Добірка наукової літератури з теми "Abrasing wear"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Abrasing wear".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Abrasing wear"

1

Sokur, Mykola, Volodymyr Biletskyi, Mykhailo Fyk, Oleksandr Fyk, and Igor Zaselskiy. "The study of the lining layer abrasing wear in the semi-autogenous grinding mill." E3S Web of Conferences 166 (2020): 03008. http://dx.doi.org/10.1051/e3sconf/202016603008.

Повний текст джерела
Анотація:
In this work complex investigations of the abrasing wear of lining of self-grinding mills (semiautogenous grinding mills) are carried out with the obtaining of mathematical models of wear-abrasing of elevators in terms of height, weight, volume and worn-out area. In particular, according to the location and nature of the abrasing wear processes, the liner-lifters mill self-grinding are identified in three typical groups. During 1 year, in the conditions of Ingulets GOK, the monitoring of the abrasing wear of selected groups of lifters of self-grinding mills was performed. On the basis of the experimental data calculationed in the Microsoft Office Excel program, a set of mathematical models of lifter abrasing wear was obtained in terms of height, weight, volume and worn-out area. The obtained dependencies are recommended for prediction of abrasing wear of lining and necessary frequency of replacement of inserts-lifters. In addition, the research of wear of lining made of cast iron RF–4, showed a significant reduction in their abrasing wear compared with steel 110G13L. Thus, it has been shown that the selection of liner-lifters materials can reduce the inter–repair period by 3 times or more (replacement of worn-out lifters). A comparison of the actual picture of the abrasing wear of elevators and Simulation Statics simulated result (using SolidWorks) stresses shows the convergence of the arrangement of the zones of maximum stresses and the maximum abrasing wear of the lining. Investigation of the influence of the stressed state of lining plates on the intensity of their abrasing wear – a promising direction for further research.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chotěborský, R., P. Hrabě, M. Müller, J. Savková, M. Jirka, and M. Navrátilová. "Effect of abrasive particle size on abrasive wear of hardfacing alloys." Research in Agricultural Engineering 55, No. 3 (September 22, 2009): 101–13. http://dx.doi.org/10.17221/24/2008-rae.

Повний текст джерела
Анотація:
Hardfacing is one of the most useful and economical ways to improve the performance of components submitted to severe wear conditions. This study has been made for the comparison of microstructure and abrasion resistance of hardfacing alloys reinforced with chromium carbides or complex carbides. The hardfacing alloys were deposited onto ČNS EN S235JR low carbon steel plates by the gas metal arc welding (GMAW) method. Different commercial hardfacing electrodes were applied to investigate the effect of abrasive particle size on abrasive wear resistance. The abrasion tests were made using the two-body abrasion test according to ČSN 01 5084 standard, abrasive cloths were of grits 80, 120, 240, and 400. Microstructure characterisation and surface analysis were made using optical and scanning electron microscopy. The results show the different influence of abrasive particles size on the wear rate for different structures of Fe-Cr-C system. The structures without primary carbides are of high abrasive wear rate, which increases nonlinearly with the increasing abrasive particle size. On the contrary, the structures containing primary carbides are of low abrasive rates and theses rates increase linearly with the increasing abrasive particle size.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhang, S. W. "Studies on rubber wear." Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 212, no. 3 (March 1, 1998): 227–34. http://dx.doi.org/10.1243/1350650981542047.

Повний текст джерела
Анотація:
Achievements in research on rubber wear by the present author and his group over the past ten years are summarized briefly. These results include mechanisms and wear equations for dry and wet abrasion, basic features and wear mechanism of oily abrasion, theory of dry abrasion by a line contact, physical processes and surface mechanochemical effects of abrasive erosion. They are not only significant in the context of rubber tribology but are also valuable for extending the working life of rubber components.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhang, Jinbo, Qingzhu Zhang, yiyuan Ge, and yongcheng jiang. "Analysis of the Wear-Resistance Characteristics of Bionic Ridge Structures." Applied Engineering in Agriculture 36, no. 5 (2020): 697–702. http://dx.doi.org/10.13031/aea.13680.

Повний текст джерела
Анотація:
HighlightsBionic technology can be applied to resolve agricultural engineering problems.Pangolin Squama and Chlamys Farreri shells possess excellent wear-resistance.Bionic ridges can improve sample wear-resistance.Abstract. Consistent soil contact rapidly wears the soil-engaging components of agricultural machinery, such as ploughs and subsoilers. A bionic method was applied to their structural design to improve component wear resistance. Some animal organs possess excellent wear-resistant structures which can provide design inspiration for improving the wear-resistance of agricultural mechanical parts. Previous research found that many ridges exist on Pangolin squama and Chlamys Farreri shell surfaces. Those ridges cause Pangolin squama and Chlamys Farreri shells to exhibit excellent wear-resistance. Therefore, these ridge structures were applied to the design of experimental subsoiler samples (bionic samples) to enhance their wear-resistance. An abrasive wear tester was utilized to conduct abrasive wear experiments under special experimental conditions. These experimental conditions involved sliding speed, soil particle size, moisture content, and space between the ridges. Finally, nine experiments were conducted that subjected the bionic and flat surface samples to different experimental conditions, and their respective mass-loss quantities were measured. Results show that bionic sample mass loss was less than that of the flat surface samples under the same experimental conditions; bionic sample wear-resistance improved by 77%, 73.8%, 66.9%, 45.4%, 58.9%, 65.5%, 33.1%, 66.4%, and 42.6% when compared with flat surface samples under the same experimental conditions. Orthogonal test results reveal that the soil particle size most significantly affected sample wear-resistance, followed by the space between bionic ridges and the sliding speed. One reason that bionic samples exhibited excellent wear-resistance is that the soil particles underwent a “guiding effect” and a “rolling effect” over the bionic ridge surface, thereby reducing the “micro-plowing” that soil particles generated when moving over the contact surface. Mutual interference among soil particles also reduced wear. Part of the soil particles rushing over the bionic sample surface rebounded back; the rebounded soil particles collided with incoming soil particles, then the speed and kinetic energy of all of the particles decreased and sample surface abrasion declined. Moreover, “vortexes” generated by sample surface air and ridges lead to an “air cushion” effect which can lessen the number of sample surface soil particles, and bionic ridge sample abrasions can be significantly reduced. Abrasion experiment results analysis indicates that bionic ridges distributed on subsoiler sample surfaces can significantly improve wear-resistance. The bionic design method provides a new approach for increasing the wear-resistance of the soil-engaging components of agricultural machinery. Keywords: Abrasive wear, Bionic ridge, Optimal design, Wear-resistance.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rathod, Avishkar, Sanjay G. Sapate, and Rajesh K. Khatirkar. "Scaling Laws of Wear by Slurry Abrasion of Mild Steel." Applied Mechanics and Materials 446-447 (November 2013): 126–30. http://dx.doi.org/10.4028/www.scientific.net/amm.446-447.126.

Повний текст джерела
Анотація:
Wear by slurry abrasion is very expansive problem that must be taken into consideration while selecting the material for the transportation of slurry through pipeline. Abrasive wear generally occurs when abrasive slurries come in contact with the industrial engineering components or slurry transporting pipes. The abrasive particles carried by slurries eventually remove the material from the encountering surfaces which results in the early failure of the component in service. In present investigation an attempt is made to study the effect of load, slurry concentration, sliding distance on the abrasive wear behaviour of mild steel. The slurry abrasion experiments were carried out using slurry abrasion test apparatus with silica sand slurry. The findings of the present investigation indicate that slurry abrasion volume increased with slurry concentration, load and sliding distance, although the magnitude of increase was different in each case. The SEM observation of worn out surfaces revealed micro ploughing and micro cutting as wear mechanisms.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

ZDRAVECKÁ, E., J. TKÁČOVÁ, and M. ONDÁČ. "Effect of microstructure factors on abrasion resistance of high-strength steels." Research in Agricultural Engineering 60, No. 3 (September 12, 2014): 115–20. http://dx.doi.org/10.17221/20/2013-rae.

Повний текст джерела
Анотація:
Current development of high strength abrasion resistant steels is mostly oriented on high hardness, martensitic concept following the hypothesis that the abrasion resistance holds a proportional tendency with hardness. The various experimental observations have suggested that the high hardness of martenzite does not guarantee a high abrasion resistance because the brittle nature of martensite can lead to decrease their abrasive wear. The aim of this work was to analyse the influence of microstructure on abrasion resistance of selected high-strength low-alloyed steels used in the industry. The abrasive wear resistance of selected steels was obtained using an ASTM-G65 three-body abrasive wear test, microstructure and wear resistance determination. It was observed that grain refinement is an effective way of enhancing the abrasion resistance. In this context, micro alloyed steels offer an attractive combination of price and performance.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Fan, Yu Jin, Zhe Kun Li, Teng Han, and Wei Da Wang. "Finite Element Simulation of Abrasive Wear and Study of Wear Resistance of Material." Advanced Materials Research 765-767 (September 2013): 3192–95. http://dx.doi.org/10.4028/www.scientific.net/amr.765-767.3192.

Повний текст джерела
Анотація:
This paper presented the abrasive wear process of a particle pressing into the material and sliding on the surface simulated by finite element method to reveal wear characteristics and effect factors. The contact stress and surface deformation of material were indicated and material wear resistance was studied, it was found that the stress and the deformation of subsurface not only depends on mechanical properties of material and original surface shape, but also on deformed surface profile due to sliding. In order to prove the effects of material yield stress and deformation harden property on surface deformation and abrasion resistance property, the abrasive wear of three kinds of carbon steel were taken for examples, the simulation results were presented that the larger yield stress of carbon steel, the less surface deformation and the better abrasion resistance property when a particle sliding on the surface. The simulation results also shown that the deformation harden of carbon steel could reduce surface deformation, but couldnt always improve abrasion resistance property.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kotus, M., Z. Andrássyová, P. Čičo, J. Fries, and P. Hrabě. "Analysis of wear resistent weld materials in laboratory conditions  ." Research in Agricultural Engineering 57, Special Issue (December 6, 2011): S74—S78. http://dx.doi.org/10.17221/56/2010-rae.

Повний текст джерела
Анотація:
The aim of the study was the evaluation of the suitability of using filler surfacing materials in abrasion resistant layers according to their material and tribology features. Laboratory analysis of the selected materials consisted of the tests of hardness, microstructure and wear resistance determination. The abrasive wear resistance was defined according to the standard STN 01 5084. On the basis of the results obtained, we can state that using the hard-facing for the background is tenable for the purpose of wear amount decrement where the abrasive wear prevails.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kamdi, Zakiah, P. H. Shipway, and K. T. Voisey. "A Modified Micro-Scale Abrasion for Large Hard Phase Cermet." Applied Mechanics and Materials 393 (September 2013): 888–92. http://dx.doi.org/10.4028/www.scientific.net/amm.393.888.

Повний текст джерела
Анотація:
Various research programmes have been conducted examining cermet coatings in relation to wear, corrosion and the combination of both (erosion-corrosion and abrasion-corrosion). Several methods have been employed to deposit cermet coatings, the most common being thermal spraying or hard facing (weld overlaying).The cermet coatings are carbide-sized ranging from 50 150 μm which is larger than abrasive particles which range between 2 to 10 μm. This allows the abrasive particles to interact with the carbide and matrix separately. Understanding the mechanism of this situation is necessary as abrasion maybe caused by a small abrasive. However, carbide sinking caused by this large carbide leads to diverse local carbide distributions and wear rates with a larger standard deviation. Modified micro-scale abrasion tests were performed with a silica abrasive of 2-10 μm particle size distribution and suspended in water. Due to the sinking of carbide particles during the coating process, the ground samples with more carbide on the surface displayed better wear resistance than those with a lower local carbide content. By using a modified micro-scale abrasion wear test, the correlation between local carbide content and wear rate may be determined with a smaller standard deviation. Rolling wear mode was observed due to the lower degree of hardness of the abrasive compared to the hard phase. The wear behaviour is related to the microstructure.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Farfan Cabrera, Leonardo Israel, Ezequiel Alberto Gallardo Hernandez, and Cesar David Resendiz Calderon. "Abrasive wear study of an acrylonitrile butadiene rubber (NBR) rotary seal in dry and muddy contact using a micro-abrasion tester." Superficies y Vacío 30, no. 1 (March 15, 2017): 1–5. http://dx.doi.org/10.47566/2017_syv30_1-010001.

Повний текст джерела
Анотація:
Rotary dynamic seals are widely used in machinery in order to retain fluids and to exclude external contaminants by allowing the free shaft movement. One of the most recurrent failure of seals is caused by abrasive wear under prolonged sliding contact. It is mainly produced either by partial dry running (two-body abrasion) and/or by interacting with abrasive hard fine particles, which are immersed in the fluids generating three-body abrasive wear. This work aims to study both types of abrasion using a micro-scale abrasion tester. For this, small samples were extracted from an Acrylonitrile Butadiene Rubber (NBR) lip of an actual dynamic seal. The testing was conducted in dry contact to generate two-body abrasive wear, as well as in a wet/muddy environment in order to reproduce three-body abrasion. The load was selected in order to approach the actual mean contact pressure of seals against rotary shafts. Hence, a stress relaxation test of the NBR samples was carried out to characterize the viscoelastic behavior. The wear scar morphologies and wear progression were analyzed in detail by optical microscopy, SEM analysis and optical profilometry. Finally, the experimental test was suitable to reproduce two-body and three-body abrasion on the samples since the particular wear patterns on small wear scars were obtained by short experiments.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Abrasing wear"

1

Cozza, Ronaldo Câmara. "Estudo do desgaste e atrito em ensaios micro-abrasivos por esfera rotativa fixa em condições de força normal constante e pressão constante." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/3/3151/tde-26082011-143752/.

Повний текст джерела
Анотація:
O ensaio de desgaste micro-abrasivo por esfera rotativa vem conquistando elevada aceitação em universidades e centros de pesquisa, sendo amplamente adotado em estudos envolvendo desgaste abrasivo de materiais. Dois modos de desgaste abrasivo podem ser observados neste tipo de ensaio: rolamento resulta quando as partículas abrasivas rolam sobre a superfície do corpo-de-prova, enquanto riscamento é observado quando as partículas abrasivas deslizam sobre o mesmo; o tipo do modo de desgaste abrasivo apresenta uma significante influência sobre o comportamento de um sistema tribológico. Diversos trabalhos envolvendo coeficiente de atrito durante ensaios de desgaste abrasivo estão disponíveis na literatura, mas somente uma pequena parcela dedicaram-se ao estudo do coeficiente de atrito desenvolvido em ensaios de desgaste micro-abrasivo conduzidos por esfera rotativa. Adicionalmente, pesquisas preliminares reportaram que os resultados são dependentes da variação de pressão, ocasionada pela condução de ensaios sob condições de força normal constante. Logo, o propósito desta Tese de Doutorado é pesquisar a relação entre coeficiente de atrito e modos de desgaste abrasivo em ensaios desgaste micro-abrasivo por esfera rotativa, em condições de força normal constante e pressão constante. Ensaios ball-cratering foram conduzidos com esferas de aço AISI 52100 e um corpo-de-prova de aço-ferramenta AISI H10. A pasta abrasiva foi preparada com partículas de carbeto de silício (SiC) preto (tamanho médio de partícula de 3 m) e água destilada. Diferentes valores de força normal constante e pressão constante foram definidos para os experimentos. As forças normal (N) e tangencial (T) foram monitoradas continuamente durante os ensaios e a relação entre T/N foi calculada para fornecer uma indicação do coeficiente de atrito atuante no sistema tribológico esfera / partículas abrasivas / corpo-de-prova. Em todos os casos, análises por Microscopia Óptica das crateras de desgaste revelaram somente a presença de desgaste abrasivo por riscamento. Entretanto, observações mais detalhadas, conduzidas por Microscopia Eletrônica de Varredura, indicaram que diferentes níveis desgaste abrasivo por rolamento atuaram ao longo dos riscos, fenômeno nomeado de micro-rolling abrasion (microrolamento). Além disso, os resultados obtidos mostraram, também, que: i) a distância de deslizamento apresenta significante influência sobre a transição entre os modos de desgaste abrasivo, ii) para os valores de força normal constante e pressão constante adotados, o coeficiente de atrito manteve-se, aproximadamente, na mesma faixa de valores e iii) o coeficiente de atrito é independente da taxa de desgaste.
The micro-scale abrasive wear test by rotative ball has gained large acceptance in universities and research centers, being widely used in studies on the abrasive wear of materials. Two wear modes are usually observed in this type of test: rolling abrasion results when the abrasive particles roll on the surface of the tested specimen, while grooving abrasion is observed when the abrasive particles slide; the type of wear mode has a significant effect on the overall behaviour of a tribological system. Several works on the friction coefficient during abrasive wear tests are available in the literature, but only a few were dedicated to the friction coefficient in micro-abrasive wear tests conducted with rotating ball. Additionally, recent works have identified that results may also be affected by the change in contact pressure that occurs when tests are conducted with constant applied force. Thus, the purpose of this work is to study the relationship between friction coefficient and abrasive wear modes in ball-cratering wear tests conducted at constant normal force and constant pressure. Micro-scale abrasive wear tests were conducted with a ball of AISI 52100 steel and a specimen of AISI H10 tool steel. The abrasive slurry was prepared with black silicon carbide (SiC) particles (average particle size of 3 m) and distilled water. Two constant normal force values and two constant pressure values were selected for the tests. The tangential and normal loads were monitored throughout the tests and their ratio was calculated to provide an indication of the friction coefficient. In all cases, optical microscopy analysis of the worn craters revelated only the presence of grooving abrasion. However, a more detailed analysis conducted by SEM has indicated that different degrees of rolling abrasion have also occurred along the grooves. The results have also shown that: i) the sliding distance presents an important role on the wear mode transition, ii) for the selected values of constant normal force and constant pressure, the friction coefficient presented, approximately, the same range of values and ii) the friction coefficient was independent of the wear rate.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Doan, Yen The. "Experimental investigation and wear simulation of three-body abrasion." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2015. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-158239.

Повний текст джерела
Анотація:
The wear process in three-body contact causes problems of abrasion such as volume loss and changes of geometry of the triboelements. The wear problem leads to increased failure and high costs for repairing or replacing equipment. To understand the nature of the wear behaviour and to predict the wear rate in advance, experimental investigation and numerical simulation of the wear process are required. In this work, the wear process is analysed and the influencing parameters governing the wear behaviour are investigated experimentally to develop a new wear model. Main influential factors are considered such as kinematics of abrasive particles, contact stiffness of the particle layer, friction characteristics, and wear factors. The experiments to study kinematics of particle layers are performed on a new observation tester. To define the contact stiffness of abrasive particles, experiments are conducted by the uniaxial spindle compression tester. Moreover, a tribometer test rig with applied load up to 200 N and velocity up to 1000 mm/s is used to investigate the friction characteristics and the wear behaviour of three-body tribosystem. Analyses of influential factors on the wear behaviour in dependency of predefined process parameter are carried out. Additionally, based on the results of the experimental investigations, approximation equations representing the relation of the influential factors and the process parameters are determined. A three-body wear model is build up to represent the wear behaviour by physical wear laws. Furthermore, these approximation equations and the relevant parameters obtained by experimental investigations are included in the Fleischer’s wear equation to simulate the wear process. With the coupled model the wear process of the sample can be simulated twodimensional over the sliding distance. It is possible to predict the wear depth and the wear intensity, which can be used to estimate the wear rate. Additionally, from the results of the wear simulation the worn surface and the local contact pressure in the contact region are determined which provide a deeper insight into the wear process. With this simulation the understanding of the wear behaviour can be improved which is important to solve wear problems.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Halley, William G. "Evaluating abrasive wear resistance of extruder tooling materials using the dry sand rubber wheel abrasion test." Thesis, Virginia Tech, 1990. http://hdl.handle.net/10919/42102.

Повний текст джерела
Анотація:
A series of experiments was performed on groups of samples made from materials currently used to manufacture tooling for extruders to determine if the ASTM G65 dry sand rubber wheel abrasion test could be used as an accelerated test to evaluate candidate materials. Samples were tested in the heat treated condition and after surface modification by plasma ion nitriding. The range of materials tested included medium and high alloy steels and steel bonded carbide composites. The abrasives used were AFS 50/70 test sand and Dresser Glasgrain crushed fused silica.

Evaluation of test wear scars and wear debris from the tests using AFS 50/70 showed that delamination was the primary wear mechanism for the composite materials, with some ploughing and microcutting, while ploughing and microcutting were the primary mechanisms in the wear of the steels. Evaluation of parts made from a composite material which were removed from service indicated that matrix erosion was the primary wear mechanism. Tests with Glasgrain fused silica as the abrasive yielded wear scars with the same morphology as the parts returned from service, but the very poor flow characteristics of this material caused inconsistency in the supply of this abrasive to the contact region.

Interrupted tests showed that the wear rate was constant for the steels in the non-nitrided condition. After nitriding, the wear rate increased with test duration. The nitriding was found to act as a barrier coating providing an initial period of very low wear until the nitride layer is broached. The wear rate then increases to approximate the wear rate of the non-nitrided samples.

It was found that the friction force alters the location of the maximum normal force, shifting the point of greatest contact force toward the entry end of the wear scar.
Master of Science

Стилі APA, Harvard, Vancouver, ISO та ін.
4

OLIVEIRA, Marcelo dos Anjos. "Desgaste abrasivo do aço Hadfield com diferentes teores de carbono em abrasômetro do tipo pino-disco." Universidade Federal de Pernambuco, 2016. https://repositorio.ufpe.br/handle/123456789/18671.

Повний текст джерела
Анотація:
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2017-04-27T15:18:52Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Marcelo Oliveira.pdf: 7846435 bytes, checksum: 4659cf7d50095ccabdf49ebcc00f0bba (MD5)
Made available in DSpace on 2017-04-27T15:18:52Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Marcelo Oliveira.pdf: 7846435 bytes, checksum: 4659cf7d50095ccabdf49ebcc00f0bba (MD5) Previous issue date: 2016-08-31
A presente pesquisa teve como objetivo, investigar o efeito do teor de carbono e do tamanho do abrasivo na resistência ao desgaste e no fenômeno de encruamento superficial de quatro aços Hadfield. Para esse estudo, foi montado, o equipamento pino contra disco, e, como abrasivo utilizou-se lixas de ferro, com o tamanho médio entre 36 µm e 93 µm. Para o alcance do objetivo proposto foram delimitados materiais e métodos, a saber: (a) montagem do abrasômetro pino-disco a partir de um dispositivo desativado disponibilizado pelo LFS-USP; (b) confrontar resultados experimentais – dois materiais (Aço 1045 e alumínio 6351) foram submetidos a ensaios realizados na UFPE e USP para fins de estudos comparativos; (c) avaliação da influência de parâmetros do ensaio – três abrasivos com diferentes tamanhos de partículas e diferentes cargas foram submetidos e avaliados mediante o desgaste abrasivo; (d) avaliação do comportamento de diferentes composições do aço Hadfield perante ensaios de abrasividade – aços contendo quatro diferentes teores de carbono foram submetidos a ensaios com lixas #220 e #320; (e) análise das superfícies desgastadas – após os ensaios dos materiais, as superfícies foram realizadas análises por microscópio eletrônico de varredura (MEV) das superfícies desgastadas. Os resultados obtidos com o equipamento na metodologia empregada tiveram uma boa reprodutibilidade. Foram observadas diferenças nos resultados entre os equipamentos da UFPE e da USP. Quanto a este tópico, o desgaste abrasivo do aço Hadfield foi influenciado pelo teor de carbono apresentando uma relação em que maiores teores demonstraram menor efeito de desgaste, diferentes tamanhos de abrasivo ocasionam um efeito de encruamento significativo, onde se observou o ganho de dureza em aços com menores teores de carbono. Contudo, foi apresentada uma oscilação do efeito no abrasivo #320. As micrografias revelaram microssulcos e microcortes provenientes do ensaio e não foram observadas diferenças nas marcas de desgaste quando utilizados tamanhos diferentes de partícula abrasiva. Ao final, chegou-se a conclusão de que os resultados obtidos demonstram que o teor de carbono influência na resistência ao desgaste do aço e consequentemente no encruamento superficial do aço. Observa-se também a influência do tamanho do abrasivo e carga aplicada o ensaio.
This research aimed to investigate the effect of the carbon content and the size of the abrasive in the wear resistance and surface hardening phenomenon four Hadfield steel. For this study , has been assembled , the disc against pin device and abrasive was used iron sandpapers, with average size between 36 m and 93 micrometers. To achieve the proposed objectives were defined materials and methods, namely: (a) mounting the pindisk abrasômetro from a disabled device provided by the LFS-USP; (b) comparing experimental results - two materials (1045 steel and aluminum 6351) were submitted to tests performed at university and USP for purposes of comparative studies; (c) evaluation of the influence of the test parameters - Three abrasive particles with different sizes and different loads were submitted and evaluated by the abrasive wear; (d) assessment of the behavior of different steel compositions Hadfield before abrasiveness tests - steels containing four different carbon contents were subjected to tests with sandpaper # 220 and # 320; (e) analysis of the worn surfaces - after the tests of materials different analyzes were performed by scanning electron microscope (SEM) of worn surfaces. The results obtained with the equipment in the methodology employed had good reproducibility. There were differences in results between the equipment and the UFPE USP. On this topic, the abrasive wear Hadfield steel was influenced by carbon having a relationship in which higher levels showed less wear effect, different abrasive sizes cause a significant strain hardening effect, which was observed gain hardness steel with lower carbon content. However, an oscillation of the abrasive effect on the # 320 was presented. The micrographs revealed microssulcos and microcuts from test and differences were observed in wear marks when using different sizes of abrasive particle. In the end, came to the conclusion that the results show that the influence of carbon content in the wear resistance of steel and consequently the surface of the steel hardening. It is also observed the influence of abrasive size and load applied to the test.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cristine, Hedlund, and Alexander Tasevski. "Design of bucket teeth." Thesis, Mälardalens högskola, Innovation och produktrealisering, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-33079.

Повний текст джерела
Анотація:
For many years, buckets have been equipped with teeth to help penetrate, gouge and breakout materials. The teeth also works as wear parts and can be replaced when they are worn down, and thus increase the service life of the bucket. The first teeth were made like a one-piece design and to replace such tooth required both cutting and welding which was very time consuming. Today’s modern teeth consist of an adapter that is welded on the bucket and a tooth with a locking system that makes it easy to replace the tooth when needed. The teeth on the market today are cast, which means that the hardness cannot be guaranteed through the whole cast and the hardest tooth is measured to be around 500 HB.   SSABs brand Hardox is the toughest steel on the market. It is extremely wear resistant and has a three time longer service life than ordinary steel. To increase the use of Hardox the possibility to manufacture bucket teeth of three or more plates are examined.   This thesis has applied a product development process to mainly develop concepts of the locking system that holds the adapter and tooth together. The locking systems main requirement is to be hammerless, meaning that it is not hammered in, due to the high risk of injury and longer assembly time. Apart from, the geometry of the tooth will be developed to give a better wear resistance.   The result is a tooth with at least twice as long service life than the cast competitors and two concepts of locking system. Both locking systems meet the requirement of being hammerless and the sustainability is ensured with calculations of shear force. The geometry of the tooth is design to be self-sharpening, which allows it to stay sharper throughout its service life. Wear test using DEM analysis assure a positive outcome.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pereira, Marcio Henrique. "Caracterização do desgaste em punção de forjamento a quente em prensa horizontal automática de múltiplos estágios." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/3/3151/tde-03082017-095236/.

Повний текст джерела
Анотація:
Concebido há milhares de anos, o forjamento passa por melhorias contínuas, mantendo-se como um processo de fabricação moderno, capaz de agregar características importantes a produtos forjados que são utilizados em inúmeras aplicações. Na indústria automobilística, responsável pelo consumo de cerca de 60% de todos os produtos forjados, o forjamento mostrou-se como um processo de conformação plástica eficaz no atendimento das especificações de resistência mecânica e nos quesitos de produtividade. Esta demanda por produtos forjados estimulou a busca por processos mais robustos, nos quais as ferramentas de forjamento possuem papel fundamental para possibilitar a produção de lotes maiores sem paradas de máquina devido a falhas. Cerca de 70% das falhas estão relacionadas ao desgaste das ferramentas. Este trabalho buscou identificar no ambiente industrial, os modos de desgaste responsáveis pela degradação da superfície de contato de um punção, fabricado em aço H-10. Um conjunto de punções foi utilizado no forjamento a quente em prensa mecânica excêntrica horizontal e automática de múltiplos estágios, que utiliza água na refrigeração das ferramentas, durante a fabricação de porcas de roda, em aço SAE 1045. Os resultados obtidos basearam-se: (i) nas análises da superfície e da seção transversal de seis punções em microscópio eletrônico de varredura, (ii) na análise da nanodureza e (iii) na variação dimensional e da massa dos punções. Os resultados apontaram para o desgaste da superfície dos punções logo nas primeiras peças forjadas devido à transferência de óxidos do blank para a superfície da ferramenta. Nesta camada transferida para a superfície dos punções, foram encontrados danos causados pelo desgaste abrasivo e pela fadiga térmica.
Since the initial development, thousands of years ago, forging has faced continuous improvements, remaining as a modern manufacturing process, capable of adding important characteristics to forged products that are used in numerous applications. In the automotive industry, responsible for the consumption of approximately 60% of all forged products, the forging has proved to be an effective metal forming process in terms of mechanical strength specifications and productivity requirements. This demand for forged parts has stimulated the search for more robust processes in which the forging tool has a fundamental role to enable the production of larger batches without downtime due to failures. Approximately 70% of these failures are related to tool wear. This work aimed identifying, in an industrial environmental, the wear modes responsible for the degradation of the contact surface of a punch, made of H-10 steel. A series of punches was used for hot forging in a horizontal and automatic multi-stage eccentric mechanical press which uses water for tool cooling, during the manufacture of wheel nuts, made of SAE 1045 steel. Results were based: (i) on the analysis of the surface and cross section of six punches in a scanning electronic microscope, (ii) on nanohardness analyses and (iii) as well as on mass and dimensional variations. Results pointed to the punch wear in the first forged pieces, due to oxides transferring from blank to the punch surface. On this transferred layer to punch surface, have also found damage caused by abrasive wear and thermal fatigue.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cozza, Ronaldo Câmara. "Estudo do comportamento do coeficiente de desgaste e dos modos de desgaste abrasivo em ensaios de desgaste micro-abrasivo." Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/3/3151/tde-31032008-101929/.

Повний текст джерела
Анотація:
Esta Dissertação tem por objetivo estudar o comportamento de diferentes materiais sob a ação de desgaste micro-abrasivo. Como parte do trabalho, foi projetada e construída uma máquina de ensaio desgaste por micro-abrasão por esfera rotativa fixa, com configuração mecânica com diferenças em relação às observadas na literatura (Gee et al., 2005). Como corpos-de-prova, foram utilizadas pastilhas intercambiáveis de metal duro (classe P20) e aço ferramenta M2. As esferas foram de aço AISI 1010 cementado e aço AISI 52100 temperado e revenido. Durante os ensaios, foi inserida entre a esfera e o corpo-de-prova uma pasta abrasiva preparada com carbeto de silício preto, com tamanho médio de partícula de 5 µm. Inicialmente, foram realizados ensaios preliminares, com a finalidade de analisar não só o comportamento do equipamento, mas também estudar a transição entre os modos de desgaste que podem ocorrer durante o desgaste micro-abrasivo. A transição entre os modos de desgaste foi estudada em função da carga normal e dos materiais utilizados durante o ensaio. Os resultados obtidos indicaram boa reprodutibilidade do equipamento e coerência com resultados da literatura. Em seguida, em ensaios denominados definitivos, foram pesquisadas as atuações dos modos de desgaste abrasivo e a obtenção do regime permanente de desgaste. Os resultados mostraram que, com a variação da distância de deslizamento, houve alterações nas ocorrências dos modos de desgaste abrasivo. Por outro lado, em alguns ensaios, o coeficiente de desgaste tendeu a permanecer constante, o que caracteriza a obtenção do regime permanente de desgaste. Entretanto, em outros, o coeficiente de desgaste teve uma evolução aleatória com a distância de deslizamento, fornecendo indicativos de que o desgaste não entrou em regime.
This work presents a study on the behavior of different materials under the action of micro-abrasive wear. A micro-abrasive wear testing machine with fixed sphere was designed and constructed, presenting a mechanical configuration with differences with respect to those found in the literature (Gee et al., 2005). M2 tool steel and WC-Co P20 were used as testing specimen materials. Ball materials were cemented AISI 1010 steel and quenched and tempered AISI 52100 steel. During the tests, an abrasive slurry, prepared with black silicon carbide (SiC) particles (average particle size of 5 µm), was supplied to the contact between the specimen and the ball. Initially, preliminary tests were conducted to study the wear mode transitions that can occur during the micro-abrasive wear and to analyze the operational conditions of the equipment. The wear mode transitions were evaluated as a function of the applied normal load and of the materials used. The results indicated good reproducibility and qualitative agreement with those found in the litarature. Later, a new set of tests was conducted, which analyzed the evolution of the abrasive wear modes and the achievement of steady state wear as a function of sliding distance. The results indicated a continuous variation in the abrasive wear modes with sliding distance. Additionally, in some tests, the wear coefficient tended to stabilize in constant value, which characterizes the achievement of steady state regime. However, in other tests, the wear coefficient presented a non constant evolution of wear coefficient with the sliding distance, which denotes that the constant regime of wear was not obtained.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Eve, R. W. "The abrasive wear of carbon materials." Thesis, University of Cambridge, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.377203.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wang, Aiguo. "Abrasive wear of metal matrix composites." Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305516.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Jewell, Gavin. "Three-body abrasive wear of materials." Master's thesis, University of Cape Town, 2000. http://hdl.handle.net/11427/7669.

Повний текст джерела
Анотація:
Includes bibliographical references.
This work is an investigation into the phenomenon of three-body abrasive wear. A specially designed three body abrasive wear apparatus has been built, modified and evaluated as part of this overall study. Further, a series of commercially available candidate materials has been evaluated for wear resistance using silica sand as the abrasive on this purpose made rig. The effect of normal load, abrasive particle size, abrasive feed rate and the type of abrasive on three body wear resistance has also been examined. It has been shown that there is little increase in wear with an increase in particle size in the size range from 50µm to 180µm and that above an abrasive particle size of approximately 200µm there is a sharp decrease in the wear with increasing particle size, followed by a levelling off in the wear. The wear was found to increase linearly with increasing load. Varying the abrasive feed rate showed that at lower feed rates the abrasive particles were more efficient at removing materials, so the wear was higher than at higher abrasive feed rates. It has also been shown that although the use of ash from coal-fired power stations as an abrasive produces wear of materials, the volume losses were much smaller than those obtained using silica sand and thus it is considered that the tests using silica gave results which were more reliable. The volume losses of alumina ceramics abraded against ash were insufficient to give reliable wear test data and it was concluded' that ash could not be used to rank materials of high hardness. A number of materials were ranked for wear resistance using silica sand abrasive particles. The alumina ceramics and tungsten carbide composite materials showed the best wear performance.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Abrasing wear"

1

Miyoshi, Kazuhisa. Effect of abrasive grit size on wear of manganese-zinc ferrite under three-body abrasion. [Washington, DC: National Aeronautics and Space Administration, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mashloosh, K. M. Abrasive wear with particular reference to digger teeth. Uxbridge: Brunel University, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tylczak, J. H. Correlating abrasive wear to alloy additions in low-alloy steels. Pittsburgh, Pa: U.S. Dept. of the Interior, Bureau of Mines, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

United States. Bureau of Mines. Correlating Abrasive Wear to Alloy Additions in Low-Alloy Steels. S.l: s.n, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Miyoshi, Kazuhisa. Surface analysis and tools. Cleveland, Ohio: National Aeronautics and Space Administration, Glenn Research Center, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Miyoshi, Kazuhisa. Surface analysis and tools. Cleveland, Ohio: National Aeronautics and Space Administration, Glenn Research Center, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Incremental structures and wear patterns of teeth for age assessment of red deer. Oxford: Archaeopress, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Vermeulen, L. A. Quantitative assessments of abrasive and impactive wear from ball-size distributions in rotary mills. Randburg, South Africa: Council for Mineral Technology, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rajagopal, Vathsala. The effect of chromium on the abrasive and corrosive wear of cast iron grinding media. Minneapolis, MN: University of Minnesota, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

McCann, J. Abrasion, erosion and wear resistant steels for improved reliability and performance of plant and equipment. Luxembourg: Commission of the European Communities, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Abrasing wear"

1

Garcia Sp, A., V. Lorenzo, A. Varela, C. Camba, and V. Blazquez. "Study of the Abrasive Wear Behaviour of Electrified Railway Wires." In Friction, Wear and Wear Protection, 618–22. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527628513.ch80.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Larosa, M. A., M. A. Pinto, and M. C. F. Ierardi. "Abrasive Wear Resistance of AISI 420 Stainless Steel After Laser Surface Treatment." In Friction, Wear and Wear Protection, 645–53. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527628513.ch84.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Krakhmalev, P. "Influence of Microstructure and Coating on the Abrasive Edge Wear of WC-Co." In Friction, Wear and Wear Protection, 732–36. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527628513.ch96.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Timsit, Roland S. "Wear Mechanisms in Electrical Contacts: Abrasive Wear." In Encyclopedia of Tribology, 4012–14. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_423.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Karlsohn, M., A. Röttger, P. A. Silva, S. Weber, A. R. Pyzalla, W. Reimers, and W. Theisen. "Hot Direct Extrusion of Abrasion Resistant Fe-Base Metal Matrix Composites - Microstructure and Wear Properties." In Friction, Wear and Wear Protection, 152–58. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527628513.ch17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Klüppel, Manfred. "Wear and Abrasion of Tires." In Encyclopedia of Polymeric Nanomaterials, 2600–2604. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-29648-2_312.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Klüppel, Manfred. "Wear and Abrasion of Tires." In Encyclopedia of Polymeric Nanomaterials, 1–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36199-9_312-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Silva, P. A., S. Weber, M. Karlsohn, A. Röttger, W. Theisen, W. Reimers, and A. R. Pyzalla. "Hot Direct Extrusion of Abrasion Resistant Fe-Base Metal Matrix Composites - Interface Characterization and Mechanical Properties of Co-Extruded Layered Structures." In Friction, Wear and Wear Protection, 690–95. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527628513.ch90.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Stachowiak, G. W., G. B. Stachowiak, D. De Pellegrin, and P. Podsiadlo. "Characterization and Classification of Abrasive Particles and Surfaces." In Wear - Materials, Mechanisms and Practice, 339–68. Chichester, England: John Wiley & Sons Ltd, 2014. http://dx.doi.org/10.1002/9780470017029.ch14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chow, T. S. "A Fatigue-Abrasive Wear Mechanism for Polymeric Surfaces." In Polymer Wear and Its Control, 67–74. Washington, D.C.: American Chemical Society, 1985. http://dx.doi.org/10.1021/bk-1985-0287.ch005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Abrasing wear"

1

Badisch, E., P. Geiderer, R. Polak, and F. Franek. "Design of Abrasion Resistant Surfaces by Textures on Macroscopic Size." In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63884.

Повний текст джерела
Анотація:
Although abrasive wear is a predominant type of wear in almost all fields of industry, it is particularly relevant to the field of mining and mineral processing. This wear mechanism is mainly influenced by the abrasive particle (e.g. hardness, size, shape, mass), the wear kinematics (impact angle, impact velocity), and also by the worn material itself (e.g. surface, structure, hardness). Today, a lot of work is done to develop systems which are resistant against wear caused by mineral abrasives. One goal for higher abrasion resistance is the use of macroscopic surface textures which hinder the abrasive particles from hitting unprotected surface areas (especially for dry, coarse abrasives) or force the formation of surface adherent mineral embedment which leads to a self-protection effect (especially for fine, wet type of abrasives). However, there is a serious lack of systematic and scientific knowledge for the design of abrasion resistant surfaces. The aim of this study was to evaluate the efficiency of macroscopic surface textures on their ability of minimizing abrasive attack, finally with the purpose to establish design rules for abrasion resistant surfaces. Profile geometry, profile distribution and surface arrangements were investigated on the wear protecting properties. It could be observed that the surface protection factor against abrasion can be adjusted by distribution and surface coverage. A strong influence of the grain size of the abrasives used on the wear behavior was observed.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lin, Zhen. "Abrasive Wear and Fatigue Wear." In 2016 2nd Workshop on Advanced Research and Technology in Industry Applications (WARTIA-16). Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/wartia-16.2016.238.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ding, Z., R. Knight, and R. W. Smith. "Abrasive Wear Characteristics of Ni-base Self-fluxing Alloy Spraywelding Overlays." In ITSC 1997, edited by C. C. Berndt. ASM International, 1997. http://dx.doi.org/10.31399/asm.cp.itsc1997p0091.

Повний текст джерела
Анотація:
Abstract The results of low stress, pin-on-disc and high stress grinding abrasive wear tests on coatings produced by plasma and oxy-acetylene flame spraywelding are presented. FNil5A and FNiWC35 Ni-based self-fluxing alloys were selected as typical spraywelding materials for abrasive wear resistance. The abrasive wear resistance mechanisms of welded overlays produced by various materials and processes were also characterized by hardness tests, microstructural and compositional analyses, and through analysis of the effect of different kinds of abrasive on the wear resistant of Ni-base self-fluxing spraywelding overlays. Results showed that FNiWC35 overlays exhibited improved resistance under low stress abrasion, but the relative wear resistances of FNiWC35 and FNil5A still depended primarily on the type and hardness of the abrasive medium used. For the same material, the abrasive wear resistance of oxyacetylene flame sprayed overlays was higher than that produced by plasma spraywelding. The wear resistance of the plasma spraywelding overlays depended not only on the material, but also strongly on the spraywelding process parameters.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Castillo, Marti´n, Manuel Vite, L. H. Herna´ndez, G. Villa, and G. Urriolagoitia. "Brittle Fracture Generated by Abrasion Wear in Borided Low Carbon Steel." In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63869.

Повний текст джерела
Анотація:
This work is related to failure as a consequence of brittle fracture by abrasion wear. The experimental evidence showed that this situation depends on the size and shape of the abrasive particles and their velocity when they are interacting against the abraded surface. The particle morphology determines the type of failure, in which the crack may propagate. This can be in a lateral and radial direction. Also this situation is observed in low carbon steel (AISI 8620) which has been borided previously. In accordance with the results, the strength is improved by: developing phases, varying thickness of the borided layer and increasing the hardness. At the same time, a hardness analysis of the borided steel and the abrasive surfaces was carried out. The hardness is the principal characteristic which increases the abrasion resistance and the borided improved resistant to wear. However, it has different behaviour according to the type mechanism of abrasion wear (two or three bodies). In the case of three bodies, it is necessary to take into account the superficial characteristic, because over rough surfaces, the hard particles deteriorate the surface of the specimen. On the other hand, on smooth borided surfaces, generally the particles slip without several damage.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Knuuttila, J., S. Ahmaniemi, E. Leivo, P. Sorsa, P. Vuoristo, and T. Mantyla. "Wet Abrasion and Slurry Erosion Resistance of Sealed Oxide Coatings." In ITSC 1998, edited by Christian Coddet. ASM International, 1998. http://dx.doi.org/10.31399/asm.cp.itsc1998p0145.

Повний текст джерела
Анотація:
Abstract Several recently published studies have shown remarkable improvements in dry abrasion resistance and corrosion resistance of aluminum phosphate sealed oxide coatings when compared to unsealed ones. There are numerous applications in chemical industry where a corrosive environment is accompanied with abrasive or erosive particles. In this study the wet abrasion resistance and slurry erosion resistance of aluminum phosphate-sealed and unsealed oxide coatings were studied and compared to their dry abrasion resistance. In wet abrasion tests kaolin and water mixture was used as the abrasive. In slurry erosion tests several abrasives in water with various pH values was used as the erosive medium. The coatings were characterized for microstructure and their wear mechanisms were analyzed using SEM. The results from wear tests are reported and correlated with coating properties. The influence of coating quality to the relative improvement achieved by sealing is presented and discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Shurpali, Amogh Arvind, Emily Van Dam, J. Riley Edwards, David A. Lange, and Christopher P. L. Barkan. "Laboratory Investigation of the Abrasive Wear Mechanism of Concrete Crosstie Rail Seat Deterioration (RSD)." In 2012 Joint Rail Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/jrc2012-74107.

Повний текст джерела
Анотація:
Currently, there are divergent design and performance demands on railway infrastructure components due to increasing freight axle loads and cumulative gross tonnages, as well as increased investment in high-speed passenger rail development in North America. The divergence in loading and performance demands on shared infrastructure arises from the fact that while high-speed passenger trains exert lower loads at relatively high speeds, freight trains exert high loads at relatively low speeds. Improvements in infrastructure component designs are needed to achieve increased durability and tighter geometric tolerances. According to a rail industry survey administered by University of Illinois at Urbana-Champaign (UIUC) in 2008, Rail Seat Deterioration (RSD) is the principal performance problem limiting the service life of concrete crossties in North America. Rail infrastructure researchers and industry experts agree that abrasive wear may occur due to relative motion between the rail pad and concrete crosstie rail seat, potentially resulting in RSD. The complex tribological process of abrasion is further complicated and expected to be accelerated by the presence of abrasive fines and moisture, creating 3-body wear condition. Lack of understanding of the abrasion mechanism has resulted in a sub-optimal and iterative design of ties, causing reduced service life. This paper summarizes our efforts in understanding the effect of changing the mix design of concrete on the abrasion resistance of the rail seat which will eventually help us in modeling abrasive wear in RSD by constructing a mathematical relationship between the rail seat wear rate and input parameters including concrete mix design, mechanical/tribological properties of materials involved, normal load applied, presence of moisture, and abrasive fines. To simulate abrasive wear in RSD, a simple experiment is being carried out using a rotating wheel (lapping machine) capable of abrading concrete samples as a part of UIUC’s Small-Scale Abrasion Resistance Test (SSART). The objective of this research is to develop wear performance curves (e.g. wear depth versus load/time/cycles) for lab specimens developed from concrete crosstie mix designs that are currently being used in the industry, as well as for the evaluation of new mix designs. These data will help the rail industry in mechanistically designing concrete crossties by improving the understanding of materials used for concrete crosstie mix designs, with the objective of decreasing life cycle costs for the crosstie and fastening system. Preliminary SSART results are in agreement with relevant literature documenting the relationships between concrete mix designs and curing conditions and the resulting rate of abrasion.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hutchings, I. M. "The Role of Particle Motion in Abrasive and Erosive Wear." In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-64273.

Повний текст джерела
Анотація:
The traditional classification of abrasive wear into two-and three-body, high and low stress, open and closed etc. does not recognise the essential importance of particle motion, which is better described as either sliding or rolling. Abrasive wear tests with free abrasives can produce either type of motion, depending on the test conditions. The widely-used dry sand rubber wheel test often produces both motions over different areas of the sample. The more recent micro-scale abrasion test tends to favour one or the other over most of the wear scar area. Analytical models can be developed which allow the dominant particle motion to be predicted, and mapped using readily accessible parameters. In erosive wear, particle motion can also be important; recent work suggests that particle rotation is imparted in some types of erosive wear test, and that it may be responsible for the differences in wear rate found in tests under nominally identical conditions with different designs of apparatus. It is suggested that in the use of laboratory abrasion and erosion tests, and in the analysis of practical instances of wear by hard particles, close attention should be paid to the nature of particle motion, since this will influence both the dominant wear mechanisms and also the wear rates.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gawne, D. T., Z. Qiu, T. Zhang, Y. Bao, and K. Zhang. "Abrasive Wear Resistance of Plasma-Sprayed Glass-Composite Coatings." In ITSC 2000, edited by Christopher C. Berndt. ASM International, 2000. http://dx.doi.org/10.31399/asm.cp.itsc2000p0977.

Повний текст джерела
Анотація:
Abstract A ball-milled mixture of glass and alumina powders has been plasma sprayed to produce alumina-glass composite coatings. The coatings have the unique advantage of a melted ceramic secondary phase parallel to the surface in an aligned platelet composite structure. The alumina raises the hardness from 300HV for pure glass coatings to 900HV for a 60wt% alumina-glass composite coating. The scratch resistance increases by a factor of three and the wear resistance by a factor of five. The glass wears by the formation and intersection of cracks. The alumina wears by fine abrasion and supports most of the sliding load. The wear resistance reached a plateau at 40-50vol% alumina, which corresponds to the changeover from a glass to a ceramic matrix. Keywords: glass composite coatings, wear, thermal spraying
Стилі APA, Harvard, Vancouver, ISO та ін.
9

De Mello, J. D. B., C. Binder, V. B. Deme´trio, and A. N. Klein. "Effect of the Nature of Nitride Phases on the Micro Abrasion of Plasma Nitrided Sintered Iron." In ASME/STLE 2007 International Joint Tribology Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ijtc2007-44255.

Повний текст джерела
Анотація:
In the present investigation, the effect of plasma nitriding on the micro abrasion behavior of sintered unalloyed iron is investigated. Plasma nitriding was carried out using two different sets of operative parameters in order to produce microstructures composed of different dominant iron nitrides, e.g. Fe4N (γ) and Fe2–3N (ε), phases. Micro abrasive wear tests were carried out in a “free ball” micro abrasion tester using SiC slurries. The tribological parameters were kept constant during the tests. The ε phase microstructures presented a superior abrasion resistance.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Das, Ranjan, Suhas S. Joshi, and Harish C. Barshilia. "Analytical Model of Progression of Flank Wear Land Width in Drilling." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-68134.

Повний текст джерела
Анотація:
In multi-point operations like drilling, cutting velocities and cutting edge geometries vary along cutting lips so is the rate of progression of flank wear. Analytical evaluation of flank wear land width in the case of complex tools has received a limited attention so far. This work evaluates progression of flank wear in orthogonal machining and adopts it to drilling. An abrasive flank wear has been modeled, wherein, cutting speed determines the rate of abrasion, and the feed rate determines the chip load. The model considers stress distribution along rake surfaces, and temperature dependent properties of tool and work materials. Assuming that the flank wear follows a typical wear progression as in a pin-on-disc test, the model evaluates cutting forces and the consequent abrasive wear rate for an orthogonal cutting. To adopt it to drilling, variation in cutting velocity and, dynamic variation in rake, shear and friction angles along the length of the cutting lips have been considered. Knowing the wear rate, the length of the worn out flank (VB) has been evaluated. The model captures progression of flank wear in zones I, II and III of a typical tool life plot. It marginally underestimates the wear in the rapid wear region and marginally overestimates it in the steady-state region.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Abrasing wear"

1

Lever, James, Susan Taylor, Garrett Hoch, and Charles Daghlian. Evidence that abrasion can govern snow kinetic friction. Engineer Research and Development Center (U.S.), December 2021. http://dx.doi.org/10.21079/11681/42646.

Повний текст джерела
Анотація:
The long-accepted theory to explain why snow is slippery postulates self-lubrication: frictional heat from sliding melts and thereby lubricates the contacting snow grains. We recently published micro-scale interface observations that contradicted this explanation: contacting snow grains abraded and did not melt under a polyethylene slider, despite low friction values. Here we provide additional observational and theoretical evidence that abrasion can govern snow kinetic friction. We obtained coordinated infrared, visible-light and scanning-electron micrographs that confirm that the evolving shapes observed during our tribometer tests are contacting snow grains polished by abrasion, and that the wear particles can sinter together and fill the adjacent pore spaces. Furthermore, dry-contact abrasive wear reasonably predicts the evolution of snow-slider contact area and sliding-heat-source theory confirms that contact temperatures would not reach 0°C during our tribometer tests. Importantly, published measurements of interface temperatures also indicate that melting did not occur during field tests on sleds and skis. Although prevailing theory anticipates a transition from dry to lubricated contact along a slider, we suggest that dry-contact abrasion and heat flow can prevent this transition from occurring for snow-friction scenarios of practical interest.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ives, L. K. Abrasive wear by diesel engine coal-fuel and related particles. Office of Scientific and Technical Information (OSTI), September 1994. http://dx.doi.org/10.2172/10188975.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ives, L. K. Abrasive wear by coal-fueled diesel engine and related particles. Office of Scientific and Technical Information (OSTI), September 1992. http://dx.doi.org/10.2172/7083688.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ives, L. K. Abrasive wear by coal-fueled diesel engine and related particles. Office of Scientific and Technical Information (OSTI), September 1992. http://dx.doi.org/10.2172/10183382.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ives, L. K. Abrasive wear by coal-fueled diesel engine and related particles. Gaithersburg, MD: National Institute of Standards and Technology, 1992. http://dx.doi.org/10.6028/nist.ir.4811.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fenske, George, and Oyelayo Ajayi. An Abrasion Wear Model of Rotary Shear Comminution of Biomass Feedstock. Office of Scientific and Technical Information (OSTI), August 2021. http://dx.doi.org/10.2172/1819740.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gittleman, Gregory M. Abrasive Wear of Four Direct Restorative Materials by Standard and Whitening Dentifrices. Fort Belvoir, VA: Defense Technical Information Center, May 2013. http://dx.doi.org/10.21236/ad1012923.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

MALDONADO, KARELYS, JUAN ESPINOZA, DANIELA ASTUDILLO, and WILSON BRAVO. Fatigue and fracture resistance and survival of occlusal veneers of composite resin and ceramics blocks in posterior teeth with occlusal wear: A protocol for a systematic review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, October 2021. http://dx.doi.org/10.37766/inplasy2021.10.0036.

Повний текст джерела
Анотація:
Review question / Objective: The aim of this systematic review is to synthesize the scientific evidence that evaluates fatigue and fracture resistance, survival, and stress distribution, of composite resin CAD/CAM and ceramic CAD/CAM occlusal veneers in posterior teeth with severe occlusal wear. Condition being studied: Currently there is an increase in cases of dental wear, due to several factors such as: excessive consumption of carbonated drinks, a diet high in acids, gastric diseases, anorexia, bulimia, dental grinding, use of highly abrasive toothpastes, or a combination of these(9) (10) (11) (12); which affect the patient in several aspects: loss of vertical dimension, sensitivity due to the exposure of dentin, esthetics, affectation of the neuromuscular system(11) (13) (14). With the advent of minimally invasive dentistry, occlusal veneers have been found to be a valid option to rehabilitate this type of cases and thus avoid greater wear of the dental structure with full coverage restorations. Sometimes when performing a tabletop it is not necessary to perform any preparation, thus preserving the maximum amount of dental tissue(3) (6) (15). Due to the masticatory load either in patients without parafunction where the maximum masticatory force is approximately 424 N for women and 630 N for men or in those who present parafunction where the maximum bite force can vary from 780 to 1120N(7), it is necessary that the occlusal veneers support that load which makes indispensable a compilation of studies investigating both fatigue and fracture resistance and the survival rate of occlusal veneers in different materials and thicknesses.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Fenske, George, and Oyelayo Ajayi. An Abrasive Wear Model of Knife Milling to Predict the Impact of Material Properties and Milling Parameters on Knife Edge Recession. Office of Scientific and Technical Information (OSTI), August 2021. http://dx.doi.org/10.2172/1818971.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lever, James, Austin Lines, Susan Taylor, Garrett Hoch, Emily Asenath-Smith, and Devinder Sodhi. Revisiting mechanics of ice–skate friction : from experiments at a skating rink to a unified hypothesis. Engineer Research and Development Center (U.S.), December 2021. http://dx.doi.org/10.21079/11681/42642.

Повний текст джерела
Анотація:
The mechanics underlying ice–skate friction remain uncertain despite over a century of study. In the 1930s, the theory of self-lubrication from frictional heat supplanted an earlier hypothesis that pressure melting governed skate friction. More recently, researchers have suggested that a layer of abraded wear particles or the presence of quasi-liquid molecular layers on the surface of ice could account for its slipperiness. Here, we assess the dominant hypotheses proposed to govern ice– skate friction and describe experiments conducted in an indoor skating rink aimed to provide observations to test these hypotheses. Our results indicate that the brittle failure of ice under rapid compression plays a strong role. Our observations did not confirm the presence of full contact water films and are more consistent with the presence of lubricating ice-rich slurries at discontinuous high-pressure zones (HPZs). The presence of ice-rich slurries supporting skates through HPZs merges pressure-melting, abrasion and lubricating films as a unified hypothesis for why skates are so slippery across broad ranges of speeds, temperatures and normal loads. We suggest tribometer experiments to overcome the difficulties of investigating these processes during actual skating trials.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії