Добірка наукової літератури з теми "Acoustic thermometry. Speed of sound"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Acoustic thermometry. Speed of sound".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Acoustic thermometry. Speed of sound"

1

Dolgikh, Grigory, Yuri Morgunov, Alexander Burenin, Vladimir Bezotvetnykh, Vladimir Luchin, Aleksandr Golov, and Alexander Tagiltsev. "Methodology for the Practical Implementation of Monitoring Temperature Conditions over Vast Sea Areas Using Acoustic Thermometry." Journal of Marine Science and Engineering 11, no. 1 (January 6, 2023): 137. http://dx.doi.org/10.3390/jmse11010137.

Повний текст джерела
Анотація:
The methodological and technical possibilities of monitoring temperature fields in the Sea of Japan by acoustic thermometry methods are presented. The proposed tomographic method for monitoring the dynamics and structure of water is based on the transmission and reception of complex phase-shift keyed acoustic signals on a diagnosed track with the determination of the travel time along various ray trajectories, followed by the sound speed (temperature) determination. The physical prerequisites for the practical implementation of thermometric studies at large distances are based on the acoustic “mudslide” effect—the phenomenon of the acoustic energy “injection“ from the near-bottom shelf area to the underwater sound channel of the deep ocean. Based on the Sea of Japan example, an acoustic thermometry system based on tomographic schemes with mobile and stationary hydroacoustic sources for promising work in the field of oceanic climatology is proposed. For numerical calculations of the signal propagation channels’ impulse responses between sources and receivers, a specialized database of oceanological information was formed for the northwestern part of the Sea of Japan. The database includes all available data from organizations in Russia, Japan, North Korea, the Republic of Korea, and the United States (23,247 stations completed from 1925 to 2017). In the example of the Sea of Japan, a high-precision acoustic thermometry system based on tomographic schemes with developed mobile and stationary hydroacoustic transmitting and receiving systems was proposed and experimentally tested.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pisani, Marco, Milena Astrua, and Massimo Zucco. "Improved Acoustic Thermometry for Long-Distance Temperature Measurements." Sensors 23, no. 3 (February 2, 2023): 1638. http://dx.doi.org/10.3390/s23031638.

Повний текст джерела
Анотація:
Accurate measurements of long distances (in the order of tens of meters or more) are necessary in manufacturing processes of large structures, as, for example, in the aerospace industry. In the most demanding applications, the goal is to achieve a relative accuracy of 10−7 in the measurement of distances (e.g., 1 µm over 10 m). This goal can be obtained with laser interferometers whose accuracy is based on knowledge of the speed of light, which, in turn, depends on the temperature of air. A thermometer based on the measurement of the speed of sound in air has been realized at INRIM. Its purpose is the measurement of the air temperature along the measurement path of the interferometer with an accuracy of 0.1 °C at distances up to 11 m. The paper describes the principle and the experimental setup of the acoustic thermometer and demonstrates its performance by comparison with calibrated reference platinum resistance thermometers. Furthermore, we demonstrate the potentiality of the method to measure the vertical temperature gradient, which is the main error source in triangulation measurements when using laser trackers.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Li, Shen, Wubin Weng, Chengdong Kong, Marcus Aldén, and Zhongshan Li. "Dual-Laser-Induced Breakdown Thermometry via Sound Speed Measurement: A New Procedure for Improved Spatiotemporal Resolution." Sensors 20, no. 10 (May 14, 2020): 2803. http://dx.doi.org/10.3390/s20102803.

Повний текст джерела
Анотація:
Measurement of acoustic waves from laser-induced breakdown has been developed as gas thermometry in combustion atmospheres. In the measurement, two laser-induced breakdown spots are generated and the local gas temperature between these two spots is determined through the measurement of the sound speed between them. In the previous study, it was found that the local gas breakdown can introduce notable system uncertainty, about 5% to the measured temperature. To eliminate the interference, in present work, a new measurement procedure was proposed, where two individual laser pulses with optimized firing order and delay time were employed. With the new measurement procedure, the system uncertainty caused by local gas breakdown can be largely avoided and the temporal and spatial resolutions can reach up to 0.5 ms and 10 mm, respectively. The improved thermometry, dual-laser-induced breakdown thermometry (DLIBT), was applied to measure temperatures of hot flue gases provided by a multijet burner. The measured temperatures covering the range between 1000 K and 2000 K were compared with the ones accurately obtained through the two-line atomic fluorescence (TLAF) thermometry with a measurement uncertainty of ~3%, and a very good agreement was obtained.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhang, K., X. J. Feng, K. Gillis, M. Moldover, J. T. Zhang, H. Lin, J. F. Qu, and Y. N. Duan. "Acoustic and microwave tests in a cylindrical cavity for acoustic gas thermometry at high temperature." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374, no. 2064 (March 28, 2016): 20150049. http://dx.doi.org/10.1098/rsta.2015.0049.

Повний текст джерела
Анотація:
Relative primary acoustic gas thermometry (AGT) determines the ratios of thermodynamic temperatures from measured ratios of acoustic and microwave resonance frequencies in a gas-filled metal cavity on isotherms of interest. When measured in a cavity with known dimensions, the frequencies of acoustic resonances in a gas determine the speed of sound, which is a known function of the thermodynamic temperature T . Changes in the dimensions of the cavity are measured using the frequencies of the cavity's microwave resonances. We explored techniques and materials for AGT at high temperatures using a cylindrical cavity with remote acoustic transducers. We used gas-filled ducts as acoustic waveguides to transmit sound between the cavity at high temperatures and the acoustic transducers at room temperature. We measured non-degenerate acoustic modes in a cylindrical cavity in the range 295 K< T <797 K. The fractional uncertainty of the measured acoustic frequencies increased from 2×10 −6 at 295 K to 5×10 −6 at 797 K. In addition, we measured the frequencies of several transverse magnetic (TM) microwave resonances up to 1000 K in order to track changes in the cavity's length L and radius R . The fractional standard deviation of the values of L deduced from three TM modes increased from 3×10 −6 for T <600 K to 57 × 10 −6 at 1000 K. We observed similar inconsistencies in a previous study.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kucukosmanoglu, Murat, John A. Colosi, Christopher W. Miller, Peter F. Worcester, and Matthew A. Dzieciuch. "The Beaufort Sea acoustic duct's variability and its impact on acoustic propagation using the mode interaction parameter." Journal of the Acoustical Society of America 151, no. 4 (April 2022): A48—A49. http://dx.doi.org/10.1121/10.0010620.

Повний текст джерела
Анотація:
The Beaufort duct is a subsurface sound channel formed by cold Pacific Winter Water sandwiched between warmer Pacific Summer Water and Atlantic Water in the Western Arctic Ocean. This duct traps sound waves and allows them to travel long distances without losing energy to lossy interactions with sea ice and surface waves. This study quantifies Beaufort duct variability based on Canada Basin Acoustic Propagation Experiment (CANAPE) and Coordinated Arctic Acoustic Thermometry Experiment (CAATEX) oceanographic observations. Deterministic ocean features induce coupling between acoustic modes confined to the Beaufort duct and non-ducted modes by weakening the duct or causing it to take on an asymmetric form. A non-dimensional mode interaction parameter (MIP) can be defined using the acoustic frequency and the vertical and horizontal scales of sound speed perturbation to characterize coupling strength. It identifies three important wave propagation regimes: sudden approximation, adiabatic approximation, and maximum interaction regime (Colosi and Zinicola-Lapin, 2021). When the MIP between ducted and lossy modes is more and less than 1, strong and weak acoustic variability is predicted, respectively. Variability is high when the MIP between two ducted modes surpasses 1, but modei–mode interference patterns grow more complicated. Acoustic numerical simulations are used to demonstrate various effects.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Krolik, Jeffrey L., and Sunil Narasimhan. "Performance bounds on acoustic thermometry of ocean climate in the presence of mesoscale sound‐speed variability." Journal of the Acoustical Society of America 99, no. 1 (January 1996): 254–65. http://dx.doi.org/10.1121/1.414536.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Krolik, Jeffrey L., and Sunil Narasimhan. "Performance limits on acoustic thermometry of ocean climate in the presence of mesoscale sound‐speed variability." Journal of the Acoustical Society of America 96, no. 5 (November 1994): 3236. http://dx.doi.org/10.1121/1.411123.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Underwood, R., M. de Podesta, G. Sutton, L. Stanger, R. Rusby, P. Harris, P. Morantz, and G. Machin. "Estimates of the difference between thermodynamic temperature and the International Temperature Scale of 1990 in the range 118 K to 303 K." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374, no. 2064 (March 28, 2016): 20150048. http://dx.doi.org/10.1098/rsta.2015.0048.

Повний текст джерела
Анотація:
Using exceptionally accurate measurements of the speed of sound in argon, we have made estimates of the difference between thermodynamic temperature, T , and the temperature estimated using the International Temperature Scale of 1990, T 90 , in the range 118 K to 303 K. Thermodynamic temperature was estimated using the technique of relative primary acoustic thermometry in the NPL-Cranfield combined microwave and acoustic resonator. Our values of ( T − T 90 ) agree well with most recent estimates, but because we have taken data at closely spaced temperature intervals, the data reveal previously unseen detail. Most strikingly, we see undulations in ( T − T 90 ) below 273.16 K, and the discontinuity in the slope of ( T − T 90 ) at 273.16 K appears to have the opposite sign to that previously reported.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tavčar, Rok, Janko Drnovšek, Jovan Bojkovski, and Samo Beguš. "Optimization of a Single Tube Practical Acoustic Thermometer." Sensors 20, no. 5 (March 10, 2020): 1529. http://dx.doi.org/10.3390/s20051529.

