Добірка наукової літератури з теми "3D sketching"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "3D sketching".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "3D sketching":

1

Zeleznik, Robert. "Sketching in 3D." ACM SIGGRAPH Computer Graphics 32, no. 4 (November 1998): 45–49. http://dx.doi.org/10.1145/307710.307727.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Balaguer, Jean-Francis, and Enrico Gobbetti. "Sketching 3D Animations." Computer Graphics Forum 14, no. 3 (August 1995): 241–58. http://dx.doi.org/10.1111/1467-8659.1430241.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Balaguer, Jean-Francis, and Enrico Gobbetti. "Sketching 3D Animations." Computer Graphics Forum 14, no. 3 (August 1995): 241–58. http://dx.doi.org/10.1111/j.1467-8659.1995.cgf143_0241.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Xu, Pengfei, Hongbo Fu, Youyi Zheng, Karan Singh, Hui Huang, and Chiew-Lan Tai. "Model-Guided 3D Sketching." IEEE Transactions on Visualization and Computer Graphics 25, no. 10 (October 1, 2019): 2927–39. http://dx.doi.org/10.1109/tvcg.2018.2860016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Poletti, Helen. "A 3D sketching tool." ACM SIGGRAPH Computer Graphics 29, no. 3 (August 1995): 25–27. http://dx.doi.org/10.1145/209914.209923.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tung, Yu-Hsin, and Chun-Yen Chang. "How three-dimensional sketching environments affect spatial thinking: A functional magnetic resonance imaging study of virtual reality." PLOS ONE 19, no. 3 (March 11, 2024): e0294451. http://dx.doi.org/10.1371/journal.pone.0294451.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Designers rely on sketching to visualize and refine their initial ideas, and virtual reality (VR) tools now facilitate sketching in immersive 3D environments. However, little research has been conducted on the differences in the visual and spatial processes involved in 3D versus 2D sketching and their effects on cognition. This study investigated potential differences in spatial and visual functions related to the use of 3D versus 2D sketching media by analyzing functional magnetic resonance imaging (fMRI) data. We recruited 20 healthy, right-handed students from the Department of Horticulture and Landscape Architecture with at least three years of experience in freehand landscape drawing. Using an Oculus Quest VR headset controller and a 12.9-inch iPad Pro with an Apple Pencil, we tested participants individually with 3D and 2D sketching, respectively. When comparing 2D and 3D sketches, our fMRI results revealed significant differences in the activation of several brain regions, including the right middle temporal gyrus, both sides of the parietal lobe, and the left middle occipital gyrus. We also compared different sketching conditions, such as lines, geometrical objects (cube), and naturalistic objects (perspective view of a tree), and found significant differences in the spatial and visual recognition of brain areas that support visual recognition, composition, and spatial perception. This finding suggests that 3D sketching environments, such as VR, may activate more visual–spatial functions during sketching compared to 2D environments. The result highlights the potential of immersive sketching environments for design-related processes and spatial thinking.
7

Xuan, Cui Xian, Yong Jian Gong, and Qiang Li. "Research Progress of 3D Style Design Based on Sketching." Applied Mechanics and Materials 423-426 (September 2013): 1819–22. http://dx.doi.org/10.4028/www.scientific.net/amm.423-426.1819.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper summarizes research progress of 3D style design based on sketching, especially focuses on 3D modeling method based on sketching, 3D stroke fitting. The future research direction on multi-strokes fitting and the use of digital pen pressure and other information for style design are proposed.
8

Sheng, Bin, and Enhua Wu. "Laplacian-based Design: Sketching 3D Shapes." International Journal of Virtual Reality 5, no. 3 (January 1, 2006): 59–65. http://dx.doi.org/10.20870/ijvr.2006.5.3.2700.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The sketch-based shape modeling is one of the most challenging and active problems in computer graphics. In this paper, we present an interactive modeling system for generating free-form surfaces using a 2D sketch interface. Since inferring 3D shape from 2D sketches is an one to many function with no unique solution, we propose to interpret the given 2D curve to be the projection of the 3D curve that has minimum curvature among all the candidates in 3D. In this way, firstly, we present an algorithm to efficiently find a close approximation of this minimum curvature 3D space curve. In the second step, our system could identify the 3D surfaces automatically, and then we apply Delaunay triangulation on these surfaces. Finally, the shape of the triangular surface mesh that follows the 3D profile curves is computed using harmonic interpolation by solving Laplacian equations. We present experimental results on various kinds of drawings by the interactive modeler
9

Leal, Anamary, and Doug A. Bowman. "3D Sketching and Flexible Input for Surface Design: A Case Study." Journal on Interactive Systems 5, no. 3 (December 30, 2014): 1. http://dx.doi.org/10.5753/jis.2014.729.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Designing three-dimensional (3D) surfaces is difficult in both the physical world and in 3D modeling software, requiring background knowledge and skill. The goal of this work is to make 3D surface design easier and more accessible through natural and tangible 3D interaction, taking advantage of users' proprioceptive senses to help them understand 3D position, orientation, size, and shape. We hypothesize that flexible input based on fabric may be suitable for 3D surface design, because it can be molded and folded into a desired shape, and because it can be used as a dynamic flexible brush for 3D sketching. Fabric3D, an interactive surface design system based on 3D sketching with flexible input, explored this hypothesis. Through a longitudinal five-part study in which three domain experts used Fabric3D, we gained insight into the use of flexible input and 3D sketching for surface design in various domains.
10

Seybold, Carsten, and Frank Mantwill. "3D SKETCHES IN VIRTUAL REALITY AND THEIR EFFECT ON DEVELOPMENT TIMES." Proceedings of the Design Society 1 (July 27, 2021): 1–10. http://dx.doi.org/10.1017/pds.2021.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractIn the product development process, digital support continues to advance. Some work steps during product development are still carried out without assistance. Sketch creation is one of these. Therefore, the content created here is rarely documented due to the effort required for digital transformation. An alternative can be sketching in virtual reality. This article explores whether 3D sketching in VR enables faster sketching and can offer the basic features of hand-drawn sketches. To verify this, a tool for 3D sketching was developed. 27 test subjects were asked to solve one out of two different design tasks using this tool. The experiments were evaluated using video coding to identify the subjects actions. The created solutions have been analyzed about quality. The study showed initial indications that sketching in VR generally enables faster processing while maintaining the same solution quality.

Дисертації з теми "3D sketching":

1

Gunnarsson, Örn. "Sketching 3D faces." Thesis, University of Sheffield, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.531227.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Guay, Martin. "Sketching free-form poses and motions for expressive 3D character animation." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GRENM016/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L'animation expressive permet des styles de mouvements exagerés et artistiques comme l'étirement de parties du corps ou encore l'animation de créatures imaginaires comme un dragon. Créer ce genre d'animation nécessite des outils assez flexible afin de déformer les personnages en des poses quelconques, ainsi que de pouvoir contrôler l'animation à tout moment dans le temps. L'approche acutelle pour l'animation expressive est le keyframing: une approche manuelle avec laquelle les animateurs déforment leur personnage un moment spécifique dans le temps en cliquand et glissant la souris sur une partis spécifique du corps---un à la fois. Malgré le fait que cette approche soit flexible, il est difficile de créer des animations de qualité qui suivent les principes artistiques, puisque le keyframing permet seulement qu'un contrôle local spatiallement et temporellement. Lorsqu'ils dessinent des poses ou des mouvements, les artistes s'appuient sur différentes abstractions sous forme de croquis qui facillitent la réalisation de certain principes artistiques. Par example, certains animateurs dessinent des lignes d'action afin de créer une pose plus lisible et expressive. Afin de coordonner un mouvement, les animateurs vont souvent dessiner des abstractions de mouvement comme des demi-cercles pour des sauts, ou des boucles pour des pirouettes---leur permettant de pratiquer la coordination du mouvement. Malheureusement, ces outils artistiques ne font pas partis de l'ensemble d'outils de keyframing actuelle. Le fait que l'on ne puisse pas employer les même outils artistiques pour animater des personnages 3D a une forte conséquence: les outils d'animation 3D ne sont pas employés dans le processus créatif. Aujourd'hui, les animateurs créent sur du papier et utilisent le keyframing seulement à la fin pour réaliser leur animation. La raison pour laquelle nous n'avons pas ces outils artistiques (ligne d'action, abstractions de mouvement) en animation 3D, est parce qu'il manque une compréhension formelle de ceux-ci qui nous permettrais d'exprimer la forme du personnage---potentiellement au cours du temps---en fonction de la forme de ces croquis. Ainsi la contribution principale de cette thèse est une compréhension formelle et mathématique des abstractions de forme et de mouvement courrament employées par des artistes, ainsi qu'un ensemble d'algorithme qui permet l'utilisation de ces outils artistiques pour créer des animations expressives. C'est-à-dire que les outils développés dans cette thèse permettent d'étirer des parties du corps ainsi que d'animer des personnages de différentes morphologies. J'introduis aussi plusieurs extentions à ces outils. Par example, j'explore l'idée de sculpter du mouvement en permettant à l'artiste de dessigner plusieurs couches de mouvement une par dessus l'autre, de twister en 3D les croquis, ou encore d'animer un croquis ligne comme un élastique. Les contributions principales de cette thèse, aussi résumé ci-dessous: -La ligne d'action facilitant la création de poses expressives en dessinant directement le flow complet du personnage. -La courbe spatio-temporelle qui permet de spécifier un mouvement coordoné complet avec un seul geste (en dessinant une seule courbe), applicable à n'importe quel personnage 3D. -Un algorithme de matching rapide et robuste qui permet du ``squash and stretch''. -La ligne d'action élastique avec des attachements dynamiques à la ligne permettant d'animer un personnages à plusieurs jambes (bras) avec une seule ligne 2D animée
Free-form animation allows for exaggerated and artistic styles of motions such as stretching character limbs and animating imaginary creatures such as dragons. Creating these animations requires tools flexible enough to shape characters into arbitrary poses, and control motion at any instant in time. The current approach to free-form animation is keyframing: a manual task in which animators deform characters at individual instants in time by clicking-and-dragging individual body parts one at a time. While this approach is flexible, it is challenging to create quality animations that follow high-level artistic principles---as keyframing tools only provide localized control both spatially and temporally. When drawing poses and motions, artists rely on different sketch-based abstractions that help fulfill high-level aesthetic and artistic principles. For instance, animators will draw textit{lines of action} to create more readable and textit{expressive} poses. To coordinate movements, animators will sketch textit{motion abstractions} such as semi-circles and loops to coordinate a bouncing and rolling motions. Unfortunately, these drawing tools are not part of the free-form animation tool set today. The fact that we cannot use the same artistic tools for drawing when animating 3D characters has an important consequence: 3D animation tools are not involved in the creative process. Instead, animators create by first drawing on paper, and only later are 3D animation tools used to fulfill the pose or animation. The reason we do not have these artistic tools (the line of action, and motion abstractions) in the current animation tool set is because we lack a formal understanding relating the character's shape---possible over time---to the drawn abstraction's shape. Hence the main contribution of this thesis is a formal understanding of pose and motion abstractions (line of action and motion abstractions) together with a set of algorithms that allow using these tools in a free-form setting. As a result, the techniques described in this thesis allow exaggerated poses and movements that may include squash and stretch, and can be used with various character morphologies. These pose and animation drafting tools can be extended. For instance, an animator can sketch and compose different layers of motion on top of one another, add twist around strokes, or turning the strokes into elastic ribbons. The main contributions of this thesis are summarized as follows: -The line of action facilitating expressive posing by directly sketching the overall flow of the character's pose. -The space-time curve allowing to draft full coordinated movements with a single stroke---applicable to arbitrary characters. -A fast and robust skeletal line matching algorithm that supports squash-and-stretch. -Elastic lines of action with dynamically constrained bones for driving the motion of a multi-legged character with a single moving 2D line
3

Sung, Woongki. "Sketching in 3D : towards a fluid space for mind and body." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/82285.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (S.M. in Architecture Studies)--Massachusetts Institute of Technology, Dept. of Architecture, 2013.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 80-82).
This thesis explores a new type of computer-aided sketching tool for 3-dimensional designs. Sketching, as a process, has been used as an effective way to explore and develop ideas in the design process. However, when designers deal with volumetric designs in 3-dimensional space, current sketching means, including traditional free-hand sketching and contemporary computer-aided design (CAD) modeling have limitations such as dimensional inconsistency, and non-intuitive interactions. By observing the roles of sketching in the design process and reviewing the history of design tools, this thesis investigates and proposes new digital methods of 3-dimensional sketching that take advantage of motion detecting and computer-vision technology that is widely available today. In this thesis, two prototype tools were developed and compared. The first prototype uses a motion detecting sensor, projection screen, and gesture tracking software. The movement of the user's hands becomes the intuitive interface to shape 3-dimensional objects in the virtual space. The second prototype, developed in collaboration with Nagakura, uses a hand-held tablet computer with marker-based augmented reality technique. The hand-held device displays the virtual object from desired angles and works as a virtual tool like a chisel, plane, drill, and glue gun to shape virtual objects in 3-dimensional space. Testing these two prototypes for use, and comparing the resulting objects and user responses revealed the strengths and weaknesses of these different 3-dimensional sketching environments. The proposed systems provide a possible foundation for novel computer-aided sketching application that takes advantages of both the physical and virtual worlds.
by Woongki Sung.
S.M.in Architecture Studies
4

Häggvik, Adrian. "Anymaker AR - Augmented reality as a mean to improve 3D sketching in digital space." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209411.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Digital three-dimensional sketching and modeling is a field in computer science that is constantly evolving through new interaction paradigms. Many solutions move away from the traditional modern modeling software and aim to create a more natural and intuitive user experience. This report aims to compare an existing touch-screen solution against a novel implementation using augmented reality, that is made to replicate the way we draw in real life. A comparative task-based user study was performed and objective data was gathered together with a questionnaire and survey. Results indicate that subjects worked faster and preferred certain models when using the existing technology, while using the new implementation reached better or equal results in terms of spatial cognitive abilities, the frequency at which the user needed to redo their work, and wanted to reuse the software. Augmented reality showed good results when creating the simpler geometric shape of pyramids but comparatively worse results for objects of less uniform shapes. With further improvement, augmented reality can be seen as a good mean to improve the way we sketch and model in three di-mensions.
Digital 3D skissande och modellering är ett fält inom datavetenskap som konstant utvecklas genom nya interaktionsparadigmer. Många lösningar rör sig ifrån de traditionella, moderna, programvarorna för att skapa en mer naturlig och intuitiv användarupplevelse. Denna rapport har som mål att utvärdera en existerande pekskärmslösning gentemot en egen implementation som använder förstärkt verklighet i syfte att efterlikna det sätt vi ritar på i verkligheten. En jämförande uppgiftsbaserad användarstudie genomfördes och kvantitativ data samlades tillsammans med ett frågeformulär och en enkät. Resultaten indikerar att man arbetade snabbare och föredrog några modeller gjorda med den existerande programvaran medan den nya implementationen visade bättre eller likvärdiga resultat gällande den spatiala kognitiva förmågan, frekvensen då man ångrade sig samt återanvändbarhet. Förstärkt verklighet påvisade starka resultat gällande den enklare geometriska pyramidformen men jämförelsevis sämre resultat gällande mindre enhetliga former. Med ytterligare förbättringar så kan förstärkt verklighet ses som ett bra medium för att förbättra viset man skissar och modellerar i 3D.
5

Kihlström, Andreas. "Design Tools for Sketching of Dome Productions in Virtual Reality." Thesis, Linköpings universitet, Medie- och Informationsteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-152251.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This report presents the problem of designers working on new productions for fulldomes. The back and forth process of moving between a work station and the fulldome is time consuming, a faster alternative would be useful. This thesis presents an option, a virtual reality application where a user can sketch the new environment directly on a virtual representation of a fulldome. The result would then be exported directly to the real fulldome to be displayed. The application is developed using Unreal Engine 4. The virtual dome is constructed using a procedurally generated mesh, with a paintable material assigned to it. All painting functionality is implemented manually, as is all other tools. The final product is fully useable, but requires additional work if it is to be used commercially. Additional features can be added, including certain features discussed that were cut due to time constraints, as well as improvements to existing features. Application stability is currently a concern that needs to be addressed, as well as optimizations to the software.
6

Chang, Xianglong. "Semi-automatic fitting of deformable 3D models to 2D sketches." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/797.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We present a novel method for building 3D models from a user sketch. Given a 2D sketch as input, the approach aligns and deforms a chosen 3D template model to match the sketch. This is guided by a set of user-specified correspondences and an algorithm that deforms the 3D model to match the sketched profile. Our primary contribution is related to fitting the 3D deformable geometry to the 2D user sketch. We demonstrate our technique on several examples.
7

Yu, Emilie. "Conception d'outils de création de contenu 3D basés sur le dessin 3D." Electronic Thesis or Diss., Université Côte d'Azur, 2023. http://www.theses.fr/2023COAZ4114.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L'accessibilité croissante du rendu 3D en temps réel a fait de la création de contenu 3D un moyen majeur d'expression et de communication. Mais la création de contenu 3D nécessite d'interagir avec des représentations numériques de la forme et de l'apparence qui sont compatibles avec les algorithmes de rendu et d'animation. Les maillages triangulaires, les modèles de matériaux paramétriques et les courbes d'animation sont bien adaptés aux opérations de rendu mais obligent les artistes à exprimer leurs idées en terme de commandes bas niveau qui doivent être apprises et mémorisées.Dans cette thèse, nous explorons l'utilisation de coups de crayon 3D ou courbes 3D comme moyen pour les artistes d'exprimer leurs idées. Inspirés par la façon dont les artistes travaillent avec un pinceau et une toile, nous considérons ce geste de coup de crayon de l'artiste comme la principale commande d'entrée du système de création. Les courbes 3D sont des primitives flexibles qui peuvent être créées dans des interfaces utilisateur 2D ou dans des interfaces de réalité virtuelle (RV), et elles peuvent encoder une forme 3D ou l'apparence finale d'une peinture 3D. La conception d'outils qui considèrent les courbes 3D comme une représentation de la forme ou de l'apparence ouvre un espace vaste et passionnant à explorer.Les designers peuvent utiliser les courbes 3D comme une représentation partielle de la forme 3D. Nous étudions comment convertir un croquis 3D clairsemé en un modèle de surface 3D.Étant donné que les courbes caractéristiques de l'objet sont un élément important de la forme designée et qu'elles sont représentées avec soin dans l'esquisse, nous reconstruisons une surface lisse par morceaux qui préserve ces courbes caractéristiques. En obtenant une surface à partir des courbes 3D, notre algorithme permet le rendu 3D de la forme décrite par l'esquisse.Pour mieux comprendre comment les courbes 3D peuvent représenter non seulement la forme mais aussi l'apparence des objets, nous étudions la pratique de la peinture en RV au sein d'une communauté d'artistes qui travaillent avec un logiciel commercial de peinture en RV. Sur la base de cette étude, nous proposons une conception et une implémentation pour les "calques 3D", une nouvelle primitive d'interaction pour la peinture RV qui considère les courbes 3D comme représentation à la fois de la forme et de l'apparence 3D, tout en découplant l'édition de ces deux éléments. Inspirés par l'utilisation de la composition de calques en peinture numérique 2D, nous proposons un processus non destructif pour modifier l'apparence d'une peinture RV.L'animation dessinée à la main est un moyen expressif de créer une animation avec des coups de crayons. Dans les animations de type "video doodles", les artistes créent un dessin animé qui semble bouger dans le même espace 3D qu'une vidéo filmée. Prendre en compte les effets de perspective et les occlusions tout en dessinant des courbes 2D n'est pas une tâche facile, c'est pourquoi nous utilisons des techniques de vision par ordinateur pour placer les courbes dans l'espace 3D et les rendre en respectant le contexte de la vidéo. Nous concevons une interface utilisateur en 2D qui ressemble aux outils traditionnels d'animation en 2D, afin de permettre aux utilisateurs qui ne sont pas familiers avec les outils 3D de créer de telles animations.Globalement, nous montrons que les courbes 3D sont une représentation puissante pour la création de contenu 3D en proposant trois systèmes qui exploitent les courbes 3D ou les dessins 3D en tant que primitives d'interaction pour des applications créatives allant de la création de forme à celle d'apparence et d'animation. Nous abordons la conception de ces systèmes sous deux angles complémentaires ; nous développons de nouveaux algorithmes pour interpréter les dessins et les commandes de bas niveau de l'utilisateur, et nous concevons des interactions qui permettent aux utilisateurs d'exprimer leurs intentions haut niveau
The increasing accessibility of real-time 3D rendering hardware has made 3D content creation a major means of expression and storytelling. But authoring 3D content requires interacting with the digital representations of shape and appearance that are compatible with rendering and animation algorithms. Triangular meshes, parametric material models and animation curves, while well suited to downstream computation, require artists to convey their ideas in terms of low-level commands that need to be learnt and remembered.In this thesis, we explore the use of 3D strokes as a way for artists to express their ideas. Inspired by the way artists work with brush and canvas, we consider the artist's mark-making gesture as the main input to the authoring system. 3D strokes are flexible primitives that can be created in either 2D desktop user interfaces or in virtual reality (VR) interfaces, and they can encode a 3D shape or likewise the final appearance of a 3D painting. Designing tools that consider 3D strokes as a shape or appearance representation opens a large and exciting space to explore.Designers can use 3D strokes as a partial representation of 3D shape. We investigate how to interpret a sparse 3D sketch into a 3D surface model. Since feature curves are a prominent part of the design and are finely depicted by the sketch, we recover a piece-wise smooth surface that preserves those sharp features. By obtaining a surface from 3D strokes, our algorithm allows to render the shape depicted by the sketch.To better understand how 3D strokes can depict not only the shape but also the appearance of objects, we study the practice of VR painting among a community of artists that work with a commercial VR painting software. Based on this inquiry, we propose a design and implementation for 3D-Layers, a new interaction primitive for VR painting that embraces 3D strokes as the sole representation for both 3D shape and appearance, yet decouples edition of these two elements. Inspired by the usage of layer compositing in 2D digital painting, we support a non-destructive workflow to edit the appearance of a VR painting.Hand-drawn animation is an expressive way to convey an animation with strokes. In “video doodles” animation, artists create an animated doodle that seems to live in the same 3D space as a captured video. Taking into account perspective effects and occlusions while drawing 2D strokes is not an easy task, so we leverage computer vision techniques to place strokes in 3D space and render them with respect to the video context. We design a 2D user interface that resembles traditional 2D motion design tools, to enable usersunfamiliar with 3D tools to create such animations.Overall, we show that 3D strokes are an expressive representation for 3D content creation by proposing three systems that leverage 3D strokes or 3D sketches as interaction primitives for creative applications spanning shape, appearance and animation authoring.We approach system design from two complementary perspectives ; we develop novel algorithms to interpret strokes and low-level user input, and we design interactions to provide new ways for people to express their high-level intent
8

Chen, Chiung-Fu, and 陳泂甫. "NPR Stylization of 3D Character Animation Using Sketching and Stroke." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/74640080729453129969.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
碩士
國立成功大學
資訊工程學系碩博士班
93
In this paper, we present a system that gives artists the ability to add ghost effect, speedline and stylized deformation to existing animation sequences in real time, withoutthe need to modify the 3D mesh geometry of the animation sequence. The artist can add and control e��ects using a sketch-based interface, and see the stylized result in real time. With all e��ects and processing o2 oaded to programmable graphics hardware, the proposed system can be implemented with more e±ciency and °exibility.
9

Onkar, Prasad S. "Development of 2D and 3D Sketching Environment to Support Early Phases of Design." Thesis, 2013. http://etd.iisc.ac.in/handle/2005/3362.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The traditional pen-paper sketching is extensively used in the early stages of product design as it supports creative exploration of product concepts and provides a fluidic mode for the expression of ideas. The Computer Aided Design (CAD) models support the later stages of design and manufacturing process. Faithful conversion of the designer’s ideas from concept sketches to the CAD models is a skill intensive and time consuming exercise which reduces the overall productivity of the organization. Providing computer based support can help the designer, in several ways, by reducing demand on the skill and allow focusing more on creative exploration of the concepts. Towards that, the thesis presents methodologies to understand the product concept sketches, support cognitive activities like perceiving the composition and behaviour, and create and interact with the sketches, directly in 3D. To begin with, traditional 2D sketches of product concepts are studied mainly to explores the psychological (cognitive) and physiological (musculoskeletal) activities of the designer in the context of the product being designed. A sketching application is created for capturing the sketches created using a tablet in digitized form. The captured data is analyzed based on the identified parameters. A grouping methodology is devised to group the stroke based on the observations which are akin to Gestalt laws of perceptual organization. This functional grouping or segmentation is used to identify the mental model of the product concept and the design rationale behind it. In concept sketches, annotations carry information like behaviour, functionality and usage. These wishful declarations need to be verified through simulation! To simulate the behavior of the components identified by the functional segmentation method, a kinematic model is defined where the designers interactively describe the constituents like joints, fixed links, inputs, etc. The interactive simulation changes the underlying kinematic model and makes the sketches to move to show the behavior. This system also provides methods to verify boundary constraints and allows creating patterns. Traditional 2D sketching suffers from several deficiencies. To overcome these, a novel direct 3D sketching methodology is proposed with stereo vision and haptic feedback. Different types of strokes creations like curves, strips and sweep surfaces, directly in 3D space, are demonstrated. Further, to provide control over stroke creation process, visual and haptic feedbacks are studied. Haptic rendering schemes for stroke generation are explored based on mechanics of sketching. Using the curve generation methods, surface generation schemes are devised. Mainly two types of schemes are explored (a) sweep surface and (b) Hatching surfaces. To support constrained concept exploration, two types of haptic constraints are modeled and their application is demonstrated in constraining a sketch within a boundary and outside a boundary. Motion constraints are implemented by simulating the behaviour of identified components’ motions. Two types of motion are implemented (a) Linear translation and (b) Rotation about an axis. Finally, a sketch based distributed collaboration method is presented to enable design interaction in the context of global product development. Several issues related to the realization of a sketch based collaborative conceptual design system are explored and, one such instance is demonstrated through experiments.
10

Onkar, Prasad S. "Development of 2D and 3D Sketching Environment to Support Early Phases of Design." Thesis, 2013. http://etd.iisc.ernet.in/2005/3362.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The traditional pen-paper sketching is extensively used in the early stages of product design as it supports creative exploration of product concepts and provides a fluidic mode for the expression of ideas. The Computer Aided Design (CAD) models support the later stages of design and manufacturing process. Faithful conversion of the designer’s ideas from concept sketches to the CAD models is a skill intensive and time consuming exercise which reduces the overall productivity of the organization. Providing computer based support can help the designer, in several ways, by reducing demand on the skill and allow focusing more on creative exploration of the concepts. Towards that, the thesis presents methodologies to understand the product concept sketches, support cognitive activities like perceiving the composition and behaviour, and create and interact with the sketches, directly in 3D. To begin with, traditional 2D sketches of product concepts are studied mainly to explores the psychological (cognitive) and physiological (musculoskeletal) activities of the designer in the context of the product being designed. A sketching application is created for capturing the sketches created using a tablet in digitized form. The captured data is analyzed based on the identified parameters. A grouping methodology is devised to group the stroke based on the observations which are akin to Gestalt laws of perceptual organization. This functional grouping or segmentation is used to identify the mental model of the product concept and the design rationale behind it. In concept sketches, annotations carry information like behaviour, functionality and usage. These wishful declarations need to be verified through simulation! To simulate the behavior of the components identified by the functional segmentation method, a kinematic model is defined where the designers interactively describe the constituents like joints, fixed links, inputs, etc. The interactive simulation changes the underlying kinematic model and makes the sketches to move to show the behavior. This system also provides methods to verify boundary constraints and allows creating patterns. Traditional 2D sketching suffers from several deficiencies. To overcome these, a novel direct 3D sketching methodology is proposed with stereo vision and haptic feedback. Different types of strokes creations like curves, strips and sweep surfaces, directly in 3D space, are demonstrated. Further, to provide control over stroke creation process, visual and haptic feedbacks are studied. Haptic rendering schemes for stroke generation are explored based on mechanics of sketching. Using the curve generation methods, surface generation schemes are devised. Mainly two types of schemes are explored (a) sweep surface and (b) Hatching surfaces. To support constrained concept exploration, two types of haptic constraints are modeled and their application is demonstrated in constraining a sketch within a boundary and outside a boundary. Motion constraints are implemented by simulating the behaviour of identified components’ motions. Two types of motion are implemented (a) Linear translation and (b) Rotation about an axis. Finally, a sketch based distributed collaboration method is presented to enable design interaction in the context of global product development. Several issues related to the realization of a sketch based collaborative conceptual design system are explored and, one such instance is demonstrated through experiments.

Книги з теми "3D sketching":

1

Begin, Marie. 3D Sketching Book: Learn to Create Illusions on Your Paper. Simple Drawing Ideas. Independently Published, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kaeser, Silvan. 3D Digital Drawing Tablet with Augmented Reality: Sketching from the Imagination - Learn to Draw in 3D with Your Smartphone or Tablet. Independently Published, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

books, Engineering. Isometric 3D Dot Graph Paper Sketchbook: 120 Pages of 1/4 Inch Equilateral Triangle Dotted Graph Paper for 3D Modelling, Design, Sketching, Art, ... Independently Published, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Notebook, Cesar. Isometric Graph Paper: Creating Drawing Sketching, Isometric Paper,3d Graph Paper, A4, 120 Blank Pages. Independently Published, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

ISLAM, Rasel. Engineering Graph Paper Notebook - for Horizontal and Landscape 3D Drawing: Equilateral Triangle Graph Paper Notebook Journal for 3D Sketching, ... Technical Drawing, Laboratory Work and More! Independently Published, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Creatives, Notebooks. Isometric Graph Paper : Landscape Layout 3d Sketching Grid Notepad: Equilateral Triangles Measure 0. 28 Inches in Size. Independently Published, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Shih, Randy. Tools for Design Using AutoCAD 2023 and Autodesk Inventor 2023: Hand Sketching, 2D Drawing and 3D Modeling. SDC Publications, 2022.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Shih, Randy. Tools for Design Using AutoCAD 2023 and Autodesk Inventor 2023: Hand Sketching, 2D Drawing and 3D Modeling. SDC Publications, 2022.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Cesar. Isometric Graph Paper: Creating Drawing Sketching,Isometric Paper,3d Graph ,A4 ,8. 5 X 11 ,100 Pages. Independently Published, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Schipps, Emma. Isometric Dot Sketch Book: 110 Pages, 6 X 9 Inches, Great for 3D Graphs, Artwork, Sketching, Gaming, Doodling. Independently Published, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "3D sketching":

1

Wacker, Philipp, Rahul Arora, Mayra Donaji Barrera Machuca, Daniel Keefe, and Johann Habakuk Israel. "3D Sketching Application Scenarios." In Interactive Sketch-based Interfaces and Modelling for Design, 241–61. New York: River Publishers, 2023. http://dx.doi.org/10.1201/9781003360650-11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Arora, Rahul, Mayra Donaji Barrera Machuca, Philipp Wacker, Daniel Keefe, and Johann Habakuk Israel. "Introduction to 3D Sketching." In Interactive Sketch-based Interfaces and Modelling for Design, 151–77. New York: River Publishers, 2023. http://dx.doi.org/10.1201/9781003360650-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Levet, Florian, Xavier Granier, and Christophe Schlick. "3D Sketching with Profile Curves." In Smart Graphics, 114–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11795018_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Seybold, Carsten, and Frank Mantwill. "3D Sketching in VR Changing PDM Processes." In Product Lifecycle Management Enabling Smart X, 297–310. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62807-9_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yıldız, Cansın, and Tolga Çapın. "Paper and Pen: A 3D Sketching System." In Computer and Information Sciences III, 191–99. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4594-3_20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Igarashi, Takeo. "A Sketching Interface for Freeform 3D Modeling." In Sketch-based Interfaces and Modeling, 205–23. London: Springer London, 2011. http://dx.doi.org/10.1007/978-1-84882-812-4_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zeleznik, Robert C., Kenneth P. Herndon, and John F. Hughes. "SKETCH: An Interface for Sketching 3D Scenes." In Seminal Graphics Papers: Pushing the Boundaries, Volume 2, 67–72. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3596711.3596720.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Machuca, Mayra Donaji Barrera, Rahul Arora, Philipp Wacker, Daniel Keefe, and Johann Habakuk Israel. "Interaction Devices and Techniques for 3D Sketching." In Interactive Sketch-based Interfaces and Modelling for Design, 195–239. New York: River Publishers, 2023. http://dx.doi.org/10.1201/9781003360650-10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Igarashi, Takeo, Satoshi Matsuoka, and Hidehiko Tanaka. "Teddy: A Sketching Interface for 3D Freeform Design." In Seminal Graphics Papers: Pushing the Boundaries, Volume 2, 85–92. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3596711.3596722.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Serino, Luca, Carlo Arcelli, and Gabriella Sanniti di Baja. "Decomposing and Sketching 3D Objects by Curve Skeleton Processing." In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, 25–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41822-8_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "3D sketching":

1

Schubert, Gerhard, Marcus Tönnis, Violin Yanev, Gudrun Klinker, and Frank Petzold. "Dynamic 3D-Sketching." In CAADRIA 2014: Rethinking Comprehensive Design: Speculative Counterculture. CAADRIA, 2014. http://dx.doi.org/10.52842/conf.caadria.2014.107.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

De Vries, Bauke. "Sketching in 3D." In eCAADe 2000: Promise and Reality. eCAADe, 2000. http://dx.doi.org/10.52842/conf.ecaade.2000.277.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

De Vries, Bauke. "Sketching in 3D." In eCAADe 2000: Promise and Reality. eCAADe, 2000. http://dx.doi.org/10.52842/conf.ecaade.2000.277.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Eroglu, Sevinc, Sascha Gebhardt, Patric Schmitz, Dominik Rausch, and Torsten Wolfgang Kuhlen. "Fluid Sketching―Immersive Sketching Based on Fluid Flow." In 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, 2018. http://dx.doi.org/10.1109/vr.2018.8446595.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chevalier, Fanny. "Session details: 3D Sketching." In UIST '17: The 30th Annual ACM Symposium on User Interface Software and Technology. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3247896.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Li, Qiang, Xianfei Zhao, Changfu Zhao, and Yongjian Gong. "3D Sketching in AutoSketch." In Mechanical Engineering and Information Technology (EMEIT). IEEE, 2011. http://dx.doi.org/10.1109/emeit.2011.6022909.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Unlu, Gizem, Mohamed Sayed, and Gabriel Brostow. "Interactive Sketching of Mannequin Poses." In 2022 International Conference on 3D Vision (3DV). IEEE, 2022. http://dx.doi.org/10.1109/3dv57658.2022.00080.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Abbasinejad, Fatemeh, Pushkar Joshi, Cindy Grimm, Nina Amenta, and Lance Simons. "Surface patches for 3D sketching." In the International Symposium. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2487381.2487387.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tomohiro, Ayuri, and Yasuyuki Sumi. "Sketching on 3D structured surfaces." In the 2015 ACM International Joint Conference. New York, New York, USA: ACM Press, 2015. http://dx.doi.org/10.1145/2800835.2800925.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Funkhouser, Tom. "Session details: Sketching 3D shapes." In SIGGRAPH07: Special Interest Group on Computer Graphics and Interactive Techniques Conference. New York, NY, USA: ACM, 2007. http://dx.doi.org/10.1145/3259139.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії