Добірка наукової літератури з теми "Acceleraton of particles"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Acceleraton of particles".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Acceleraton of particles"
Nishida, Yasushi. "Electron linear accelerator based on cross field acceleration principle." Laser and Particle Beams 7, no. 3 (August 1989): 561–79. http://dx.doi.org/10.1017/s0263034600007540.
Повний текст джерелаGuidoni, S. E., J. T. Karpen, and C. R. DeVore. "Spectral Power-law Formation by Sequential Particle Acceleration in Multiple Flare Magnetic Islands." Astrophysical Journal 925, no. 2 (February 1, 2022): 191. http://dx.doi.org/10.3847/1538-4357/ac39a5.
Повний текст джерелаHogan, Mark J. "Electron and Positron Beam–Driven Plasma Acceleration." Reviews of Accelerator Science and Technology 09 (January 2016): 63–83. http://dx.doi.org/10.1142/s1793626816300036.
Повний текст джерелаOgata, Atsushi, and Kazuhisa Nakajima. "Recent progress and perspectives of laser–plasma accelerators." Laser and Particle Beams 16, no. 2 (June 1998): 381–96. http://dx.doi.org/10.1017/s0263034600011654.
Повний текст джерелаKalmykov, S., O. Polomarov, D. Korobkin, J. Otwinowski, J. Power, and G. Shvets. "Novel techniques of laser acceleration: from structures to plasmas." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364, no. 1840 (January 24, 2006): 725–40. http://dx.doi.org/10.1098/rsta.2005.1734.
Повний текст джерелаFang, Jun, Qi Xia, Shiting Tian, Liancheng Zhou, and Huan Yu. "Kinetic simulation of electron, proton and helium acceleration in a non-relativistic quasi-parallel shock." Monthly Notices of the Royal Astronomical Society 512, no. 4 (April 14, 2022): 5418–22. http://dx.doi.org/10.1093/mnras/stac886.
Повний текст джерелаSow Mondal, Shanwlee, Aveek Sarkar, Bhargav Vaidya, and Andrea Mignone. "Acceleration of Solar Energetic Particles by the Shock of Interplanetary Coronal Mass Ejection." Astrophysical Journal 923, no. 1 (December 1, 2021): 80. http://dx.doi.org/10.3847/1538-4357/ac2c7a.
Повний текст джерелаKocharov, L. G., G. A. Kovaltsov, G. E. Kocharov, E. I. Chuikin, I. G. Usoskin, M. A. Shea, D. F. Smart, et al. "Electromagnetic and corpuscular emission from the solar flare of 1991 June 15: Continuous acceleraton of relativistic particles." Solar Physics 150, no. 1-2 (March 1994): 267–83. http://dx.doi.org/10.1007/bf00712889.
Повний текст джерелаD’Arcy, R., J. Chappell, J. Beinortaite, S. Diederichs, G. Boyle, B. Foster, M. J. Garland, et al. "Recovery time of a plasma-wakefield accelerator." Nature 603, no. 7899 (March 2, 2022): 58–62. http://dx.doi.org/10.1038/s41586-021-04348-8.
Повний текст джерелаPapini, Giorgio. "Maximal acceleration and radiative processes." Modern Physics Letters A 30, no. 31 (September 14, 2015): 1550166. http://dx.doi.org/10.1142/s0217732315501667.
Повний текст джерелаДисертації з теми "Acceleraton of particles"
Waldman, Zachary J. "Majorana Neutrinos in the Jacob-Wick phase convention." Diss., Online access via UMI:, 2008.
Знайти повний текст джерелаVerhagen, Erik. "Development of the new trigger and data acquisition system for the CMS forward muon spectrometer upgrade." Doctoral thesis, Universite Libre de Bruxelles, 2015. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209110.
Повний текст джерелаAfin d'affiner encore notre connaissance des processus mis en jeu lors collision de particules dans CMS, une mise à niveau du détecteur est prévue avant la fin de cette décennie. Certains sous-détecteurs actuellement installés, et notamment le spectromètre à muon dans la zone des bouchons, sont d’ores et déjà identifiés comme offrant des performances trop faibles pour l'augmentation du nombres d’événements prévu après cette mise à jour. Ce travail propose de réaliser une étude de faisabilité sur l'utilisation d'une technologie alternative pour ce sous-détecteur, notamment le Triple-GEM, pour combler ces limitations.
Une première partie de ce travail consiste en l'étude de cette nouvelle technologie de détecteur à gaz. Cependant, la mise en œuvre de cette technologie conduit à des modifications dans le système d'acquisition de données de CMS. La situation actuelle puis les implications d'un point de vue technique des modifications sont donc détaillées par la suite. Enfin, après avoir identifié les composants et les solutions permettant la collecte de résultats à l’échelle de l'ensemble du sous-détecteur, un système d'acquisition de données similaire a été réalisé et est décrit dans une dernière partie de ce travail.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Johnson, Samantha. "Optimizing the ion source for polarized protons." Thesis, University of the Western Cape, 2005. http://etd.uwc.ac.za/index.php?module=etd&.