Повний текст джерела
Анотація:
When designing a single tube practical acoustic thermometer (PAT), certain considerations should be addressed for optimal performance. This paper is concerned with the main issues involved in building a reliable PAT. It has to be emphasised that a PAT measures the ratio of the time delay between the single temperature calibration point (ice point) and any other temperature. Here, we present different models of the speed of sound in tubes, including the effects of real gases and an error analysis of the most accurate model with a Monte Carlo simulation. Additionally, we introduce the problem of acoustic signal overlap and some possible solutions, one of which is acoustic signal cancellation, which aims to eliminate the unwanted parts of an acoustic signal, and another is to optimize the tube length for the parameters of the gas used and specific temperature range.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gavioso, R. M., D. Madonna Ripa, C. Guianvarc’h, G. Benedetto, P. A. Giuliano Albo, R. Cuccaro, L. Pitre, and D. Truong. "Shell Perturbations of an Acoustic Thermometer Determined from Speed of Sound in Gas Mixtures." International Journal of Thermophysics 31, no. 8-9 (September 2010): 1739–48. http://dx.doi.org/10.1007/s10765-010-0831-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Acoustic thermometry. Speed of sound"

1

THIRUMALAI, RAJ SRIJITH BANGARU. "Acoustic Thermometry Based on Accurate Measurements of Speed of Sound in Air." Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2934680.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Burger, Gert Cloete. "Optimisation of the pulse-echo method with an application to acoustic thermometry." Thesis, Cape Peninsula University of Technology, 2010. http://hdl.handle.net/20.500.11838/1105.

Повний текст джерела
Анотація:
Thesis (MTech (Electrical Engineering))--Cape Peninsula University of Technology, 2009
In acoustics, pulse echo methods are well known as a means of measuring time of Hight. Traditional techniques for generating acoustic waves in solid ferromagnetic waveguides include piezoelectric, capacitive and magnetostriction. Piezoelectric and capacitive techniques are preferred due to the inefficiency of magnetostriction caused by electro-mechanical coupling losses and the fact that most ferromagnetic materials show low levels of magnetostriction. The aim of this study was to optimise the magnetostrictive effects for sensing applications based on a ferromagnetic waveguide using the pulse echo method. The results obtained were implemented in the design of an acoustic thermometer. Two configurations for signal generation and recovery were examined, the use of a single wound copper coil acting as a transceiver coil, and the use of separate transmit and receive coils. Results obtained using the latter configuration indicated better signal to noise ratio's and provided the flexibility to manipulate the point of signal recovery. The pulse echo method was implemented and optimised. An acoustic thermometer based on an existing design was developed by inducing a partial reflection from a set position in the waveguide, defining a sensing probe. Awareness of the elastic properties of the waveguide material enabled the guaging of its temperature by measuring the acoustic pulse velocity in the probe. The accuracy of the instrument was increased through signal conditioning, examined together with cross correlation and an increased sampling frequency. Systematic errors were resolved through calibration, giving the instrument an overall accuracy of ±O.56"C for the range of temperatures between 2O"C and 400"C.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Guthrie, Vanessa M. "Dynamics of eastern boundary currents and their effects on sound speed structure." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2006. http://library.nps.navy.mil/uhtbin/hyperion/06Jun%5FGuthrie.pdf.

Повний текст джерела
Анотація:
Thesis (M.S. in Physcial Oceanography)--Naval Postgraduate School, June 2006.
Thesis Advisor(s): Mary L. Batteen, John A. Colosi. "June 2006." Includes bibliographical references (p. 69-73). Also available in print.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Angerstein, Jeanette Louise. "A hemispherical acoustic resonator for the measurement of the speed of sound in gases." Thesis, University College London (University of London), 2000. http://discovery.ucl.ac.uk/1382240/.

Повний текст джерела
Анотація:
A hemispherical acoustic resonator is described which was designed and constructed for the measurement of the speed of sound in gases, at pressures up to 40 MPa and at temperatures in the range from 300 K to 400 K. The hemispherical geometry retains many of the advantages characteristic of the spherical geometry but affords a major advantage at high pressures because one of the transducers may be placed at a position of maximum acoustic density for the radial modes and so loss of signal strength is minimised. A detailed description is given of the resonator and pressure vessel, the thermostat and the various measurement techniques employed. Characterisation of the resonator was achieved using a prototype equatorial plate for which the sound source could be moved over the radius of the cavity. Using the prototype plate, measurements performed in air at room temperature and pressure allowed the transducer configuration to be optimised. Calibration of the resonator was possible by comparison of the values of ula(pj) obtained isothermally in nitrogen with data obtained previously using a spherical resonator. These measurements allowed the resonator's geometry to be characteriseda nd the dependenceo f the radius on temperaturea nd pressuret o be modelled. The semi-empirical model developed using the results of the calibration was tested using measurements obtained in argon; results were obtained simultaneously from the hemispherical resonator and a well-characterised spherical resonator. Measurements on propene together with the results from nitrogen allowed the halfwidths to be modelled and enabled useful information about the loss mechanisms occurring to be extracted from the measured halfwidths. Tetrafluoromethane was subsequently studied and the acoustic virial coefficients and vibrational relaxation times were measured and compared with literature values.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sun, Chao. "Acoustic characterisation of ultrasound contrast agents at high frequency." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/8093.

Повний текст джерела
Анотація:
This thesis aims to investigate the acoustic properties of ultrasound contrast agents (UCAs) at high ultrasound frequencies. In recent years, there has been increasing development in the use of high frequency ultrasound in the fields of preclinical, intravascular, ophthalmology and superficial tissue imaging. Although research studying the acoustic response of UCAs at low diagnostic ultrasonic frequencies has been well documented, quantitative information on the acoustical properties of UCAs at high ultrasonic frequencies is limited. In this thesis, acoustical characterisation of three UCAs was performed using a preclinical ultrasound scanner (Vevo 770, VisualSonics Inc., Canada). Initially the acoustical characterisation of five high frequency transducers was measured using a membrane hydrophone with an active element of 0.2 mm in diameter to quantify the transmitting frequencies, pressures and spatial beam profiles of each of the transducers. Using these transducers and development of appropriate software, high frequency acoustical characterisation (speed and attenuation) of an agar-based tissue mimicking material (TMM) was performed using a broadband substitution technique. The results from this study showed that the acoustical attenuation of TMM varied nonlinearly with frequency and the speed of sound was approximately constant 1548m·s-1 in the frequency range 12-47MHz. The acoustical properties of three commercially available lipid encapsulated UCAs including two clinical UCAs Definity (Lantheus Medical Imaging, USA) and SonoVue (Bracco, Italy) and one preclinical UCAs MicroMarker (untargeted) (VisualSonics, Canada) were studied using the software and techniques developed for TMM characterisation. Attenuation, contrast-to-tissue ratio (CTR) and subharmonic to fundamental ratio were measured at low acoustic pressures. The results showed that large off-resonance and resonant MBs predominantly contributed to the fundamental response and MBs which resonated at half of the driven frequency predominantly contributed to subharmonic response. The effect of needle gauge, temperature and injection rate on the size distribution and acoustic properties of Definity and SonoVue was measured and was found to have significant impacts. Acoustic characterisations of both TMM and UCAs in this thesis extend our understanding from low frequency to high frequency ultrasound and will enable the further development of ultrasound imaging techniques and UCAs design specifically for high frequency ultrasound applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tombul, Serdar. "A numerical study of the validity regimes of weak fluctuation theory for ocean acoustic propagation through random internal wave sound speed fields." Thesis, Monterey, Calif. : Naval Postgraduate School, 2007. http://bosun.nps.edu/uhtbin/hyperion.exe/07Mar%5FTombul.pdf.

Повний текст джерела
Анотація:
Thesis (M.S. in Engineering Acoustics and M.S. in Electrical Engineering)--Naval Postgraduate School, March 2007.
Thesis Advisor(s): John Colosi. "March 2007." Includes bibliographical references (p. 81-82 ). Also available in print.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Li, Qi. "Acoustic noise emitted from overhead line conductors." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/acoustic-noise-emitted-from-overhead-line-conductors(90a5c23c-a7fc-4230-bbab-16b8737b2af2).html.

Повний текст джерела
Анотація:
The developments of new types of conductors and increase of voltage level have driven the need to carry out research on evaluating overhead line acoustic noise. The surface potential gradient of a conductor is a critical design parameter for planning overhead lines, as it determines the level of corona loss (CL), radio interference (RI), and audible noise (AN). The majority of existing models for surface gradient calculation are based on analytical methods which restrict their application in simulating complex surface geometries. This thesis proposes a novel method which utilizes both analytical and numerical procedures to predict the surface gradient. Stranding shape, proximity of tower, protrusions and bundle arrangements are considered within this model. One of UK National Grid's transmission line configurations has been selected as an example to compare the results for different methods. The different stranding shapes are a key variable in determining dry surface fields. The dynamic behaviour of water droplets subject to AC electric fields is investigated by experiment and finite element modelling. The motion of a water droplet is considered on the surface of a metallic sphere. To understand the consequences of vibration, the FEA model is introduced to study the dynamics of a single droplet in terms of phase shift between vibration and exciting voltage. Moreover, the evolution of electric field within the whole cycle of vibration is investigated. The profile of the electric field and the characteristics of mechanical vibration are evaluated. Surprisingly the phase shift between these characteristics results in the maximum field occurring when the droplet is in a flattened profile rather than when it is ‘pointed’.Research work on audible noise emitted from overhead line conductors is reviewed, and a unique experimental set up employing a semi-anechoic chamber and corona cage is described. Acoustically, this facility isolates undesirable background noise and provides a free-field test space inside the anechoic chamber. Electrically, the corona cage simulates a 3 m section of 400 kV overhead line conductors by achieving the equivalent surface gradient. UV imaging, acoustic measurements and a partial discharge detection system are employed as instrumentation. The acoustic and electrical performance is demonstrated through a series of experiments. Results are discussed, and the mechanisms for acoustic noise are considered. A strategy for evaluating the noise emission level for overhead line conductors is developed. Comments are made on predicting acoustic noise from overhead lines. The technical achievements of this thesis are summarized in three aspects. First of all, an FEA model is developed to calculate the surface electric field for overhead line conductors and this has been demonstrated as an efficient tool for power utilities in computing surface electric field especially for dry condition. The second achievement is the droplet vibration study which describes the droplets' behaviour under rain conditions, such as the phase shift between the voltage and the vibration magnitude, the ejection phenomena and the electric field enhancement due to the shape change of droplets. The third contribution is the development of a standardized procedure in assessing noise emission level and the characteristics of noise emissions for various types of existing conductors in National Grid.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Laferriere, Alison Beth. "K-distribution fading models for Bayesian estimation of an underwater acoustic channel." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/63080.

