Добірка наукової літератури з теми "3D visualisation and segmentation"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "3D visualisation and segmentation".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "3D visualisation and segmentation":

1

Gaifas, Lorenzo, Moritz A. Kirchner, Joanna Timmins, and Irina Gutsche. "Blik is an extensible 3D visualisation tool for the annotation and analysis of cryo-electron tomography data." PLOS Biology 22, no. 4 (April 30, 2024): e3002447. http://dx.doi.org/10.1371/journal.pbio.3002447.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Powerful, workflow-agnostic and interactive visualisation is essential for the ad hoc, human-in-the-loop workflows typical of cryo-electron tomography (cryo-ET). While several tools exist for visualisation and annotation of cryo-ET data, they are often integrated as part of monolithic processing pipelines, or focused on a specific task and offering limited reusability and extensibility. With each software suite presenting its own pros and cons and tools tailored to address specific challenges, seamless integration between available pipelines is often a difficult task. As part of the effort to enable such flexibility and move the software ecosystem towards a more collaborative and modular approach, we developed blik, an open-source napari plugin for visualisation and annotation of cryo-ET data (source code: https://github.com/brisvag/blik). blik offers fast, interactive, and user-friendly 3D visualisation thanks to napari, and is built with extensibility and modularity at the core. Data is handled and exposed through well-established scientific Python libraries such as numpy arrays and pandas dataframes. Reusable components (such as data structures, file read/write, and annotation tools) are developed as independent Python libraries to encourage reuse and community contribution. By easily integrating with established image analysis tools—even outside of the cryo-ET world—blik provides a versatile platform for interacting with cryo-ET data. On top of core visualisation features—interactive and simultaneous visualisation of tomograms, particle picks, and segmentations—blik provides an interface for interactive tools such as manual, surface-based and filament-based particle picking, and image segmentation, as well as simple filtering tools. Additional self-contained napari plugins developed as part of this work also implement interactive plotting and selection based on particle features, and label interpolation for easier segmentation. Finally, we highlight the differences with existing software and showcase blik’s applicability in biological research.
2

Jung, Y., H. Kim, B. Park, H. Lee, B. Kim, M. Bang, J. Lee, M. Oh, and G. Cho. "EP02.14: The new 3D‐based fetal segmentation and visualisation method." Ultrasound in Obstetrics & Gynecology 62, S1 (October 2023): 107. http://dx.doi.org/10.1002/uog.26634.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kang, Hanwen, and Chao Chen. "Fruit detection, segmentation and 3D visualisation of environments in apple orchards." Computers and Electronics in Agriculture 171 (April 2020): 105302. http://dx.doi.org/10.1016/j.compag.2020.105302.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Colombo, E., T. Fick, G. Esposito, M. Germans, L. Regli, and T. van Doormaal. "Segmentation techniques of cerebral arteriovenous malformations for 3D visualisation: a systematic review." Brain and Spine 2 (2022): 101415. http://dx.doi.org/10.1016/j.bas.2022.101415.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dury, Richard, Rob Dineen, Anbarasu Lourdusamy, and Richard Grundy. "Semi-automated medulloblastoma segmentation and influence of molecular subgroup on segmentation quality." Neuro-Oncology 21, Supplement_4 (October 2019): iv14. http://dx.doi.org/10.1093/neuonc/noz167.060.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Medulloblastoma is the most common malignant brain tumour in children. Segmenting the tumour itself from the surrounding tissue on MRI scans has shown to be useful for neuro-surgical planning, by allowing a better understanding of the tumour margin with 3D visualisation. However, manual segmentation of medulloblastoma is time consuming, prone to bias and inter-observer discrepancies. Here we propose a semi-automatic patient based segmentation pipeline with little sensitivity to tumour location and minimal user input. Using SPM12 “Segment” as a base, an additional tissue component describing the medulloblastoma is included in the algorithm. The user is required to define the centre of mass and a single surface point of the tumour, creating an approximate enclosing sphere. The calculated volume is confined to the cerebellum to minimise misclassification of other intracranial structures. This process typically takes 5 minutes from start to finish. This method was applied to 97 T2-weighted scans of paediatric medulloblastoma (7 WNT, 6 SHH, 17 Gr3, 26 Gr4, 41 unknown subtype); resulting segmented volumes were compared to manual segmentations. An average Dice coefficient of 0.85±0.07 was found, with the Group 4 subtype demonstrating a significantly higher similarity with manual segmentation than other subgroups (0.88±0.04). When visually assessing the 10 cases with the lowest Dice coefficients, it was found that the misclassification of oedema was the most common source of error. As this method is independent of image contrast, segmentation could be improved by applying it to images that are less sensitive to oedema, such as T1.
6

Patekar, Rahul, Prashant Shukla Kumar, Hong-Seng Gan, and Muhammad Hanif Ramlee. "Automated Knee Bone Segmentation and Visualisation Using Mask RCNN and Marching Cube: Data From The Osteoarthritis Initiative." ASM Science Journal 17 (April 13, 2022): 1–7. http://dx.doi.org/10.32802/asmscj.2022.968.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this work, an automated knee bone segmentation model is proposed. A mask region-based convolutional neural network (RCNN) algorithm is developed to segment the bone and reconstructed into 3D object by using Marching-Cube algorithm. The proposed method is divided into two stages. First, the Mask RCNN is introduced to segment subchondral knee bone from the input MRI sequence. In the second stage, the segmented output from Mask R-CNN is fed as input to the Marching cube algorithm for the 3D reconstruction of knee subchondral bone. The proposed method achieved high dice similarity scores for femur bone 95.35%, tibia bone 95.3%, and patella bone 94.40% using a Mask R-CNN with Resnet-50 as backbone architecture. Improved dice similarity scores for femur bone 97.11%, tibia bone 97.33%, and patella bone 97.05% are obtained by Mask RCNN with Resnet-101 as backbone architecture. It is noted that the Mask RCNN framework has demonstrated efficient and accurate knee subchondral bone detection as well as segmentation for input MRI sequences.
7

Luo, Tess X. H., Wallace W. L. Lai, and Zhanzhan Lei. "Intensity Normalisation of GPR C-Scans." Remote Sensing 15, no. 5 (February 27, 2023): 1309. http://dx.doi.org/10.3390/rs15051309.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The three-dimensional (3D) ground-penetrating radar (GPR) has been widely applied in subsurface surveys and imaging, and the quality of the resulting C-scan images is determined by the spatial resolution and visualisation contrast. Previous studies have standardised the suitable spatial resolution of GPR C-scans; however, their measurement normalisation remains arbitrary. Human bias is inevitable in C-scan interpretation because different visualisation algorithms lead to different interpretation results. Therefore, an objective scheme for mapping GPR signals after standard processing to the visualisation contrast should be established. Focusing on two typical scenarios, a reinforced concrete structure and an urban underground, this study illustrated that the essential parameters were greyscale thresholding and transformation mapping. By quantifying the normalisation performance with the integration of image segmentation and structural similarity index measure, a greyscale threshold was developed in which the normalised standard deviation of the unit intensity of any surveyed object was two. A transformation function named “bipolar” was also shown to balance the maintenance of real reflections at the target objects. By providing academia/industry with an object-based approach, this study contributes to solving the final unresolved issue of 3D GPR imaging (i.e., image contrast) to better eliminate the interfering noise and better mitigate human bias for any one-off/touch-based imaging and temporal change detection.
8

Medved, M. S., S. D. Rud, G. E. Trufanov, and D. S. Lebedev. "The intraoperative visualisation technique during lead implantation into the cardiac conductive system: aspects of computed tomography: prospective study." Diagnostic radiology and radiotherapy 14, no. 3 (October 5, 2023): 46–52. http://dx.doi.org/10.22328/2079-5343-2023-14-3-46-52.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
INTRODUCTION: The lead implantation into the cardiac conduction system (CCS) is the most physiological method of pacing nowadays. «The method of intraoperative visualization and control of the lead position for permanent electrocardiostimulation during implantation of the lead in the CCS» has been developed for reduce the number of non-targeted implantations. This method based on the integration into the angiograph system 3D-reconstruction of the heart converted to computed tomography (CT) in the form of a mask against the background of fluoroscopy. CT is an important stage of the intraoperative visualization technique (IVT).OBJECTIVE: The aim of the study was to adapt the protocol of CT examination of the heart with contrast to construct a partially segmented 3D-reconstruction of the heart on an angiographic complex for subsequent use during of the lead implantation in the CCS within the framework of the author’s IVT.MATERIALS AND METHODS: As part of the development of the IVT, 21 CT studies of the heart were selected from own database. The step of the gradient of the density difference of the contrasted blood is about 10 HU, the range of the difference of densitometric parameters of the «left ventricle (LV) — right ventricle (RV)» from 0 HU to 200 HU. As well as selected 11 CT studies of the heart. The step of the gradient of the difference of densitometric indicators the contrasted blood in «the RV cavity — myocardium» is about 10 HU, the range is from 0 HU to 100 HU. All CT scans are alternately loaded into the angiograph, followed by the creation of a 3D model of the heart using basic software.RESULTS: It’s necessary to exceed the degree of contrast of the LV cavity over the RV cavity by at least 80 HU to perform partial segmentation on the left and right chambers of a 3D-model of the heart in an angiographic complex that does not have a specialized segmentation module. A sufficiently large part of the left ventricular cavity (LV) disappears with a smaller gradient when the right ventricular cavity (RV) is suppressed. The minimum gradient of «the ventricular cavity — myocardium» is at least 20 HU. The boundaries of the right ventricular edge of the interventricular septum (IVS) are not visualized with a smaller contrast gradient. It’s important for determining the insertion place of the lead into the IVS.CONCLUSION: It’s necessary to exceed the contrast of the LV cavities above the RV cavity by at least 80 HU, the RV cavity above the myocardium by at least 20 HU to perform partial segmentation on the left and right chambers of a 3D-model of the heart in an angiographic complex that does not have a specialized segmentation module
9

Forte, Mari Nieves Velasco, Tarique Hussain, Arno Roest, Gorka Gomez, Monique Jongbloed, John Simpson, Kuberan Pushparajah, Nick Byrne, and Israel Valverde. "Living the heart in three dimensions: applications of 3D printing in CHD." Cardiology in the Young 29, no. 06 (June 2019): 733–43. http://dx.doi.org/10.1017/s1047951119000398.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractAdvances in biomedical engineering have led to three-dimensional (3D)-printed models being used for a broad range of different applications. Teaching medical personnel, communicating with patients and relatives, planning complex heart surgery, or designing new techniques for repair of CHD via cardiac catheterisation are now options available using patient-specific 3D-printed models. The management of CHD can be challenging owing to the wide spectrum of morphological conditions and the differences between patients. Direct visualisation and manipulation of the patients’ individual anatomy has opened new horizons in personalised treatment, providing the possibility of performing the whole procedure in vitro beforehand, thus anticipating complications and possible outcomes. In this review, we discuss the workflow to implement 3D printing in clinical practice, the imaging modalities used for anatomical segmentation, the applications of this emerging technique in patients with structural heart disease, and its limitations and future directions.
10

Gende, Mateo, Joaquim De Moura, Jorge Novo, Pablo Charlon, and Marcos Ortega. "Automatic Segmentation and Intuitive Visualisation of the Epiretinal Membrane in 3D OCT Images Using Deep Convolutional Approaches." IEEE Access 9 (2021): 75993–6004. http://dx.doi.org/10.1109/access.2021.3082638.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "3D visualisation and segmentation":

1

Mao, Bo. "Visualisation and Generalisation of 3D City Models." Doctoral thesis, KTH, Geoinformatik och Geodesi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-48174.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
3D city models have been widely used in various applications such as urban planning, traffic control, disaster management etc. Efficient visualisation of 3D city models in different levels of detail (LODs) is one of the pivotal technologies to support these applications. In this thesis, a framework is proposed to visualise the 3D city models online. Then, generalisation methods are studied and tailored to create 3D city scenes in different scales dynamically. Multiple representation structures are designed to preserve the generalisation results on different level. Finally, the quality of the generalised 3D city models is evaluated by measuring the visual similarity with the original models.   In the proposed online visualisation framework, City Geography Makeup Language (CityGML) is used to represent city models, then 3D scenes in Extensible 3D (X3D) are generated from the CityGML data and dynamically updated to the user side for visualisation in the Web-based Graphics Library (WebGL) supported browsers with X3D Document Object Model (X3DOM) technique. The proposed framework can be implemented at the mainstream browsers without specific plugins, but it can only support online 3D city model visualisation in small area. For visualisation of large data volumes, generalisation methods and multiple representation structures are required.   To reduce the 3D data volume, various generalisation methods are investigated to increase the visualisation efficiency. On the city block level, the aggregation and typification methods are improved to simplify the 3D city models. On the street level, buildings are selected according to their visual importance and the results are stored in the indexes for dynamic visualisation. On the building level, a new LOD, shell model, is introduced. It is the exterior shell of LOD3 model, in which the objects such as windows, doors and smaller facilities are projected onto walls.  On the facade level, especially for textured 3D buildings, image processing and analysis methods are employed to compress the texture.   After the generalisation processes on different levels, multiple representation data structures are required to store the generalised models for dynamic visualisation. On the city block level the CityTree, a novel structure to represent group of buildings, is tested for building aggregation. According to the results, the generalised 3D city model creation time is reduced by more than 50% by using the CityTree. Meanwhile, a Minimum Spanning Tree (MST) is employed to detect the linear building group structures in the city models and they are typified with different strategies. On the building level and the street level, the visible building index is created along the road to support building selection. On facade level the TextureTree, a structure to represent building facade texture, is created based on the texture segmentation.   Different generalisation strategies lead to different outcomes. It is critical to evaluate the quality of the generalised models. Visually salient features of the textured building models such as size, colour, height, etc. are employed to calculate the visual difference between the original and the generalised models. Visual similarity is the criterion in the street view level building selection. In this thesis, the visual similarity is evaluated locally and globally. On the local level, the projection area and the colour difference between the original and the generalised models are considered. On the global level, the visual features of the 3D city models are represented by Attributed Relation Graphs (ARG) and their similarity distances are calculated with the Nested Earth Mover’s Distance (NEMD) algorithm.   The overall contribution of this thesis is that 3D city models are generalised in different scales (block, street, building and facade) and the results are stored in multiple representation structures for efficient dynamic visualisation, especially for online visualisation.
QC 20111116
ViSuCity
2

Dufour, Alexandre. "Segmentation, suivi et visualisation d'objets biologiques en microscopie 3D par fluorescence : Approches par modèles déformables." Phd thesis, Université René Descartes - Paris V, 2007. http://tel.archives-ouvertes.fr/tel-00271191.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nous nous intéressons à la détection et au suivi d'objets biologiques divers (cellules, noyaux, etc.) dans des images et séquences tri-dimensionnelles acquises en microscopie par fluorescence. L'observation de phénomènes biologiques in situ étant de plus en plus cruciale pour les experts, il est nécessaire, en plus de l'analyse quantitative, d'effectuer un rendu volumique 3D de la scène et des objets qui y évoluent. De plus, l'automatisation des techniques d'acquisition d'images requiert un haut niveau de reproductibilité des algorithmes et induit souvent des contraintes de temps de calcul que nous nous efforçons de prendre en compte.

Les modèles déformables, également connus sous le nom de contours actifs, font actuellement partie des méthodes de pointe en analyse d'images pour la segmentation et le suivi d'objets grâce à leur robustesse, leur flexibilité et leur représentation à haut niveau sémantique des entités recherchées. Afin de les adapter à notre problématique, nous devons faire face à diverses difficultés. Tout d'abord, les méthodes existantes se réfèrent souvent aux variations locales d'intensité (ou gradients) de l'image pour détecter le contour des objets recherchés. Cette approche est inefficace en microscopie tridimensionnelle par fluorescence, où les gradients sont très peu prononcés selon l'axe de profondeur de l'image. Ensuite, nous devons gérer le suivi d'objets multiples susceptibles d'entrer en contact en évitant leur confusion. Enfin, nous devons mettre en place un système permettant de visualiser efficacement les contours durant leur déformation sans altérer les temps de calcul.

Dans la première partie de ce travail, nous pallions à ces problèmes en proposant un modèle de segmentation et de suivi multi-objets basé sur le formalisme des lignes de niveaux (ou level sets) et exploitant la fonctionnelle de Mumford et Shah. La méthode obtenue donne des résultats quantitatifs satisfaisants, mais ne se prête pas efficacement au rendu 3D de la scène, pour lequel nous sommes tributaires d'algorithmes dédiés à la reconstruction 3D (e.g. la méthode des "Marching Cubes"), souvent coûteux en mémoire et en temps de calcul. De plus, ces algorithmes peuvent induire des erreurs d'approximation et ainsi entraîner une mauvaise interprétation des résultats.

Dans la seconde partie, nous proposons une variation de la méthode précédente en remplaçant le formalisme des lignes de niveaux par celui des maillages triangulaires, très populaire dans le domaine de la conception assistée par ordinateur (CAO) pour leur rendu 3D rapide et précis. Cette nouvelle approche produit des résultats quantitatifs équivalents, en revanche le formalisme des maillages permet d'une part de réduire considérablement la complexité du problème et autorise d'autre part à effectuer un rendu 3D précis de la scène parallèlement au processus de segmentation, réduisant d'autant plus les temps de calculs.

Les performances des deux méthodes proposées sont d'abord évaluées puis comparées sur un jeu de données simulées reproduisant le mieux possible les caractéristiques des images réelles. Ensuite, nous nous intéressons plus particulièrement à l'évaluation de la méthode par maillages sur des données réelles, en évaluant la robustesse et la stabilité de quelques descripteurs de forme simples sur des expériences d'imagerie haut-débit. Enfin, nous présentons des applications concrètes de la méthode à des problématiques biologiques réelles, réalisées en collaboration avec d'autres équipes de l'Institut Pasteur de Corée.
3

Wang, Chen. "Large-scale 3D environmental modelling and visualisation for flood hazard warning." Thesis, University of Bradford, 2009. http://hdl.handle.net/10454/3350.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
3D environment reconstruction has received great interest in recent years in areas such as city planning, virtual tourism and flood hazard warning. With the rapid development of computer technologies, it has become possible and necessary to develop new methodologies and techniques for real time simulation for virtual environments applications. This thesis proposes a novel dynamic simulation scheme for flood hazard warning. The work consists of three main parts: digital terrain modelling; 3D environmental reconstruction and system development; flood simulation models. The digital terrain model is constructed using real world measurement data of GIS, in terms of digital elevation data and satellite image data. An NTSP algorithm is proposed for very large data assessing, terrain modelling and visualisation. A pyramidal data arrangement structure is used for dealing with the requirements of terrain details with different resolutions. The 3D environmental reconstruction system is made up of environmental image segmentation for object identification, a new shape match method and an intelligent reconstruction system. The active contours-based multi-resolution vector-valued framework and the multi-seed region growing method are both used for extracting necessary objects from images. The shape match method is used with a template in the spatial domain for a 3D detailed small scale urban environment reconstruction. The intelligent reconstruction system is designed to recreate the whole model based on specific features of objects for large scale environment reconstruction. This study then proposes a new flood simulation scheme which is an important application of the 3D environmental reconstruction system. Two new flooding models have been developed. The first one is flood spreading model which is useful for large scale flood simulation. It consists of flooding image spatial segmentation, a water level calculation process, a standard gradient descent method for energy minimization, a flood region search and a merge process. The finite volume hydrodynamic model is built from shallow water equations which is useful for urban area flood simulation. The proposed 3D urban environment reconstruction system was tested on our simulation platform. The experiment results indicate that this method is capable of dealing with complicated and high resolution region reconstruction which is useful for many applications. When testing the 3D flood simulation system, the simulation results are very close to the real flood situation, and this method has faster speed and greater accuracy of simulating the inundation area in comparison to the conventional flood simulation models
4

Bridge, Pete. "The development and evaluation of a novel 3D radiotherapy immersive outlining tool." Thesis, Queensland University of Technology, 2017. https://eprints.qut.edu.au/123511/1/Peter%20Bridge%20Thesis.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Radiotherapy target definition traditionally relies on manually drawing round the relevant anatomical structures on successive CT slices. This is a laborious process that impacts on patient throughput and can limit the adoption of more complex techniques. Although automated segmentation algorithms can create rapid volumes they lack the capacity to adapt to tumour volumes and areas of abnormal or variable anatomical structures. Such software invariably requires considerable manual input in terms of editing the outlines. In addition there is a growing desire among clinicians to be more actively involved and ensure that their clinical decision making is factored in to the generated volumes. This thesis presents a novel solution to this problem. The primary aim of this "proof of principle" thesis is the development and evaluation of software capable of generating a mesh structure derived from a small number of points placed on a range of CT planes. This is in contrast to the traditional method of outlining that relies on a large number of points placed on successive axial CT slices. Use of a small number of points is hypothesised to require less clinician time. The software also allows the user to edit the resultant outline volumetrically with 3D modelling tools derived from animation applications. These tools enable multiple "slices" to be manually edited simultaneously while retaining a smooth and clinically relevant volume shape. The thesis presents the development and evaluation of this new software application though a series of published works. The evaluation is drawn from a combination of qualitative research involving user focus groups and quantitative data collection relating to the clinical impact of the new paradigm. The first published paper reports on the development of the software tool with some preliminary user evaluation highlighting recommendations for optimum use and training. Mesh generation from a small number of points placed on a range of planes was found to be a potentially rapid and effective means of target delineation, although further work was suggested to improve multi-slice volume sculpting prior to more formal pre-clinical testing. The second paper presents qualitative data gained from Radiation Oncologist outliners relating to the clinical value of the software for accelerating clinician-directed prostate and seminal vesicle segmentation. The new tool was well-received and reported to be capable of producing very rapid and smooth volumes. This phase suffered due to time pressures experienced by the cohort and further testing of the software with a less time-poor cohort was be indicated. The third paper was developed from the initial two phases of the study and highlighted the specific challenge of radiotherapy outlining with a lack of "gold standard" and suggests that the inherent variability mandates a constructivist approach to evaluation. This constructivist approach to variability may empower clinicians to accept variability as an inherent aspect of their practice. Furthermore, research efforts should be focussed on maximising impact of training and guidelines as well as the development of a target minimum agreed measure of intra-observer variability that educational interventions should seek to facilitate. The final published work reported on quantitative testing of the software with a less time-pressured cohort. Student radiation therapists were tasked with outlining a bladder volume with both the new tool and the industry standard tool and found a significant (p = 0.03) time saving of 30% for bladder segmentation compared to axial-based outlining. The new volumetric outlining paradigm is conceptually challenging and requires users to adopt a significantly different approach to generating and editing structure outlines. It also demands high levels of spatial awareness to engage with the 3D navigation tools. Given the increasing use of 3D visualisation in medicine and the non-axial image interpretation demands of MR imaging it is important that training in these techniques be embedded at pre-registration level. Future work aims to further develop this outlining tool and establish its role in editing of autosegmentation derived contour sets.
5

Verdonck, Bert. "Segmentation, mesure et visualisation des vaisseaux sanguins à partir d'angiographies 3d par résonance magnétique et tomodensitométrie helicoidale." Paris, ENST, 1996. http://www.theses.fr/1996ENST0042.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
LE but de cette thèse était d'étudier et de développer une méthodologie générale pour détecter, reconstruire, analyser et visualiser les vaisseaux sanguins dans des images médicales en trois dimensions (3d). On utilise les modalités d'acquisition qui sont 3d, qui permettent de visualiser les vaisseaux et qui sont utilisées en routine hospitalière : l'angiographie par tomodensitométrie spirale (atdms) et par résonance magnétique (arm). Aujourd'hui le manque d'outils de segmentation adapte limite les possibilités de visualisation et de mesure sur ces images volumiques. Afin de bien traiter le problème de segmentation, on s'est penché sur la modélisation du vaisseau sanguin (les parties tubulaires). On a retenu le cylindre généralise discret avec une courbe 3d comme axe et des contours fermes 2d (polygones étoiles) orthogonaux sur l'axe. Ces contours sont définis dans un cadre de référence locale le long du vaisseau. En même temps on peut visualiser et analyser les propriétés du vaisseau dans des coupes orthogonales a l'axe. Ainsi on arrive tout de suite au modèle 3d qui est facile à visualiser et permet de faire des mesures directement. En utilisant cette modélisation, on a développé un suiveur de vaisseau, en étendant de 2d à 3d des suiveurs de routes (en imagerie aérienne ou satellitaire) et des suiveurs de vaisseaux (en angiographie classique). Le processus de poursuite ressemble à l'introduction d'un cathéter imaginaire dans le vaisseau. Cet algorithme permet d'extraire des vaisseaux d'intérêt de différentes tailles rapidement. On a étendu cette approche pour l'application spécifique de quantification précise de sténoses qui nécessite une extraction la plus précise possible. L'optimisation de la sélection entre plusieurs candidats de contour est exprimée par une fonction de cout et est effectuée par programmation dynamique. Afin de quantifier le degré de sténose précisément, on a étudié toutes les étapes du système (acquisition, segmentation et mesure) qui influencent la précision. Cette analyse a été effectuée a la fois sur le plan théorique, sur des objets synthétiques et sur des fantômes de tubes. Les tuyaux de faibles diamètres sont surtout susceptibles d'erreurs de localisation des mesures de gradient et des corrections sont proposées. Cela nous a permis de vérifier la bonne précision de nos résultats.
6

Verdonck, Bert. "Segmentation, mesure et visualisation des vaisseaux sanguins à partir d'angiographies 3D par résonance magnétique et tomodensitométrie hélicoîdale /." Paris : École nationale supérieure des télécommunications, 1997. http://catalogue.bnf.fr/ark:/12148/cb36703841x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Th. doct.--Signal et images--Paris--ENST, 1996.
Mention parallèle de titre ou de responsabilité : Blood vessel segmentation, quantification and visualization for 3D MR and spiral CT angiography. Textes en français ou en anglais. Bibliogr. p. 151-169. Résumé en français et en anglais.
7

Rekik, Wafa. "Fusion de données temporelles, ou 2D+t, et spatiales, ou 3D, pour la reconstruction de scènes 3D+t et traitement d'images sphériques : applications à la biologie cellulaire." Paris 6, 2007. http://www.theses.fr/2007PA066655.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dans certaines applications en vision, nous disposons de données volumiques (3D) et des séquences planaires (2D+t). Les données 3D définissent la géométrie en trois dimensions de la scène observée. Elles comportent donc des informations purement spatiales. Les séquences 2D+t sont porteuses d'informations temporelles et partiellement spatiales puisqu'elles décrivent en deux dimensions la dynamique des objets en mouvement. La fusion de ces données permet de restituer une séquence volumique (3D+t) de la scène filmée. Ces travaux s'articulent en deux volets. Le premier volet concerne une étude méthodologique de la reconstruction 3D+t par compensation du mouvent. Nous proposons deux familles d'approches : avec ou sans modèle a priori sur les structures observées dans les données. Le modèle a priori étudiée concernent des objets de géométrie sphérique. Le second volet décrit le traitement d'image multi-dimensionnels (2D, 3D, 2D+t, 3D+t) toujours dans le contexte de forme sphérique. Nous proposons alors diverses applications comme le suivi temporel sur les séquences 2D+t, la visualisation, la segmentation des données 2D ou 3D,. . . Une application possible est donnée en imagerie biologique dans le cadre de la simulation de parois cellulaires, contexte dans lequel nous observons dans diverses modalités des objets sphéroïdes.
8

Mercier, Corentin. "Geometrical modeling, simplification and visualization of brain white matter tractograms." Electronic Thesis or Diss., Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAT048.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les données de tractographie (fibres) obtenues à partir d'IRM de diffusion sont difficiles d'utilisation. Dans cette thèse, nous proposons des méthodes et algorithmes pour la simplification, la visualisation et la manipulation de ces données. Nous introduisons une représentation multi-résolution des tractogrammes, plus rapides et avec une meilleure précision géométrique que les approches de simplification existantes. Nous explorons aussi diverses représentations géométriques et nous nous concentrons sur les approches de projections aux moindres carrés (MLS) par l'intermédiaire des surfaces algébriques d'ensemble de points (APSS), pour lesquelles nous réduisons la complexité, permettant l'utilisation de noyaux globaux pour l'analyse et la modélisation. Une technique de segmentation utilisant la représentation multi-résolution et permettant une meilleure reproductibilité que d'autres approches est ensuite présentée. Les tractogrammes pouvant être volumineux, nous introduisons un algorithme de compression exploitant la manière d'obtenir les données à partir des IRM de diffusion. La vitesse de cet algorithme permet même son utilisation pour la visualisation de données compressées, la décompression se faisant à la volée sur le GPU. Ces travaux de recherche et les résultats obtenus se situent à l'intersection de l'informatique graphique et de l'analyse de données médicales, ouvrant de nombreuses perspectives
Tractography data (fibers) obtained from diffusion MRI present several challenges.In this thesis, we propose some useful methods and algorithms for simplification, visualization, and manipulation of these data.We introduce a new multi-resolution representation for tractograms, faster, and with higher geometric accuracy than existing simplification approaches.We also investigate various geometric representations and focus on moving least square (MLS) projection with algebraic point set surfaces (APSS), on which we reduce the complexity, allowing for the use of global kernels for analysis and modeling.A segmentation technique using the multi-resolution representation is presented, achieving better reproducibility than other approaches.Tractograms being massive, we also introduce a compression algorithm taking advantage of data obtention from diffusion MRI.The algorithm speed even allows for the direct use of compressed data for visualization, as it can be decompressed on-the-fly on the GPU.This research and the obtained results lie at the intersection between Computer Graphics and Medical Data Analysis, paving the way for numerous perspectives
9

Chassonnery, Pauline. "Modélisation mathématique en 3D de l'émergence de l'architecture des tissus conjonctifs." Electronic Thesis or Diss., Toulouse 3, 2023. http://www.theses.fr/2023TOU30354.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette thèse porte sur l'hypothèse que des interactions mécaniques locales simples entre un nombre limité de composants puissent régir l'émergence de l'architecture 3D des tissus biologiques. Pour explorer cette possibilité, nous développons deux modèles mathématiques. Le premier, ECMmorpho-3D, vise à reproduire un tissu conjonctif non-spécialisé réduit à la matrice extra-cellulaire, c'est-à-dire à un réseau 3D de fibres interconnectées dynamiquement. Le second, ATmorpho-3D, est obtenu par ajout de cellules sphériques apparaissant et croissant spontanément dans ce réseau de fibres afin de modéliser la morphogenèse du tissu adipeux, un tissu conjonctif spécialisé ayant une grande importance sur le plan biomédical. Pour analyser les données produites par ces deux modèles, nous construisons un outil générique permettant de visualiser en 3D des systèmes composés d'un mélange d'éléments sphériques (cellules) et de bâtonnets (fibres) et de détecter automatiquement dans de tels systèmes des amas d'objets sphériques séparés par des bâtonnets. Cet outil peut également être utilisé pour traiter des images biologiques issues de microscopie en 3D, permettant ainsi une comparaison directe entre les structures in vivo et in silico. L'étude des structures produites par le modèle ECMmorpho-3D via des simulations numériques montre que ce modèle peut générer spontanément différents types d'architectures, que nous identifions et caractérisons grâce à notre outil d'analyse. Une analyse paramétrique approfondie nous permet d'identifier une variable émergente, le nombre de liens par fibre, qui explique et, dans une certaine mesure, prédit le devenir du système modélisé. Une analyse temporelle révèle que l'échelle de temps caractéristique de ce processus d'auto-organisation est fonction de la vitesse de remodelage du réseau et que tous les systèmes suivent la même trajectoire évolutive. Enfin, nous utilisons le modèle ATmorpho-3D pour explorer l'influence de cellules sphériques sur l'organisation d'un réseau de fibres dynamique, en prenant comme référence le modèle ECMmorpho-3D. Nous montrons que le nombre de cellules influence l'alignement local des fibres mais pas l'organisation globale du réseau. Par ailleurs, les cellules s'organisent spontanément en amas entourés de feuillets de fibres, dont les caractéristiques morphologiques sont très proches de celles des structures cellulaires in vivo. De plus, la distribution des différentes morphologies d'amas cellulaires est similaire dans les systèmes in silico et in vivo. Ceci suggère que le modèle est capable de produire des morphologies réalistes non seulement à l'échelle d'un amas mais aussi à l'échelle du système entier, en reproduisant les variabilités structurelles observées dans les échantillons biologiques. Une analyse paramétrique révèle que la proportion de chaque morphologie dans un système in silico est gouvernée principalement par les capacités de remodelage du réseau de fibres, pointant le rôle essentiel des propriétés de la matrice extra-cellulaire dans l'architecture et le fonctionnement du tissu adipeux (ce qui concorde avec plusieurs constatations biologiques ainsi que des résultats antérieurs en 2D). Le fait que ces modèles mathématiques très simples puissent générer des structures réalistes corrobore notre hypothèse selon laquelle l'architecture des tissus biologiques pourrait émerger spontanément à partir d'interactions mécaniques locales entre les composants du tissu, indépendamment des phénomènes biologiques complexes se déroulant dans ce tissu. Ce travail ouvre de nombreuses perspectives quant à notre compréhension des principes fondamentaux gouvernant la manière dont l'architecture d'un tissu émerge durant l'organogenèse, est maintenue au cours de la vie et peut être affectée par diverses pathologies. Les applications potentielles vont de l'ingénierie tissulaire à la possibilité de promouvoir la régénération chez les mammifères adultes
In this thesis, we investigate whether simple local mechanical interactions between a reduced set of components could govern the emergence of the 3D architecture of biological tissues. To explore this hypothesis, we develop two mathematical models. The first one, ECMmorpho-3D, aims at reproducing a non-specialised connective tissue and is reduced to the Extra-Cellular Matrix (ECM) component, that is a 3D dynamically connected fibre network. The second, ATmorpho-3D, is built by adding to this network spherical cells which spontaneously appear and grow in order to mimic the morphogenesis of Adipose Tissue (AT), a specialised connective tissue with major biomedical importance. We then construct a unified analysis framework to visualise, segment and quantitatively characterise the fibrous and cellular structures produced by our two models. It constitutes a generic tool for the 3D visualisation of systems composed of a mixture of spherical (cells) and rod-like (fibres) elements and for the automatic detection of in such systems of clusters of spherical objects separated by rod-like elements. This tool is also applicable to biological 3D microscopy images, enabling a comparison between in vivo and in silico structures. We study the structures produced by the model ECMmorpho-3D by performing numerical simula- tions. We show that this model is able to spontaneously generate different types of architectures, which we identify and characterise using our analysis framework. An in-depth parametric analysis lead us to identify an intermediate emerging variable, the number of crosslinks per fibre, which explains and partly predicts the fate of the modelled system. A temporal analysis reveals that the characteristic time-scale of the organisation process is a function of the network remodelling speed, and that all systems follow the same, unique evolutionary pathway. Finally, we use the model ATmorpho-3D to explore the influence of round cells over the organisation of a fibre network, taking as reference the model ECMmorpho-3D. We show that the number of cells can influence the local alignment of the fibres but not the global organisation of the network. On the other hand, the cells inside the network spontaneously organise into clusters with realistic morphological features very close to those of in vivo structures, surrounded by sheet-like fibre bundles. Moreover, the distribution of the different morphological types of clusters is similar in in silico and in vivo systems, suggesting that the model is able to produce realistic morphologies not only on the scale of one cluster but also on the scale of the whole system, reproducing the structural variability observed in biological samples. A parametric analysis reveals that the proportion in which each morphology is present in an in silico system is governed mainly by the remodelling characteristic of the fibres, pointing to the essential role of the ECM properties in AT architecture and function (in agreement with several biological results and previous 2D findings). The fact that these very simple mathematical models can produce realistic structures supports our hypothesis that biological tissues architecture could emerge spontaneously from local mechanical inter- actions between the tissue components, independently of the complex biological phenomena taking place around them. This opens many perspectives regarding our understanding of the fundamental principles governing how biological tissue architecture emerges during organogenesis, is maintained throughout life and can be affected by various pathological conditions. Potential applications range from tissue engineering to therapeutic treatment inducing regeneration in adult mammals
10

Robert, Bruno. "Echographie Tridimensionnelle." Phd thesis, Télécom ParisTech, 1999. http://tel.archives-ouvertes.fr/tel-00005697.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Avec les échographes classiques, le médecin explore un volume à partir de plans de coupe. Il intègre ensuite les informations volumiques en coordonnant les images obtenues et les positions de la sonde. Les techniques d'échographie tridimensionnelle récupèrent directement les données volumiques, qui peuvent ensuite être exploitées de manière plus ou moins automatique. L'objectif de cette thèse est de permettre l'évaluation clinique des techniques ultrasonores tridimensionnelles, notamment en ce qui concerne l'exploration de la région thyroïdienne. Pour ce faire, nous avons développé un système qui repère les mouvements de la sonde échographique pendant que l'opérateur explore le volume étudié. Deux systèmes de repérages ont été testés : un bras mécanique et un capteur électromagnétique. Dans une première étape, nous avons étudié les problèmes de calibrage et la précision du repérage dans les conditions d'utilisation. Les caractéristiques des données ultrasonores rendent le problème de la visualisation des données tridimensionnelles particulièrement difficile. Nous proposons une méthode interactive pour obtenir des images tridimensionnelles réalistes et estimer le volume des structures étudiées. Les images obtenues facilitent alors l'échange d'informations entre l'opérateur et le chirurgien ou le patient. Nous présentons enfin deux méthodes de segmentation pour améliorer la visualisation des données dans deux situations précises. En ce qui concerne la région thyroïdienne, la segmentation semi-automatique de la carotide facilite la localisation des adénomes. En obstétrique, un algorithme de détection des parois la cavité utérine permet d'améliorer la visualisation du foetus.

Книги з теми "3D visualisation and segmentation":

1

Shaughnessy, J. 3D visualisation. Manchester: University of Manchester, Department of ComputerScience, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Delengaigne, Anthony. Real-time 3D visualisation system. Oxford: Oxford Brookes University, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hall, Tim. 3D visualisation of mobile robot sensr data. Manchester: University of Manchester, Department of Computer Science, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ottoson, Patrik. Geographic indexing and data management for 3D-visualisation. Stockholm: Royal Institute of Technology, KTH, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Banik, Shantanu, Rangaraj M. Rangayyan, and Graham S. Boag. Landmarking and Segmentation of 3D CT Images. Cham: Springer International Publishing, 2009. http://dx.doi.org/10.1007/978-3-031-01635-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jones, Michael. Automatic model acquisition for 3D object recognition and visualisation. Manchester: University of Manchester, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Buchroithner, Manfred. True-3D in Cartography: Autostereoscopic and Solid Visualisation of Geodata. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wörz, Stefan. 3D parametric intensity models for the localization of 3D anatomical point landmarks and 3D segmentation of human vessels. Berlin: Akademische Verlagsgesellschaft Aka, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Romano, Alex. I, inventor: 3D mind technology. 4th ed. [Place of publication not identified]: A.R.P. Pub. Co., 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Adamson, Paul. The design of CAD and the birth of CAID ; and, 2 x 2D = 3D: Visualisation of virtual 3D forms from 2D profiles. don]: Middlesex University, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "3D visualisation and segmentation":

1

Skalski, Andrzej, Mirosław Socha, Mariusz Duplaga, Krzysztof Duda, and Tomasz Zieliński. "3D Segmentation and Visualisation of Mediastinal Structures Adjacent to Tracheobronchial Tree from CT Data." In Advances in Intelligent and Soft Computing, 523–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13105-9_52.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tschumperlé, David, Christophe Tilmant, and Vincent Barra. "3D Visualisation." In Digital Image Processing with C++, 227–42. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003323693-10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Young, Peter, and Malcolm Munro. "3D Software Visualisation." In Visual Representations and Interpretations, 341–50. London: Springer London, 1999. http://dx.doi.org/10.1007/978-1-4471-0563-3_38.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Buchroithner, Manfred F., and Claudia Knust. "True-3D in Cartography—Current Hard- and Softcopy Developments." In Geospatial Visualisation, 41–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-12289-7_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Weninger, W. J., Lars-Peter Kamolz, and S. H. Geyer. "3D Visualisation of Skin Substitutes." In Dermal Replacements in General, Burn, and Plastic Surgery, 87–96. Vienna: Springer Vienna, 2013. http://dx.doi.org/10.1007/978-3-7091-1586-2_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

O’Brien, Scarlett, and Nagy Darwish. "3D Visualisation of the Spine." In Advances in Experimental Medicine and Biology, 139–68. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-26462-7_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mansutti, Alessandro, Mario Covarrubias Rodriguez, Monica Bordegoni, and Umberto Cugini. "Augmented Reality Visualisation System." In Tactile Display for Virtual 3D Shape Rendering, 101–8. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48986-5_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Heinen, Torsten, Martin May, and Benno Schmidt. "3d Visualisation in Spatial Data Infrastructures." In Smart Graphics, 222–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11536482_20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

v. Pichler, C., K. Radermacher, W. Boeckmann, G. Jakse, and G. Rau. "3D-visualisation for image guided surgery." In Lecture Notes in Computer Science, 309–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0029250.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yazdy, Farzad E., Jon Tyrrell, Mark Riley, and Norman Winterbottom. "CARVUPP: Computer Assisted Radiological Visualisation Using Parallel Processing." In 3D Imaging in Medicine, 363–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84211-5_23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "3D visualisation and segmentation":

1

Zhang, Xiangrong, Feng Dong, Gordon Clapworthy, Youbing Zhao, and Licheng Jiao. "Semi-supervised Tissue Segmentation of 3D Brain MR Images." In 2010 14th International Conference Information Visualisation (IV). IEEE, 2010. http://dx.doi.org/10.1109/iv.2010.90.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kopacsi, Sandor. "Interactive visualisation in 3D." In 2012 IEEE 3rd International Conference on Cognitive Infocommunications (CogInfoCom). IEEE, 2012. http://dx.doi.org/10.1109/coginfocom.2012.6421930.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kapelner, Adam, Peter P. Lee, and Susan Holmes. "An Interactive Statistical Image Segmentation and Visualization System." In International Conference on Medical Information Visualisation - BioMedical Visualisation (MediVis 2007). IEEE, 2007. http://dx.doi.org/10.1109/medivis.2007.5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhang, Yan, Bogdan J. Matuszewski, and Lik-Kwan Shark. "A Novel Medical Image Segmentation Method using Dynamic Programming." In International Conference on Medical Information Visualisation - BioMedical Visualisation (MediVis 2007). IEEE, 2007. http://dx.doi.org/10.1109/medivis.2007.2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shepherd, Phil. "3D Visual Thinking." In Electronic Visualisation and the Arts. BCS Learning & Development, 2018. http://dx.doi.org/10.14236/ewic/eva2018.48.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ellis, David. "3D Visualisation for Seismic Processing." In Abu Dhabi International Petroleum Exhibition and Conference. Society of Petroleum Engineers, 2002. http://dx.doi.org/10.2118/78509-ms.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Krsek, Premysl, Michal Spanel, Petr Krupa, Ivo Marek, and Pavlina Cernochov. "Teeth And Jaw 3D Reconstrucion In Stomatology." In International Conference on Medical Information Visualisation - BioMedical Visualisation (MediVis 2007). IEEE, 2007. http://dx.doi.org/10.1109/medivis.2007.20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Duncan, Justin, and Frankie Inguanez. "Social Distancing Crowd Segmentation, Estimation and Visualisation." In 2021 IEEE 11th International Conference on Consumer Electronics (ICCE-Berlin). IEEE, 2021. http://dx.doi.org/10.1109/icce-berlin53567.2021.9720028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

McFarlane, N. J. B., G. J. Clapworthy, A. Agrawal, M. Viceconti, F. Taddei, E. Schileo, and F. Baruffaldi. "3D Multiscale Visualisation for Medical Datasets." In 2008 Fifth International Conference BioMedical Visualization: Information Visualization in Medical and Biomedical Informatics (MEDIVIS). IEEE, 2008. http://dx.doi.org/10.1109/medivis.2008.14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Drenikow, Brandon, David Arppe, Pejman Mirza-Babaei, and Andrew Hogue. "Interactive 3D visualisation of playtesting data." In 2014 IEEE Games, Media, Entertainment (GEM) Conference. IEEE, 2014. http://dx.doi.org/10.1109/gem.2014.7048116.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "3D visualisation and segmentation":

1

Toutin, Th, A. Redmond, E. Hoeppner, D. Hoja, and C. King. RADARSAT and DEM Data Fusion for 3D Visualisation Over the Reunion Island for Geoscientific Applications. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1998. http://dx.doi.org/10.4095/219317.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Buck, Valentin. Digital Earth Viewer. GEOMAR, 2023. http://dx.doi.org/10.3289/sw_6_2023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The Digital Earth Viewer is a tool for the visualisation and exploration of geospatial data in true 3D over time. It runs on Windows, MacOS and Linux and only requires a modern webbrowser to use. Common file formats such as CSV, netCDF, GeoTIFF and many more are natively supported
3

Wang, Song. Metallic Material Image Segmentation by using 3D Grain Structure Consistency and Intra/Inter-Grain Model Information. Fort Belvoir, VA: Defense Technical Information Center, January 2015. http://dx.doi.org/10.21236/ada617033.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Cheniour, Amani, Amir Ziabari, Elena Tajuelo Rodriguez, Mohammed Alnaggar, Yann Le Pape, and T. M. Rosseel. Reconstruction of 3D Concrete Microstructures Combining High-Resolution Characterization and Convolutional Neural Network for Image Segmentation. Office of Scientific and Technical Information (OSTI), February 2024. http://dx.doi.org/10.2172/2311320.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Huang, Haohang, Erol Tutumluer, Jiayi Luo, Kelin Ding, Issam Qamhia, and John Hart. 3D Image Analysis Using Deep Learning for Size and Shape Characterization of Stockpile Riprap Aggregates—Phase 2. Illinois Center for Transportation, September 2022. http://dx.doi.org/10.36501/0197-9191/22-017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Riprap rock and aggregates are extensively used in structural, transportation, geotechnical, and hydraulic engineering applications. Field determination of morphological properties of aggregates such as size and shape can greatly facilitate the quality assurance/quality control (QA/QC) process for proper aggregate material selection and engineering use. Many aggregate imaging approaches have been developed to characterize the size and morphology of individual aggregates by computer vision. However, 3D field characterization of aggregate particle morphology is challenging both during the quarry production process and at construction sites, particularly for aggregates in stockpile form. This research study presents a 3D reconstruction-segmentation-completion approach based on deep learning techniques by combining three developed research components: field 3D reconstruction procedures, 3D stockpile instance segmentation, and 3D shape completion. The approach was designed to reconstruct aggregate stockpiles from multi-view images, segment the stockpile into individual instances, and predict the unseen side of each instance (particle) based on the partial visible shapes. Based on the dataset constructed from individual aggregate models, a state-of-the-art 3D instance segmentation network and a 3D shape completion network were implemented and trained, respectively. The application of the integrated approach was demonstrated on re-engineered stockpiles and field stockpiles. The validation of results using ground-truth measurements showed satisfactory algorithm performance in capturing and predicting the unseen sides of aggregates. The algorithms are integrated into a software application with a user-friendly graphical user interface. Based on the findings of this study, this stockpile aggregate analysis approach is envisioned to provide efficient field evaluation of aggregate stockpiles by offering convenient and reliable solutions for on-site QA/QC tasks of riprap rock and aggregate stockpiles.
6

Huang, Haohang, Jiayi Luo, Kelin Ding, Erol Tutumluer, John Hart, and Issam Qamhia. I-RIPRAP 3D Image Analysis Software: User Manual. Illinois Center for Transportation, June 2023. http://dx.doi.org/10.36501/0197-9191/23-008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Riprap rock and aggregates are commonly used in various engineering applications such as structural, transportation, geotechnical, and hydraulic engineering. To ensure the quality of the aggregate materials selected for these applications, it is important to determine their morphological properties such as size and shape. There have been many imaging approaches developed to characterize the size and shape of individual aggregates, but obtaining 3D characterization of aggregates in stockpiles at production or construction sites can be a challenging task. This research study introduces a new approach based on deep learning techniques that combines three developed research components: field 3D reconstruction procedures, 3D stockpiles instance segmentation, and 3D shape completion. The approach is designed to reconstruct aggregate stockpiles from multiple images, segment the stockpile into individual instances, and predict the unseen sides of each instance (particle) based on the partially visible shapes. The approach was validated using ground-truth measurements and demonstrated satisfactory algorithm performance in capturing and predicting the unseen sides of aggregates. For better user experience, the integrated approach has been implemented into a software application named “I-RIPRAP 3D,” with a user-friendly graphical user interface (GUI). This stockpile aggregate analysis approach is envisioned to provide efficient field evaluation of aggregate stockpiles by offering convenient and reliable solutions for on-site quality assurance and quality control tasks of riprap rock and aggregate stockpiles. This document provides information for users of the I-RIPRAP 3D software to make the best use of the software’s capabilities.
7

Blundell, S., and Philip Devine. Creation, transformation, and orientation adjustment of a building façade model for feature segmentation : transforming 3D building point cloud models into 2D georeferenced feature overlays. Engineer Research and Development Center (U.S.), January 2020. http://dx.doi.org/10.21079/11681/35115.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Cheng, Peng, James V. Krogmeier, Mark R. Bell, Joshua Li, and Guangwei Yang. Detection and Classification of Concrete Patches by Integrating GPR and Surface Imaging. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317320.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This research considers the detection, location, and classification of patches in concrete and asphalt-on-concrete pavements using data taken from ground penetrating radar (GPR) and the WayLink 3D Imaging System. In particular, the project seeks to develop a patching table for “inverted-T” patches. A number of deep neural net methods were investigated for patch detection from 3D elevation and image observation, but the success was inconclusive, partly because of a dearth of training data. Later, a method based on thresholding IRI values computed on a 12-foot window was used to localize pavement distress, particularly as seen by patch settling. This method was far more promising. In addition, algorithms were developed for segmentation of the GPR data and for classification of the ambient pavement and the locations and types of patches found in it. The results so far are promising but far from perfect, with a relatively high rate of false alarms. The two project parts were combined to produce a fused patching table. Several hundred miles of data was captured with the Waylink System to compare with a much more limited GPR dataset. The primary dataset was captured on I-74. A software application for MATLAB has been written to aid in automation of patch table creation.
9

Cheng, Peng, James V. Krogmeier, Mark R. Bell, Joshua Li, and Guangwei Yang. Detection and Classification of Concrete Patches by Integrating GPR and Surface Imaging. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317320.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This research considers the detection, location, and classification of patches in concrete and asphalt-on-concrete pavements using data taken from ground penetrating radar (GPR) and the WayLink 3D Imaging System. In particular, the project seeks to develop a patching table for “inverted-T” patches. A number of deep neural net methods were investigated for patch detection from 3D elevation and image observation, but the success was inconclusive, partly because of a dearth of training data. Later, a method based on thresholding IRI values computed on a 12-foot window was used to localize pavement distress, particularly as seen by patch settling. This method was far more promising. In addition, algorithms were developed for segmentation of the GPR data and for classification of the ambient pavement and the locations and types of patches found in it. The results so far are promising but far from perfect, with a relatively high rate of false alarms. The two project parts were combined to produce a fused patching table. Several hundred miles of data was captured with the Waylink System to compare with a much more limited GPR dataset. The primary dataset was captured on I-74. A software application for MATLAB has been written to aid in automation of patch table creation.
10

Burks, Thomas F., Victor Alchanatis, and Warren Dixon. Enhancement of Sensing Technologies for Selective Tree Fruit Identification and Targeting in Robotic Harvesting Systems. United States Department of Agriculture, October 2009. http://dx.doi.org/10.32747/2009.7591739.bard.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The proposed project aims to enhance tree fruit identification and targeting for robotic harvesting through the selection of appropriate sensor technology, sensor fusion, and visual servo-control approaches. These technologies will be applicable for apple, orange and grapefruit harvest, although specific sensor wavelengths may vary. The primary challenges are fruit occlusion, light variability, peel color variation with maturity, range to target, and computational requirements of image processing algorithms. There are four major development tasks in original three-year proposed study. First, spectral characteristics in the VIS/NIR (0.4-1.0 micron) will be used in conjunction with thermal data to provide accurate and robust detection of fruit in the tree canopy. Hyper-spectral image pairs will be combined to provide automatic stereo matching for accurate 3D position. Secondly, VIS/NIR/FIR (0.4-15.0 micron) spectral sensor technology will be evaluated for potential in-field on-the-tree grading of surface defect, maturity and size for selective fruit harvest. Thirdly, new adaptive Lyapunov-basedHBVS (homography-based visual servo) methods to compensate for camera uncertainty, distortion effects, and provide range to target from a single camera will be developed, simulated, and implemented on a camera testbed to prove concept. HBVS methods coupled with imagespace navigation will be implemented to provide robust target tracking. And finally, harvesting test will be conducted on the developed technologies using the University of Florida harvesting manipulator test bed. During the course of the project it was determined that the second objective was overly ambitious for the project period and effort was directed toward the other objectives. The results reflect the synergistic efforts of the three principals. The USA team has focused on citrus based approaches while the Israeli counterpart has focused on apples. The USA team has improved visual servo control through the use of a statistical-based range estimate and homography. The results have been promising as long as the target is visible. In addition, the USA team has developed improved fruit detection algorithms that are robust under light variation and can localize fruit centers for partially occluded fruit. Additionally, algorithms have been developed to fuse thermal and visible spectrum image prior to segmentation in order to evaluate the potential improvements in fruit detection. Lastly, the USA team has developed a multispectral detection approach which demonstrated fruit detection levels above 90% of non-occluded fruit. The Israel team has focused on image registration and statistical based fruit detection with post-segmentation fusion. The results of all programs have shown significant progress with increased levels of fruit detection over prior art.

До бібліографії