Повний текст джерелаWeathersby, Stephen. "Damping higher order modes in the PEP-II B-factory storage ring collider." Diss., Connect to online resource - MSU authorized users, 2007.
Знайти повний текст джерелаTitle from PDF t.p. (viewed on August 18, 2009) Includes bibliographic references (p. 175-179). Also issued in print.
Williams, Logan Todd. "Ion acceleration mechanisms of helicon thrusters." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47691.
Повний текст джерелаLinz, Thomas M. "Self-Force on Accelerated Particles." Thesis, The University of Wisconsin - Milwaukee, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3712619.
Повний текст джерелаThe likelihood that gravitational waves from stellar-size black holes spiraling into a supermassive black hole would be detectable by a space based gravitational wave observatory has spurred the interest in studying the extreme mass-ratio inspiral (EMRI) problem and black hole perturbation theory (BHP). In this approach, the smaller black hole is treated as a point particle and its trajectory deviates from a geodesic due to the interaction with its own field. This interaction is known as the gravitational self-force, and it includes both a damping force, commonly known as radiation reaction, as well as a conservative force. The computation of this force is complicated by the fact that the formal expression for the force due to a point particle diverges, requiring a careful regularization to find the finite self-force.
This dissertation focuses on the computation of the scalar, electromagnetic and gravitational self-force on accelerated particles. We begin with a discussion of the "MiSaTaQuWa" prescription for self-force renormalization (Mino, Sasaki, Takasugi 1999 and Quinn and Wald, 1999) along with the refinements made by Detweiler and Whiting (2003), and demonstrate how this prescription is equivalent to performing an angle average and renormalizing the mass of the particle. With this background, we shift to a discussion of the "mode-sum renormalization" technique developed by Barack and Ori (2000), who demonstrated that for particles moving along a geodesic in Schwarzschild spacetime (and later in Kerr spacetime), the regularization parameters can be described using only the leading and subleading terms (known as the A and B terms). We extend this to demonstrate that this is true for fields of spins 0, 1, and 2, for accelerated trajectories in arbitrary spacetimes.
Using these results, we discuss the renormalization of a charged point mass moving through an electrovac spacetime; extending previous studies to situations in which the gravitational and electromagnetic contributions are comparable. We renormalize by using the angle average plus mass renormalization in order to find the contribution from the coupling of the fields and encounter a striking result: Due to a remarkable cancellation, the coupling of the fields does not contribute to the renormalization. This means that the renormalized mass is obtained by subtracting (1) the purely electromagnetic contribution from a point charge moving along an accelerated trajectory and (2) the purely gravitational contribution of an electrically neutral point mass moving along the same trajectory. In terms of the mode-sum regularization, the same cancellation implies that the regularization parameters are merely the sums of their purely electromagnetic and gravitational values.
Finally, we consider the scalar self-force on a point charge orbiting a Schwarzschild black-hole following a non-Keplerian circular orbit. We utilize the techniques of Mano, Suzuki, and Takasugi (1996) for generating analytic solutions. With this tool, it is possible to generate a solution for the field as a series in the Fourier frequency, which allows researchers to naturally express the solutions in a post Newtonian series (see Shah et. al. 2014). We make use of a powerful insight by Hikida et. al.(2005), which allows us to perform the renormalization analytically. We investigate the details of this procedure and illuminate the mechanisms through which it works. We finish by demonstrating the power of this technique, showing how it is possible to obtain the post Newtonian expressions by only explicitly computing a handful of modes.
Alton, Andrew K. "Evidence for the existence of jets in photon-parton interaction events at center of mass energies from 18 to 28 GEV." Virtual Press, 1995. http://liblink.bsu.edu/uhtbin/catkey/1014850.
Повний текст джерелаDepartment of Physics and Astronomy
Hosack, Michael G. "Optimization of particle tracking for experiment E683 at Fermi National Laboratory." Virtual Press, 1995. http://liblink.bsu.edu/uhtbin/catkey/941370.
Повний текст джерелаDepartment of Physics and Astronomy
Guo, Fan. "Effects of Turbulent Magnetic Fields on the Transport and Acceleration of Energetic Charged Particles: Numerical Simulations with Application to Heliospheric Physics." Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/255156.
Повний текст джерелаRosencranz, Daniela Necsoiu. "Monte Carlo simulation and experimental studies of the production of neutron-rich medical isotopes using a particle accelerator." Thesis, University of North Texas, 2002. https://digital.library.unt.edu/ark:/67531/metadc3077/.
Повний текст джерелаКниги з теми "Acceleraton of particles"
CERN Accelerator School Superconductivity in Particle Accelerators (1995 Haus Rissen, Hamburg, Germany). CAS, CERN Accelerator School Superconductivity in Particle Accelerators: Haus Rissen, Hamburg, Germany, 17-24 May 1995 : proceedings. Edited by Turner S. 1935- and European Organization for Nuclear Research. Geneva: CERN, European Organization for Nuclear Research, 1996.
Знайти повний текст джерелаPrinciples of charged particle acceleration. New York: J. Wiley, 1986.
Знайти повний текст джерелаKlapdor-Kleingrothaus, H. V. Non-accelerator particle physics. Bristol: Institute of Physics Pub., 1998.
Знайти повний текст джерелаNon-accelerator particle physics. Bristol: Institute of Physics Pub., 1995.
Знайти повний текст джерелаEdwards, D. A. An introduction to the physics of high energy accelerators. New York: Wiley, 1993.
Знайти повний текст джерелаBlondel, Alain. ECFA/CERN studies of a European neutrino factory complex. Geneva: CERN, 2004.
Знайти повний текст джерелаLee, S. Y. Accelerator physics. 3rd ed. Hackensack, NJ: World Scientific, 2012.
Знайти повний текст джерелаWiedemann, Helmut. Particle Accelerator Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-02903-9.
Повний текст джерелаWiedemann, Helmut. Particle Accelerator Physics. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18317-6.
Повний текст джерелаWiedemann, Helmut. Particle Accelerator Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05034-7.
Повний текст джерелаЧастини книг з теми "Acceleraton of particles"
Otto, Thomas. "Risks and Hazards of Particle Accelerator Technologies." In Safety for Particle Accelerators, 5–54. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57031-6_2.
Повний текст джерелаSeeman, J., D. Schulte, J. P. Delahaye, M. Ross, S. Stapnes, A. Grudiev, A. Yamamoto, et al. "Design and Principles of Linear Accelerators and Colliders." In Particle Physics Reference Library, 295–336. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34245-6_7.
Повний текст джерелаMinty, Michiko G., and Frank Zimmermann. "Introduction." In Particle Acceleration and Detection, 1–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-08581-3_1.
Повний текст джерелаMinty, Michiko G., and Frank Zimmermann. "Collimation." In Particle Acceleration and Detection, 141–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-08581-3_6.
Повний текст джерелаReames, Donald V. "Gradual SEP Events." In Solar Energetic Particles, 97–133. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66402-2_5.
Повний текст джерелаOtto, Thomas. "Industrial Safety at Particle Accelerators." In Safety for Particle Accelerators, 83–116. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57031-6_4.
Повний текст джерелаBrugger, M., H. Burkhardt, B. Goddard, F. Cerutti, and R. G. Alia. "Interactions of Beams with Surroundings." In Particle Physics Reference Library, 183–203. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34245-6_5.
Повний текст джерелаReames, Donald V. "Distinguishing the Sources." In Solar Energetic Particles, 49–69. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66402-2_3.
Повний текст джерелаMinty, Michiko G., and Frank Zimmermann. "Cooling." In Particle Acceleration and Detection, 263–300. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-08581-3_11.
Повний текст джерелаVlahos, L., M. E. Machado, R. Ramaty, R. J. Murphy, C. Alissandrakis, T. Bai, D. Batchelor, et al. "Particle Acceleration." In Energetic Phenomena on the Sun, 127–224. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2331-7_2.
Повний текст джерелаТези доповідей конференцій з теми "Acceleraton of particles"
Kotaki, H., K. Nakajima, M. Kando, H. Ahn, T. Watanabe, T. Ueda, M. Uesaka, et al. "Laser Wakefield Acceleration Experiments." In Applications of High Field and Short Wavelength Sources. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/hfsw.1997.the24.
Повний текст джерелаJen, Tien-Chien, Longjian Li, Qinghua Chen, Wenzhi Cui, and Xinming Zhang. "The Acceleration of Micro- and Nano-Particles in Supersonic De-Laval-Type Nozzle." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-42583.
Повний текст джерелаFukanuma, H., N. Ohno, B. Sun, and R. Huang. "The Influence of Particle Morphology on In-flight Particle Velocity in Cold Spray." In ITSC2006, edited by B. R. Marple, M. M. Hyland, Y. C. Lau, R. S. Lima, and J. Voyer. ASM International, 2006. http://dx.doi.org/10.31399/asm.cp.itsc2006p0097.
Повний текст джерелаYagami, Hisanori, and Tomomi Uchiyama. "Vortex Simulation for Behavior of Solid Particles Falling in Air." In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-12019.
Повний текст джерелаHan, T., W. Li, X. Guo, and X. Yang. "Design of Cold Spray Nozzle to Optimize the Particle Velocity by Numerical Simulation." In ITSC2017, edited by A. Agarwal, G. Bolelli, A. Concustell, Y. C. Lau, A. McDonald, F. L. Toma, E. Turunen, and C. A. Widener. DVS Media GmbH, 2017. http://dx.doi.org/10.31399/asm.cp.itsc2017p0595.
Повний текст джерелаLeitz, K. H., M. O’Sullivan, A. Plankensteiner, H. Kestler, and L. S. Sigl. "Open FOAM Modelling of Particle Heating and Acceleration in Cold Spraying." In ITSC2017, edited by A. Agarwal, G. Bolelli, A. Concustell, Y. C. Lau, A. McDonald, F. L. Toma, E. Turunen, and C. A. Widener. DVS Media GmbH, 2017. http://dx.doi.org/10.31399/asm.cp.itsc2017p0589.
Повний текст джерелаAfanasiev, A. V., I. V. Bandurkin, A. M. Gorbachev, K. V. Mineev, N. Yu Peskov, A. V. Savilov, and A. A. Vikharev. "Development of photoinjector in IAP RAS." In 8th International Congress on Energy Fluxes and Radiation Effects. Crossref, 2022. http://dx.doi.org/10.56761/efre2022.s1-p-038101.
Повний текст джерелаAkin, Semih, Puyuan Wu, Chandra Nath, Jun Chen, and Martin Byung-Guk Jun. "A Study on the Effect of Nozzle Geometrical Parameters on Supersonic Cold Spraying of Droplets." In ASME 2022 17th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/msec2022-85703.
Повний текст джерелаOlson, C. L., C. A. Frost, E. L. Patterson, J. P. Anthes, and J. W. Poukey. "Ionization front accelerator: High gradients, demonstrated particle acceleration, and a proposed relativistic accelerator." In AIP Conference Proceedings Volume 130. AIP, 1985. http://dx.doi.org/10.1063/1.35281.
Повний текст джерелаLi, Longjian, Qinghua Chen, Wenzhi Cui, Tien-Chien Jen, Yi-Hsin Yen, Quan Liao, and Lin Zhu. "The Effects of the Distance Between Nozzle and Substrate on Cold Gas Dynamic Spray Process." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-10501.
Повний текст джерелаЗвіти організацій з теми "Acceleraton of particles"
Pullammanappallil, Pratap, Haim Kalman, and Jennifer Curtis. Investigation of particulate flow behavior in a continuous, high solids, leach-bed biogasification system. United States Department of Agriculture, January 2015. http://dx.doi.org/10.32747/2015.7600038.bard.
Повний текст джерелаSteinberg, R. I., and C. E. Lane. Non-accelerator particle physics. Office of Scientific and Technical Information (OSTI), September 1991. http://dx.doi.org/10.2172/5043726.
Повний текст джерелаGuo, Fan. Particle acceleration/energization during reconnection. Office of Scientific and Technical Information (OSTI), January 2017. http://dx.doi.org/10.2172/1340946.
Повний текст джерелаDimits, A. M., and J. A. Krommes. Stochastic particle acceleration and statistical closures. Office of Scientific and Technical Information (OSTI), October 1985. http://dx.doi.org/10.2172/5111904.
Повний текст джерелаGuo, Fan. Nonthermal Particle Acceleration in Magnetic Reconnection. Office of Scientific and Technical Information (OSTI), March 2017. http://dx.doi.org/10.2172/1345962.
Повний текст джерелаMosko, S. (Power converters for particle accelerators). Office of Scientific and Technical Information (OSTI), April 1990. http://dx.doi.org/10.2172/6948922.
Повний текст джерелаOgitsu, T., A. Devred, and K. Kim. Quench antenna for superconducting particle accelerator magnets. Office of Scientific and Technical Information (OSTI), October 1993. http://dx.doi.org/10.2172/91952.
Повний текст джерелаBirn, J., J. E. Borovsky, M. F. Thomsen, D. J. McComas, G. D. Reeves, R. D. Belian, M. Hesse, and K. Schindler. Particle acceleration from reconnection in the geomagnetic tail. Office of Scientific and Technical Information (OSTI), August 1997. http://dx.doi.org/10.2172/522543.
Повний текст джерелаGuo, Fan. Relativistic Magnetic Reconnection: A Powerful Cosmic Particle Accelerator. Office of Scientific and Technical Information (OSTI), October 2014. http://dx.doi.org/10.2172/1159566.
Повний текст джерелаBhat, Chandrashekara. Particle Accelerators at the Intensity Frontier for Elementary Particle Physics Research. Office of Scientific and Technical Information (OSTI), January 2023. http://dx.doi.org/10.2172/1922104.
Повний текст джерела