Повний текст джерела
Анотація:
Thesis (S.M. in Electrical Engineering and Computer Science)--Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science; and the Woods Hole Oceanographic Institution), 2011.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 113-114).
Current underwater acoustic channel estimation techniques generally apply linear MMSE estimation. This approach is optimal in a mean square error sense under the assumption that the impulse response fluctuations are well characterized by Gaussian statistics, leading to a Rayleigh distributed envelope. However, the envelope statistics of the underwater acoustic communication channel are often better modeled by the K-distribution. In this thesis, by presenting and analyzing field data to support this claim, I demonstrate the need to investigate channel estimation algorithms that exploit K-distributed fading statistics. The impact that environmental conditions and system parameters have on the resulting distribution are analyzed. In doing so, the shape parameter of the K-distribution is found to be correlated with the source-to-receiver distance, bandwidth, and wave height. Next, simulations of the scattering behavior are carried out in order to gain insight into the physical mechanism that cause these statistics to arise. Finally, MAP and MMSE based algorithms are derived assuming K-distributed fading models. The implementation of these estimation algorithms on simulated data demonstrates an improvement in performance over linear MMSE estimation.
by Alison Beth Laferriere.
S.M.in Electrical Engineering and Computer Science
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Siemes, Kerstin. "Establishing a sea bottom model by applying a multi-sensor acoustic remote sensing approach." Doctoral thesis, Universite Libre de Bruxelles, 2013. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209381.

Повний текст джерела
Анотація:
Detailed information about the oceanic environment is essential for many applications in the field of marine geology, marine biology, coastal engineering, and marine operations. Especially, knowledge of the properties of the sediment body is often required. Acoustic remote sensing techniques have become highly attractive for classifying the sea bottom and for mapping the sediment properties, due to their high coverage capabilities and low costs compared to common sampling methods. In the last decades, a number of different acoustic devices and related techniques for analyzing their signals have evolved. Each sensor has its specific application due to limitations in the frequency range and resolution. In practice, often a single acoustic tool is chosen based on the current application, supported by other non-acoustic data where required. However, different acoustic remote sensing techniques can supplement each other, as shown in this thesis. Even more, a combination of complementary approaches can contribute to the proper understanding of sound propagation, which is essential when using sound for environmental classification purposes. This includes the knowledge of the relation between acoustics and sediment properties, the focus of this thesis. Providing a detailed three dimensional picture of the sea bottom sediments that allows for gaining maximum insight into this relation is aimed at.

Chapters 4 and 5 are adapted from published work, with permission:

DOI:10.1121/1.3569718 (link: http://asadl.org/jasa/resource/1/jasman/v129/i5/p2878_s1) and

DOI:10.1109/JOE.2010.2066711 (link: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5618582&queryText%3Dsiemes)

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of the Université libre de Bruxelles' products or services.


Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished

Стилі APA, Harvard, Vancouver, ISO та ін.
10

De, Man Pierre. "Contrôle actif du rayonnement acoustique des plaques: une approche à faible autorité." Doctoral thesis, Universite Libre de Bruxelles, 2004. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211180.

Повний текст джерела
Анотація:
L'objectif de cette thèse consiste en l'étude d'une stratégie de contrôle actif à faible autorité avec comme application le contrôle actif du rayonnement acoustique d'une plaque. Depuis l'essor du contrôle actif, son application aux problèmes acoustiques et vibracoustiques a été investiguée par de nombreux chercheurs, exploitant soit la théorie du contrôle optimal, soit des approches originales basées plus particulièrement sur la physique. Des notions spécifiques au contrôle vibroacoustique ont été développées comme, par exemple, les modes radiatifs pouvant caractériser le rayonnement acoustique d'une plaque d'une manière adaptée au contrôle.

Le contrôle actif à faible autorité, pour lequel le Laboratoire de Structures Actives a développé une expertise dans le domaine de l'amortissement et du contrôle actif des vibrations, est une solution attractive par sa simplicité de mise en oeuvre. Le plus souvent implémenté sous la forme d'un contrôle décentralisé constitué de boucles indépendantes, le contrôle à faible autorité bénéficie de certaines garanties de stabilité et de robustesse.

Bien que notre stratégie de contrôle puisse s'appliquer à n'importe quel type de plaque, l'application considérée dans ce travail a été motivée par le contexte socio-économique actuel en rapport avec les nuisances acoustiques. Il était en effet intéressant d'évaluer la stratégie de contrôle pour le problème de la transmission acoustique d'un vitrage. La stratégie de contrôle se divise en deux étapes. Tout d'abord le développement d'un capteur unique destiné à fournir une mesure représentative du bruit rayonné par une plaque en basse fréquence. Deux capteurs de vitesse volumétrique (l'un discret, l'autre distribué) ont ainsi été développés et évalués expérimentalement.

Ensuite, une procédure d'optimisation de l'emplacement d'un ensemble d'actionneurs pilotés en parallèle est proposée. L'objectif de cette phase d'optimisation est de forcer la réponse fréquentielle du système à posséder les propriétés d'un système colocalisé. La stratégie de contrôle est ensuite évaluée sur deux structures expérimentales.

/ This thesis is concerned with a low authority active control strategy applied to the sound radiation control of a baffled plate. Since the development of active control ,numerous researchers have studied its application to acoustical or vibroacoustical problems using either the modern control theory or other methods based rather on the understanding of the physics of the problem. Vibroacoustical active control has lead to the definition of radiation modes allowing to describe the radiated sound of a plate in an appropriate manner for active control purposes.

Low autorithy control (LAC), for which the Active Structures Laboratory has gained an expertise for active vibration control applications is an interesting solution for its implementation simplicity. Most of the time it consists of several decentralized control loops, and benefits from guaranteed stability and robustness properties. Although our control strategy can be applied to any kind of plates, the application considered here has been motivated by the present socio-economical context related to noise annoyances. The active control strategy has been applied the problem of the sound transmission loss of glass plates (windows). This strategy is in two steps :first a volume velocity sensor is developed as to give a measure representative of the radiated sound at low frequencies.

Two sensors have been developed (one discrete and one distributed) and experimentally tested. Next, an optimisation strategy is proposed which allow to locate on the plate a set of several actuators driven in parallel. The goal of this optimisation task is to obtain an open-loop frequency response which behave like a collocated system. The control strategy is finally evaluated on two plate structures.
Doctorat en sciences appliquées
info:eu-repo/semantics/nonPublished

Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Acoustic thermometry. Speed of sound"

1

Zuckerwar, Allan J. Sound speed measurements in liquid oxygen-liquid nitrogen mixtures. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Trusler, J. P. M. Physical acoustics and metrology of fluids. Bristol [England]: Adam Hilger, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Almgren, Martir. Scale model simulation of sound propagation considering sound speed gradients and acoustic boundary layers at a rigid surface. Göteberg: Bibliotekets Reproservice, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

R, Edwards Jack, and NASA Glenn Research Center, eds. Numerical speed of sound and its application to schemes for all speeds. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

R, Edwards Jack, and NASA Glenn Research Center, eds. Numerical speed of sound and its application to schemes for all speeds. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Younglove, Ben. Speed of sound data and related models for mixtures of natural gas constituents. Gaithersburg, MD: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

F, Brennan K., Summers C. J, and United States. National Aeronautics and Space Administration., eds. An acoustic charge transport imager for high definition television applications. Atlanta, Ga: Georgia Institute of Technology, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

F, Brennan K., Summers C. J, and United States. National Aeronautics and Space Administration., eds. An acoustic charge transport imager for high definition television applications. Atlanta, Ga: Georgia Institute of Technology, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

F, Brennan K., Summers C. J, and United States. National Aeronautics and Space Administration., eds. An acoustic charge transport imager for high definition television applications. Atlanta, Ga: Georgia Institute of Technology, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

F, Brennan K., Summers C. J, and United States. National Aeronautics and Space Administration., eds. An acoustic charge transport imager for high definition television applications: Semi-annual report. [Washington, DC: National Aeronautics and Space Administration, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Acoustic thermometry. Speed of sound"

1

Schneider, H. G. "Average Sound Intensities in Randomly Varying Sound-Speed Structures." In Ocean Variability & Acoustic Propagation, 283–92. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3312-8_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pinkel, Robert, and Jeffrey T. Sherman. "Internal Wave Induced Fluctuations in the Oceanic Density and Sound Speed Fields." In Ocean Variability & Acoustic Propagation, 103–18. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3312-8_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Field, R. L., and M. K. Broadhead. "The Effects of Sound Speed on the Shape of the Ocean Impulse Response." In Ocean Variability & Acoustic Propagation, 57–68. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3312-8_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jongens, A. W. D., and P. B. Runcimant. "Parametric Acoustic Array Application Using Liquids with Low Sound Speed." In Progress in Underwater Acoustics, 689–96. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1871-2_82.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Erbe, Christine, Alec Duncan, Lauren Hawkins, John M. Terhune, and Jeanette A. Thomas. "Introduction to Acoustic Terminology and Signal Processing." In Exploring Animal Behavior Through Sound: Volume 1, 111–52. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97540-1_4.

Повний текст джерела
Анотація:
AbstractThis chapter presents an introduction to acoustics and explains the basic quantities and concepts relevant to terrestrial and aquatic animal bioacoustics. Specific terminology that is introduced includes sound pressure, sound exposure, particle velocity, sound speed, longitudinal and transverse waves, frequency-modulation, amplitude-modulation, decibel, source level, near-field, far-field, frequency weighting, power spectral density, and one-third octave band level, amongst others. The chapter then introduces basic signal sampling and processing concepts such as sampling frequency, Nyquist frequency, aliasing, windowing, and Fourier transform. The chapter concludes with an introductory treatise of sound localization and tracking, including time difference of arrival and beamforming.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dosso, S. E., J. M. Ozard, and J. A. Fawcett. "Inversion of Acoustic Field Data for Bathymetry and Bottom Sound Speed via Simulated Annealing." In Acoustic Signal Processing for Ocean Exploration, 51–56. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1604-6_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mercier, Bertrand, Nitish B. Chandrasekaran, and Piero Colonna. "A Novel Acoustic Resonator for Speed of Sound Measurement in Dense Organic Vapours." In Proceedings of the 3rd International Seminar on Non-Ideal Compressible Fluid Dynamics for Propulsion and Power, 162–68. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69306-0_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Xiao, Peng, Yixin Yang, Long Yang, and Yang Shi. "Seasonal Effects of Sound Speed Profile on Mid-Range Acoustic Propagations Modes: Reliable Acoustic Path and Bottom Bounce." In Theory, Methodology, Tools and Applications for Modeling and Simulation of Complex Systems, 217–22. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2669-0_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Becker, Kyle M., and George V. Frisk. "Effects of Sound Speed Fluctuations Due to Internal Waves in Shallow Water on Horizontal Wavenumber Estimation." In Impact of Littoral Environmental Variability of Acoustic Predictions and Sonar Performance, 385–92. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0626-2_48.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Erbe, Christine, Alec Duncan, and Kathleen J. Vigness-Raposa. "Introduction to Sound Propagation Under Water." In Exploring Animal Behavior Through Sound: Volume 1, 185–216. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97540-1_6.

Повний текст джерела
Анотація:
AbstractSound propagation under water is a complex process. Sound does not propagate along straight-line transmission paths. Rather, it reflects, refracts, and diffracts. It scatters off rough surfaces (such as the sea surface and the seafloor) and off reflectors within the water column (e.g., gas bubbles, fish swim bladders, and suspended particles). It is transmitted into the seafloor and partially lost from the water. It is converted into heat by exciting molecular vibrations. There are common misconceptions about sound propagation in water, such as “low-frequency sound does not propagate in shallow water,” “over hard seafloors, all sound is reflected, leading to cylindrical spreading,” and “over soft seafloors, sound propagates spherically.” This chapter aims to remove common misconceptions and empowers the reader to comprehend sound propagation phenomena in a range of environments and appreciate the limitations of widely used sound propagation models. The chapter begins by deriving the sonar equation for a number of scenarios, including animal acoustic communication, communication masking by noise, and acoustic surveying of animals. It introduces the concept of the layered ocean, presenting temperature, salinity, and resulting sound speed profiles. These are needed to develop the most common concepts of sound propagation under water: ray tracing and normal modes. This chapter explains Snell’s law, reflection and transmission coefficients, and Lloyd’s mirror. It provides an overview of publicly available sound propagation software (including wavenumber integration and parabolic equation models). It concludes with a few practical examples of modeling propagation loss for whale song and a seismic airgun array.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Acoustic thermometry. Speed of sound"

1

Peplow, Andrew, Börje Nilsson, Börje Nilsson, Louis Fishman, Anders Karlsson, and Sven Nordebo. "Acoustic waves in variable sound speed profiles." In MATHEMATICAL MODELING OF WAVE PHENOMENA: 3rd Conference on Mathematical Modeling of Wave Phenomena, 20th Nordic Conference on Radio Science and Communications. AIP, 2009. http://dx.doi.org/10.1063/1.3117088.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

He, Huanhuan, and Dong Liu. "Sound Speed Optimization Based on Acoustic Point Spread Function." In 2009 3rd International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 2009. http://dx.doi.org/10.1109/icbbe.2009.5163414.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kim, Younsu, Chloé Audigier, Emad M. Boctor, and Nicholas Ellens. "Speed of sound reconstruction for HIFU ultrasound thermometry using an ultrasound element: simulation study (Withdrawal Notice)." In Ultrasonic Imaging and Tomography, edited by Neb Duric and Brett C. Byram. SPIE, 2018. http://dx.doi.org/10.1117/12.2293141.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Carriere, Olivier, Jean-Pierre Hermand, Matthias Meyer, and James V. Candy. "Dynamic Estimation of the Sound-Speed Profile from Broadband Acoustic Measurements." In OCEANS 2007 - Europe. IEEE, 2007. http://dx.doi.org/10.1109/oceanse.2007.4302430.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhang, Wei, Yi-wang Huang, Li Li, and Yang Song. "Inversion of sound speed profile based on waveform structure matching." In 2011 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA 2011). IEEE, 2011. http://dx.doi.org/10.1109/spawda.2011.6167199.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Li, Tongxu, Xiaomin Zhang, and Yang Yu. "Sound speed and attenuation of plane acoustic waves in a sandy sediment." In 2013 IEEE International Conference on Signal Processing, Communications and Computing. IEEE, 2013. http://dx.doi.org/10.1109/icspcc.2013.6663963.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Dong Yanwu, Tong Jie, and Sun Yongchen. "Relations Between the Acoustic Nonlinearity Parameter and Sound Speed and Tissue Composition." In IEEE 1987 Ultrasonics Symposium. IEEE, 1987. http://dx.doi.org/10.1109/ultsym.1987.199096.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Vendhan, C. P., A. Datta Chowdhury, Saba Mudaliar, and S. K. Bhattacharyya. "Eigenproblem for an ocean acoustic waveguide with random depth dependent sound speed." In 2014 USNC-URSI Radio Science Meeting. IEEE, 2014. http://dx.doi.org/10.1109/usnc-ursi.2014.6955609.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Willemink, Rene G. H., Srirang Manohar, Yashasvi Purwar, Cornelis H. Slump, Ferdi van der Heijden, and Ton G. van Leeuwen. "Imaging of acoustic attenuation and speed of sound maps using photoacoustic measurements." In Medical Imaging, edited by Stephen A. McAleavey and Jan D'hooge. SPIE, 2008. http://dx.doi.org/10.1117/12.770061.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

He, Li, Zhenglin Li, Shihong Zhou, Renhe Zhang, and Fenghua Li. "Sound speed profile inversion by matching acoustic intensity striations in shallow water." In ADVANCES IN OCEAN ACOUSTICS: Proceedings of the 3rd International Conference on Ocean Acoustics (OA2012). AIP, 2012. http://dx.doi.org/10.1063/1.4765931.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Acoustic thermometry. Speed of sound"

1

Henyey, Frank S. Acoustic Propagation Through Sound Speed Heterogeneity. Fort Belvoir, VA: Defense Technical Information Center, September 2009. http://dx.doi.org/10.21236/ada531751.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Colosi, John A. An Analysis of Long-Range Acoustic Propagation Fluctuations and Upper Ocean Sound Speed Variability. Fort Belvoir, VA: Defense Technical Information Center, December 2005. http://dx.doi.org/10.21236/ada441242.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Colosi, John A. An Analysis of Long-Range Acoustic Propagation Fluctuations and Upper Ocean Sound Speed Variability. Fort Belvoir, VA: Defense Technical Information Center, September 2003. http://dx.doi.org/10.21236/ada629913.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Colosi, John A. An Analysis of Long-Range Acoustic Propagation Fluctuations and Upper Ocean Sound Speed Variability. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada625607.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Colosi, John A. Analysis and Modeling of Ocean Acoustic Fluctuations and Moored Observations of Philippine Sea Sound-Speed Structure. Fort Belvoir, VA: Defense Technical Information Center, September 2009. http://dx.doi.org/10.21236/ada531640.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Spiesberger, John L. Acquisition of Acoustic Source to Augment Navy Sonars for Mapping Sound Speed and Temperature with Tomography. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada630196.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Colosi, John A. Analysis and Modeling of Ocean Acoustic Fluctuations and Moored Observations of Philippine Sea Sound-Speed Structure. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada571573.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Colosi, John A. Analysis and Modeling of Ocean Acoustic Fluctuations and Moored Observations of Philippine Sea Sound-Speed Structure. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada574824.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Colosi, John A., and Jinshan Xu. An Analysis of Upper Ocean Sound Speed Variability and its Effects on Long-Range Acoustic Fluctuations Observed for the North Pacific Acoustic Laboratory. Fort Belvoir, VA: Defense Technical Information Center, July 2006. http://dx.doi.org/10.21236/ada450109.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Richardson, Michael D., Kevin B. Briggs, T. J. Gorgas, R. H. Wilkens, and N. L. Frazer. In-Situ Acoustic and Laboratory Ultrasonic Sound Speed and Attenuation Measured in Heterogeneous Seabed Sediments: Eel Margin, California. Fort Belvoir, VA: Defense Technical Information Center, November 2000. http://dx.doi.org/10.21236/ada389978.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії