at TLC telecommunication wavelengths for on-chip optical interconnects [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/149377
TESIS
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Al-Bayaty, Hussein Kamal Anwer. "Novel methods of utilization, elimination, and description of the distortion power in electrical circuits." Thesis, University of Plymouth, 2018. http://hdl.handle.net/10026.1/10646.

Повний текст джерела
Анотація:
Firstly, this thesis investigates the electrical power harmonics in an attempt to utilize harmonic current and its distortion power in a novel idea to reconvert the distortion power into useful power. This is done, in order to feed different DC or AC loads in single and three-phase power system by using passive or active filters and accordingly, develop a new topology of hybrid active power filter (HAPF). In addition, this circuit can be considered as a power factor corrector (PFC) because it reduces the total harmonic distortion (THD) and improves the power factor (PF). Secondly, this thesis works on a new design of active power factor correction (APFC) circuit presenting two circuits with the same design principle: the first design consists of two active switches without an external complex control circuit, while the second design contains a single active switch with an additional control circuit. The main contribution of this circuit is 98% reduction of the inductor's value used in the newly proposed PFC circuit in comparison with the conventional boost converter which may lead to a huge reduction in size, weight and the cost of the new PFC circuit. Also, the active switches depend on a carefully designed switching pattern that results in an elimination of the third order harmonic from the input source current which decreases the value of total current harmonic distortion (THDI) to (14%) and improves the input PF to (0.99). Consequently, the simplicity of the design without requiring a complex control circuit and without a snubber circuit plus the minimum size of inductor, gives the newly proposed circuit the superiority on other PFC circuits. Thirdly, this research aims to describe the distortion power through submitting two novel power terms called effective active power (Pef ) & reactive power (Qef ) terms with a new power diagram called Right-Angled Power Triangle (RAPT) Diagram. In addition, a novel de nition of total apparent power (St) has been submitted in order to illustrate the physical meaning of (St) in non-sinusoidal systems. The new RAPT Diagram is based on the orthogonality law and depends on geometrical summation to describe the relationship between different aspects (apparent-active-reactive) of power, and different components (total-fundamental distortion), drawing a bridge to connect the time domain with the frequency domain in a two-dimensional diagram.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Oliver, John Marcus. "3D Micromachined Passive Components and Active Circuit Integration for Millimeter-wave Radar Applications." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/77049.

Повний текст джерела
Анотація:
The development of millimeter-wave (30-300 GHz) sensors and communications systems has a long history of interest, spanning back almost six decades. In particular, mm-wave radars have applications as automotive radars, in remote atmospheric sensing applications, as landing radars for air and spacecraft, and for high precision imaging applications. Mm-wave radar systems have high angular accuracy and range resolution, and, while susceptible to atmospheric attenuation, are less susceptible to optically opaque conditions, such as smoke or dust. This dissertation document will present the initial steps towards a new approach to the creation of a mm-wave radar system at 94 GHz. Specifically, this dissertation presents the design, fabrication and testing of various components of a highly integrated mm-wave a 94 Ghz monopulse radar transmitter/receiver. Several architectural approaches are considered, including passive and active implementations of RF monopulse comparator networks. These architectures are enabled by a high-performance three-dimensional rectangular coaxial microwave transmission line technology known as PolyStrataTM as well as silicon-based IC technologies. A number of specific components are examined in detail, including: a 2x2 PolyStrata antenna array, a passive monopulse comparator network, a 94 GHz SiGe two-port active comparator MMIC, a 24 GHz RF-CMOS 4-port active monopulse comparator IC, and a series of V- and W-band corporate combining structures for use in transmitter power combining applications. The 94 GHz cavity-backed antennas based on a rectangular coaxial feeding network have been designed, fabricated, and tested. 13 dB gain for a 2 x 2 array, as well as antenna patterns are reported. In an effort to facilitate high-accuracy measurement of the antenna array, an E-probe transition to waveguide and PolyStrata diode detectors were also designed and fabricated. AW-band rectangular coaxial passive monopulse comparator with integrated antenna array and diode detectors have also been presented. Measured monopulse nulls of 31.4 dB in the ΔAZ plane have been demonstrated. 94-GHz SiGe active monopulse comparator IC and 24 GHz RF-CMOS active monopulse comparator RFIC designs are presented, including detailed simulations of monopulse nulls and performance over frequency. Simulations of the W-band SiGe active monopulse comparator IC indicate potential for wideband operation, with 30 dB monopulse nulls from 75-105 GHz. For the 24-GHz active monopulse comparator IC, simulated monopulse nulls of 71 dB and 68 dB were reported for the azimuthal and elevational sweeps. Measurements of these ICs were unsuccessful due to layout errors and incomplete accounting for parasitics. Simulated results from a series of rectangular coaxial power corporate power combining structures have been presented, and their relative merits discussed. These designs include 2-1 and 4-1 reactive, Wilkinson, and Gysel combiners at V- and W-band. Measured back-to-back results from Gysel combiners at 60 GHz included insertion loss of 0.13 dB per division for a 2-1 combination, and an insertion loss of 0.3 dB and 0.14 dB for "planar" and "direct" 4-1 combinations, respectively. At 94 GHz, a measured insertion loss of 0.1 dB per division has been presented for a 2-1 Gysel combination, using a back-to-back structure. Preliminary designs for a solid-state power amplifier (SSPA) structure have also been presented. Finally, two conceptual monopulse transceivers will be presented, as a vehicle for integrating the various components demonstrated in this dissertation.
Ph. D.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Viellard, Juliette. "Etudes des circuits neuronaux organisant l'évitement actif instrumental et l'évitement contextuel non instrumental." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0456.

Повний текст джерела
Анотація:
Les mammifères, y compris les rongeurs, présentent un large éventail de comportements défensifs actifs, tels que l’évitement, ou passif, tel que l’immobilisation (le freezing), à des fins d’adaptation et de survie. La réponse d'évitement est une réaction apprise dans laquelle un individu prend le contrôle de situations dangereuses pour faire face aux menaces. Une forme d'évitement qui a été étudiée est l'évitement actif signalé, où les individus sont entraînés à éviter une situation et fuient en réponse à un signal précédemment associé à un stimulus aversif. Il a été souligné que le Cortex préfrontal dorso-médian (CPFdm) joue un rôle important dans l’encodage de l’acquisition et de l’expression du freezing ainsi que dans les réponses d’évitement. Cependant, sa contribution à l'acquisition et à l'expression de comportements d'évitement n'est pas claire, et les circuits neuronaux du CPFdm qui gèrent ensemble les stratégies d’adaptation actives et passives, restent à découvrir. Pour répondre à cette question, nous avons développé un nouveau paradigme comportemental dans lequel une souris a la possibilité de se figer ou d’éviter un stimulus aversif en fonctions des contingences contextuelles. Premièrement, nous avons étudié le rôle de la voie entre le CPFdm et la matière grise periaqueducale (PAG) dans l’évitement actif signalé, et sa relation avec le freezing. Nos résultats indiquent que (i) le CPFdm et le dl/lPAG sont activés lors du comportement d'évitement, (ii) et que l'inhibition optogénétique de cette voie bloque l'acquisition de l'évitement conditionné. Une forme d'évitement non instrumental est également étudiée, dans laquelle l'individu apprend à éviter l'environnement aversif en utilisant uniquement des indices contextuels et affichant des comportements d'évaluation des risques à l’encontre de l'environnement dangereux. Il a été précédemment démontré que dans cette situation, un circuit septohippocampale-hyptothalamique-tronc cérébrale est spécialement activé. Cette analyse a aussi révélé que le noyau dorsal pré-mamillaire (PMD) devait être impliqué de manière critique dans l'évitement passif contextuel. Nous avons analysé l'influence de la modulation du PMD et de ses projections au niveau de ses cibles principales, sur le processus d'expression et de reconsolidation de l'évitement passif contextuel. Nos résultats ont montré qu’une (i) voie septohippocampale-hyptothalamique-tronc cérébrale spécifique était impliquée dans notre paradigme d’évitement passif. (ii) De plus, l’inhibition du PMD lors d'une exposition au contexte aversif altère à la fois l'expression des comportements d'évitement et la reconsolidation de la mémoire. (iii) Enfin l’inhibition au niveau des terminaux du PMD altère l'expression et la reconsolidation de la mémoire dans le dlPAG et dans l’AMv. Les expériences de ce projet ont été menées à bien à l’aide d’analyse Fos, d'inhibition pharmacogénétique et optogénétiques
Mammals, including rodents show a broad range of defensive behaviors as a mean of coping actively, such as avoidance behaviors, or passively such as freezing behavior. The avoidance response is a learned response in which an individual takes control in dangerous situations to deal with threats. One form of avoidance that has been investigated is the signaled active avoidance, where individuals are trained to avoid an environment, and escape in response to a cue previously associated with an aversive stimulus. It has been emphasized that the dmPFC plays an important role in encoding freezing acquisition and expression as well as active avoidance responses. However the neural circuits of the dmPFC processing the expression and acquisition of both active and passive coping strategies are yet to be discovered. To adress this question, we developed a novel behavioral paradigm in which a mouse has the possibility to either passively freeze to an aversive stimulus or to actively avoid it as a function of contextual contingencies. We first investigated the role of the pathway between the dmPFC and PAG in signaled active avoidance, and its relation with freezing. Our results indicate that (i) dmPFC and dl/lPAG sub-regions are activated during avoidance behavior, (ii) and that the optogenetic inhibition of this pathway blocked the acquisition of active avoidance. A non-instrumental form of avoidance is also investigated where the individual learns to avoid the aversive environment using contextual clues only, and displaying risk assessment behaviors toward the fearful environment. It has been previously shown that in this situation, a circuit involving the septohippocampal-hypothalamic-brainstem pathway is involved. It also revealed that the dorsal premammillary nucleus (PMD) must be critically involved in contextual passive avoidance. We analysed how the manipulation of the PMD and its projections to its main targets influences the expression and reconsolidation processes of contextual passive avoidance. Our results showed that (i) a specific septohippocampal-hypothalamic-braintem pathway is involved in our passive avoidance paradigm. (ii) Silencing the PMD during context exposure impairs both avoidance expression and memory reconsolidation and that (iii) the inhibition at terminal level impairs the expression and memory reconsolidation in both dlPAG and AMv. Both parts of the project assessed these questions using Fos immunochemistry analysis, manipulations of neural circuits using optogenetic, and pharmacogenetic techniques
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Santos, Heinsten Frederich Leal dos. "Controle de vibrações estruturais usando cerâmica piezoelétricas em extensão e cisalhamento conectadas a circuitos híbridos ativo-passivos." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/18/18149/tde-28082009-170649/.

Повний текст джерела
Анотація:
Esta dissertação apresenta uma análise numérica do controle de vibrações estruturais através de cerâmicas piezoelétricas em extensão e em cisalhamento conectadas a circuitos ativo-passivos compostos por resistência, indutância e fonte de tensão. Para tal, um modelo de elementos finitos de vigas sanduíche com três camadas elásticas e/ou piezoelétricas foi desenvolvido. Realizou-se também uma modelagem dos componentes do circuito elétrico e seu acoplamento à estrutura gerando assim uma equação de movimento acoplada para a estrutura com elementos piezoelétricos conectados aos circuitos elétricos. Uma análise harmônica das equações obtidas foi realizada para se obter uma avaliação preliminar dos efeitos causados pelos componentes elétricos do circuito na estrutura. Observou-se que os elementos passivos do circuito, resistência e indutância, tem não somente um efeito de absorvedor dinâmico de vibrações mas, também, promovem uma amplificação da autoridade de controle no caso de se atuar através da fonte de tensão. Usando a metodologia tradicional de projeto de absorvedores dinâmicos de vibrações, derivou-se expressões para os valores de resistência e indutância de modo a maximizar o desempenho passivo do sistema. Uma análise numérica do desempenho na redução das amplitudes de vibração em um viga engastada-livre com uma cerâmica piezoelétrica em extensão ou cisalhamento foi realizada mostrando bons resultados. Em seguida, uma análise da autoridade de controle para estas estruturas foi realizada visando a implementação de um controle híbrido ativo-passivo. A parcela ativa do controle foi obtida usando-se uma estratégia de controle por retroalimentação ótima do tipo linear quadratic regulator para calcular a tensão aplicada ao circuito. Uma comparação entre os resultados mostra que o controle híbrido ativo-passivo é sempre superior aos controles puramente ativos ou passivo para os dois casos estudados, com cerâmicas piezoelétricas em extensão e cisalhamento.
This work presents a numerical analysis of the structural vibration control using piezoelectric materials in extension and shear mode connected to active-passive electric circuits composed of the resistance, inductance and voltage source. For that, a finite element model for sandwich beams with three elastic or piezoelectric layers was developed. A modeling of the electric circuit dynamics and its coupling to the structure with piezoelectric elements was also done. A harmonic analysis of the resulting equations was performed to yield a preliminary evaluation of the effects caused by the electric circuit components on the structure. It was observed that the passive circuit components not only lead to a dynamic vibration absorber effect but also to an amplification of the control authority in case of actuation using the voltage source. Using the standard methodology for the design of dynamic vibration absorbers, expressions were derived for the resistance and inductance values that optimize the passive vibration control performance of the system. A numerical analysis of the passive vibration control was performed for cantilever beams with extension and shear piezoelectric ceramics showing satisfactory results. Then, an analysis of the control authority was carried out for the same structures aiming at an active-passive vibration control. The active control was achieved using a linear quadratic regulator optimal feedback strategy to evaluate the voltage applied to the circuit. A comparison between the obtained results show that hybrid active-passive control is always superior to the purely active or purely passive control for both cases studied, with extension and shear piezoelectric ceramics.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Active and passive circuits"

1

Helszajn, J. Microwave engineering: Passive, active, and non-reciprocal circuits. London: McGraw-Hill, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Helszajn, J. Microwave engineering: Passive, active and non-reciprocalcircuits. London: McGraw-Hill, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rozzi, T. Advanced electromagnetic analysis of passive and active planar structures. London: Institution of Electrical Engineers, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Schaumann, Rolf. Design of analog filters: Passive, active, RC and switched capacitor. Englewood Cliffs: Prentice-Hall, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Schaumann, Rolf. Design of analog filters: Passive, active RC, and switched capacitor. Englewood Cliffs, N.J: Prentice-Hall, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Thomas, H. Michael. Analog signal processing. Needham Heights, MA: Simon & Schuster Custom Pub., 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Transform analysis and filters. Englewood Cliffs, N.J: Prentice Hall, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nagle, Gerard. Passive, semi-active and active suspension. Dublin: University College Dublin, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yack, Bernard. Active and passive justice. [Toronto, Ont.]: Faculty of Law, University of Toronto, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hohlfeld, Oliver, Andra Lutu, and Dave Levin, eds. Passive and Active Measurement. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72582-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Active and passive circuits"

1

Powell, Richard F. "Linear Integrated Circuits." In Testing Active and Passive Electronic Components, 147–77. Boca Raton: Routledge, 2022. http://dx.doi.org/10.1201/9780203737255-10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Powell, Richard F. "Digital Integrated Circuits." In Testing Active and Passive Electronic Components, 131–45. Boca Raton: Routledge, 2022. http://dx.doi.org/10.1201/9780203737255-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhao, Dixian, and Patrick Reynaert. "mm-Wave Active and Passive Devices." In Analog Circuits and Signal Processing, 33–57. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18839-3_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Waters, Allan. "Passive Filter Circuit Design." In Active Filter Design, 113–29. London: Macmillan Education UK, 1991. http://dx.doi.org/10.1007/978-1-349-21311-5_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Niknejad, Ali M., Sohrab Emami, Chinh Doan, Babak Heydari, and Mounir Bohsali. "Design and Modeling of Active and Passive Devices." In Series on Integrated Circuits and Systems, 59–108. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-76561-7_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Moschytz, George S. "Passive LCR and Active-RC Filters." In Analog Circuit Theory and Filter Design in the Digital World, 149–66. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-00096-7_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Amantea, Robert, Peter L. Demers, Michael Ettenberg, and Donald J. Channin. "An OEIC CAD System for Passive and Active Planar Waveguide Circuits." In Guided-Wave Optoelectronics, 445–53. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1039-4_53.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Asanbayev, Valentin. "Passive and Active Conducting Layers: The Circuit Loops." In Alternating Current Multi-Circuit Electric Machines, 227–73. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10109-5_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Genkin, Daniel, Yuval Ishai, and Antigoni Polychroniadou. "Efficient Multi-party Computation: From Passive to Active Security via Secure SIMD Circuits." In Lecture Notes in Computer Science, 721–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48000-7_35.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Barker, Derek C. "Passive circuits." In MINNIE and HSpice for Analogue Circuit Simulation, 9–31. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3122-3_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Active and passive circuits"

1

Hamilton, N. C. "Ferrites: magnetic and electric equivalent circuits and the complex permeability spectra." In Active and Passive RF Devices Seminar. Institution of Engineering and Technology, 2016. http://dx.doi.org/10.1049/ic.2016.0005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Vlasov, Yu A., E. Dulkeith, F. Xia, L. Sekaric, S. Assefa, M. O’Boyle, and S. J. McNab. "Passive and Active Silicon Nanophotonic Circuits." In Frontiers in Optics. Washington, D.C.: OSA, 2005. http://dx.doi.org/10.1364/fio.2005.ftuo3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Alfahmi, Obaidullah, Christopher Sugino, and Alper Erturk. "Nonlinear synthetic impedance circuits for piezoelectric structures." In Active and Passive Smart Structures and Integrated Systems XVI, edited by Jae-Hung Han, Shima Shahab, and Jinkyu Yang. SPIE, 2022. http://dx.doi.org/10.1117/12.2614638.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Alshaqaq, Mustafa, Christopher Sugino, and Alper Erturk. "Programmable spatial and spatiotemporal modulation of piezoelectric metamaterials with synthetic impedance circuits." In Active and Passive Smart Structures and Integrated Systems XVI, edited by Jae-Hung Han, Shima Shahab, and Jinkyu Yang. SPIE, 2022. http://dx.doi.org/10.1117/12.2614634.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Liao, Yabin, Feng Qian, and Lei Zuo. "System-level finite element simulation of piezoelectric energy harvesters with rectified interface circuits." In Active and Passive Smart Structures and Integrated Systems XV, edited by Jae-Hung Han, Shima Shahab, and Gang Wang. SPIE, 2021. http://dx.doi.org/10.1117/12.2585285.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mosquera-Sánchez, Jaime Alberto, and Carlos De Marqui. "Effect of negative capacitance circuits on the performance of the piezoelectric nonlinear energy sink." In Active and Passive Smart Structures and Integrated Systems IX, edited by Jae-Hung Han, Shima Shahab, and Gang Wang. SPIE, 2020. http://dx.doi.org/10.1117/12.2557810.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mosquera-Sánchez, Jaime Alberto, Nicholas Kim Ootani, and Carlos De Marqui. "Effects of negative capacitance circuits on the vibration attenuation performance of a nonlinear piezoelectric metastructure." In Active and Passive Smart Structures and Integrated Systems XVI, edited by Jae-Hung Han, Shima Shahab, and Jinkyu Yang. SPIE, 2022. http://dx.doi.org/10.1117/12.2612553.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Anishchenko, Vadim S., Igor A. Khovanov, and Boris V. Shulgin. "Stochastic resonance in passive and active electronic circuits." In Chaotic, fractal, and nonlinear signal processing. AIP, 1996. http://dx.doi.org/10.1063/1.51038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Koulouridis, S., M. Livadaru, and J. L. Volakis. "Antenna minimization with active and passive matching circuits." In 2008 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting. IEEE, 2008. http://dx.doi.org/10.1109/aps.2008.4619331.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sengupta, Kaushik, and Xue Wu. "Circuit-electromagnetics co-design: a new paradigm for silicon-based THz systems-on-chip." In Passive and Active Millimeter-Wave Imaging XXI, edited by David A. Wikner. SPIE, 2018. http://dx.doi.org/10.1117/12.2305522.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Active and passive circuits"

1

Parazin, R. J., and J. D. Galbraith. Passive versus active mitigation cost analysis. Office of Scientific and Technical Information (OSTI), April 1995. http://dx.doi.org/10.2172/61703.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hagler, L. A HYBRID PASSIVE/ACTIVE MAGNETIC BEARING SYSTEM. Office of Scientific and Technical Information (OSTI), May 2004. http://dx.doi.org/10.2172/15014167.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tanaka, T. J. Measurements of the effects of smoke on active circuits. Office of Scientific and Technical Information (OSTI), January 1998. http://dx.doi.org/10.2172/634071.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wereley, Norman M. Active/Passive Structural Damping Control for Rotorcraft Systems. Fort Belvoir, VA: Defense Technical Information Center, May 2002. http://dx.doi.org/10.21236/ada411152.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Nantista, Christopher D. Active and Passive RF Components for High-Power Systems. Office of Scientific and Technical Information (OSTI), September 2002. http://dx.doi.org/10.2172/812624.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dovrolis, Constantine, and Alex Sim. Advanced Performance Modeling with Combined Passive and Active Monitoring. Office of Scientific and Technical Information (OSTI), April 2015. http://dx.doi.org/10.2172/1329943.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Noble, Richard D., and Douglas L. Gin. Novel Nanocomposite Structures as Active and Passive Barrier Materials. Fort Belvoir, VA: Defense Technical Information Center, June 2010. http://dx.doi.org/10.21236/ada533484.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Myers, William L., Peter Joseph Karpius, and Steven Charles Myers. Active and Passive Diagnostic Signatures of Special Nuclear Materials. Office of Scientific and Technical Information (OSTI), May 2017. http://dx.doi.org/10.2172/1360688.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sze, H. Active and passive calcium transport systems in plant cells. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/5702526.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Blahut, Richard E., Yoran Bresler, Wend C. Chew, Pierre Moulin, and David C. Munson. Design and Optimization of Passive and Active Imaging Radar. Fort Belvoir, VA: Defense Technical Information Center, June 2002. http://dx.doi.org/10.21236/ada413598.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії