Добірка наукової літератури з теми "2.5 geometry"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "2.5 geometry".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "2.5 geometry"
Smits, P. R. J. M., and J. C. W. Van Vroonhoven. "The polarities of the partial geometry pg(5, 5, 2)." Geometriae Dedicata 21, no. 1 (August 1986): 51–54. http://dx.doi.org/10.1007/bf00147529.
Повний текст джерелаHahn, Jae Ryang, Gyu-Hyeong Kim, Ki Wan Kim, and Sukmin Jeong. "Binding geometry of furan on Si(5 5 12)−2×1." Surface Science 616 (October 2013): 166–70. http://dx.doi.org/10.1016/j.susc.2013.05.019.
Повний текст джерелаUçum, Ali, Kazım İlarslan, and Makoto Sakaki. "k-Type bi-null slant helices in $$\mathbb {R}_{2}^{5}$$ R 2 5." Journal of Geometry 108, no. 3 (May 8, 2017): 913–24. http://dx.doi.org/10.1007/s00022-017-0385-z.
Повний текст джерелаMartí Sánchez, María. "Surfaces with $${K^2=2\mathcal{X}-2}$$ and p g ≥ 5." Geometriae Dedicata 150, no. 1 (April 8, 2010): 49–61. http://dx.doi.org/10.1007/s10711-010-9493-8.
Повний текст джерелаBasto-Gonçalves, J., and H. Reis. "The Geometry of 2 × 2 Systems of Conservation Laws." Acta Applicandae Mathematicae 88, no. 3 (September 2005): 269–329. http://dx.doi.org/10.1007/s10440-005-9002-5.
Повний текст джерелаLarke, Patricia J. "Geometric Extravaganza: Spicing Up Geometry." Arithmetic Teacher 36, no. 1 (September 1988): 12–16. http://dx.doi.org/10.5951/at.36.1.0012.
Повний текст джерелаShaw, Ron. "Trivectors yielding spreads in PG(5, 2)." Journal of Geometry 96, no. 1-2 (December 2009): 149–65. http://dx.doi.org/10.1007/s00022-010-0030-6.
Повний текст джерелаShaw, Ron. "Trivectors and cubics: PG(5, 2) aspects." Journal of Geometry 99, no. 1-2 (December 2010): 167–78. http://dx.doi.org/10.1007/s00022-011-0060-8.
Повний текст джерелаLing, Alan C. H. "On 2-chromatic (v, 5, 1)-designs." Journal of Geometry 66, no. 1-2 (November 1999): 144–48. http://dx.doi.org/10.1007/bf01225678.
Повний текст джерелаHussain, Saghir, Yang Deli, Shagufta Parveen, Xin Hao, and Changjin Zhu. "Bis[5-methoxy-2-(methoxycarbonyl)phenyl] methylphosphonate." Acta Crystallographica Section E Structure Reports Online 70, no. 3 (February 12, 2014): o269. http://dx.doi.org/10.1107/s1600536814002542.
Повний текст джерелаДисертації з теми "2.5 geometry"
Gier, Megan E. "EIGENVALUE MULTIPLICITES OF THE HODGE LAPLACIAN ON COEXACT 2-FORMS FOR GENERIC METRICS ON 5-MANIFOLDS." UKnowledge, 2014. http://uknowledge.uky.edu/math_etds/14.
Повний текст джерелаASSIS, Lilian Pureza de. "Otimização de estruturas reticuladas planas com comportamento geometricamente não linear." Universidade Federal de Goiás, 2006. http://repositorio.bc.ufg.br/tede/handle/tde/678.
Повний текст джерелаThe aim of this work is to present a formulation and corresponding computational implementation for sizing optimization of plane frames and cable-stayed columns considering geometric non liner behavior. The structural analysis is based on the finite element method using the updated lagrangian approach for plane frame and cable elements, which are represented by plane truss elements. The non linear system is solved by the Newton-Raphson method coupled to load increment strategies such as the arch length method and the generalized displacement parameter method, which allow the algorithm to transpose any critical point that happen to appear along the equilibrium path. In the optimization process the design variables are the heights of the crosssection of the frame elements, the objective function represents the volume of the structure and the constraints impose limits to displacements and critical load. Lateral constraints impose limits to the design variables. The finite difference method is used in the sensitivity analysis of the displacement and critical load constraints. The optimization process is carried out using three different optimization strategies: the sequential quadratic programming algorithm; the interior points algorithm; and the branch and bound method. Some numerical experiments are carried out so as to test the analysis and the sensitivity strategies. Numerical experiments are presented to show the validity of the implementation presented in this dissertation.
O objetivo deste trabalho é a otimização de dimensões de pórticos planos e de colunas estaiadas planas pela minimização do volume da estrutura, considerando os efeitos da não-linearidade geométrica em seu comportamento. A formulação utiliza, para análise das estruturas, elementos finitos de pórtico e de treliça planos e referencial lagrangeano atualizado. O método de Newton-Raphson foi utilizado como estratégia para solução do sistema de equações não lineares. Foram acopladas estratégias especiais para ultrapassagem de pontos críticos que possam existir ao longo da trajetória de equilíbrio, tais como o comprimento de arco cilíndrico e o controle dos deslocamentos generalizados. Na otimização, as variáveis de projeto são as alturas das seções transversais dos elementos, a função objetivo é o volume do material e as restrições dizem respeito a limitações impostas a deslocamentos e à carga limite, além de limitações impostas aos valores das variáveis. A sensibilidade da função objetivo foi obtida por diferenciação direta e a sensibilidade das restrições pelo método das diferenças finitas. Foram utilizados o algoritmo de programação quadrática seqüencial, PQS, o algoritmo de pontos interiores, PI, e o algoritmo de Branch and Bound, B&B. São apresentados exemplos de validação das estratégias de análise não linear e da análise de sensibilidade, além dos exemplos de validação da formulação empregada para a otimização resolvidos pelos métodos implementados.
Frini, Marouane. "Diagnostic des engrenages à base des indicateurs géométriques des signaux électriques triphasés." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSES052.
Повний текст джерелаAlthough they are widely used, classical vibration measurements have several limitations. Vibration analysis can only identify about 60% of the defects that may occur in mechanical systems. However, the main drawbacks of vibration measurements are the difficult access to the transmission system in order to place the sensor as well as the consequent cost of implementation. This results in sensitivity problems relative to the position of the installation and the difficulty to distinguish the source of vibration because of the diversity of mechanical excitations that exist in the industrial environment.Hence, the Motor Current Signatures Analysis (M.C.S.A.) represents a promising alternative to the vibration analysis and has therefore been the subject of increasing attention in recent years. Indeed, the analysis of electrical signatures has the advantage of being a technically accessible method as well as inexpensive and non-intrusive to the system. Techniques based on currents and voltages only require the motor’s electrical measurements which are often already supervised for the purposes of the control and the protection of the electrical machines. This process was mainly used for the detection of motors faults such as rotor bars breakage and eccentricity faults as well as bearings defects. On the other hand, very little research has been focused on gear faults detection using the current analysis. In addition, three-phase electrical signals are characterized by specific geometric representations related to their waveforms and they can serve as different indicators providing additional information. Among these geometric indicators, the Park and Concordia transforms model the electrical components in a two-dimensional coordinate system and any deviation from the original representation indicates the apparition of a malfunction. Moreover, the differential equations of Frenet-Serret represent the trajectory of the signal in a three-dimensional euclidean space and thus indicate any changes in the state of the system. Although they have been previously used for bearing defects, these indicators have not been applied in the detection of gear defects using the analysis of electrical current signatures. Hence, the innovative idea of combining these indicators with signal processing techniques, as well as classification techniques for gears diagnosis using the three-phase motor’s electrical current signatures analysis is established.Hence, in this work, a new approach is proposed for gear faults diagnosis using the motor currents analysis, based on a set of geometric indicators (Park and Concordia transforms as well as the properties of the Frenet-Serret frame). These indicators are part of a specifically built fault signatures library and which also includes the classical indicators used for a wide range of faults. Thus, a proposed estimation algorithm combines experimental measurements of electrical signals with advanced signal processing methods (Empirical Mode Decomposition, ...). Next, it selects the most relevant indicators within the library based on feature selection algorithms (Sequential Backward Selection and Principal Component Analysis). Finally, this selection is combined with non-supervised classification (K-means) for the distinction between the healthy state and faulty states. It was finally validated with a an additional experimental configuration in different cases with gear faults, bearing faults and combined faults with various load levels
DANTLO, Nicolas, and NicolasDantlo. "Automated tool selection and tool path generation based on 2-D geometry for 5-axis free-form milling." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/20991987763923838180.
Повний текст джерела國立交通大學
機械工程系
91
This paper presents an algorithm for cutting tool selection and tool path generation for five-axis finish surface milling. The tool selection and tool path generation is based on the curvature of the surface along its principal components. The investigated tool parameters are the tool diameter, the tool edge radius and the tool length. Those parameters are compared to a standard tool library, to ensure an optimized tool selection. The investigated tool path is a lace cutting tool path, where the constant parameter is selected from the surface curvatures. The investigated tool orientation will ensure a maximal removal rate, and an over-cut and under-cut inferior to the surface tolerance. All these parameters will allow finding the most appropriate tool from a library and the shortest tool path length.
Книги з теми "2.5 geometry"
Shafarevich, Igor R. Basic Algebraic Geometry 2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38010-5.
Повний текст джерелаConvegno, italiano di geometria integrale probabilità geometriche e. corpi convessi (4th 1994 Bari Italy). IV Convegno italiano di geometria integrale, probabilità geometriche e corpi convessi: Bari, 2-5 maggio 1994. Palermo: Sede della società, 1995.
Знайти повний текст джерела1952-, Brooks Robert, Entov Michael 1969-, Pinchover Yehuda 1953-, Sageev Michah 1966-, and Workshop on Groups, Geometry, and Dynamics (2004 : Haifa, Israel), eds. Geometry, spectral theory, groups, and dynamics: Proceedings in memory of Robert Brooks, December 29, 2003-January 2, 2004 [and] January 5-9, 2004, Technion-Israel Institute of Technology, Haifa, Israel. Providence, R.I: American Mathematical Society, 2005.
Знайти повний текст джерела1959-, Blasco Oscar, and Universidad Politécnica de Valencia, eds. Topics in complex analysis and operator theory: Third Winter School Complex Analysis and Operator theory, February 2-5, 2010, Universidad Politécnica de Valencia, Valencia, Spain. Providence, R.I: American Mathematical Society, 2012.
Знайти повний текст джерелаNuffield Mathematics 5-11 (Nuffield Maths 5-11 Project). Longman, 1990.
Знайти повний текст джерела(Editor), Jan Denef, Leonard Lipshitz (Editor), Thanases Pheidas (Editor), and Jan Van Geel (Editor), eds. Hilbert's Tenth Problem: Relations With Arithmetic and Algebraic Geometry : Workshop on Hilbert's Tenth Problem : Relations With Arithemtic and Algebraic ... November 2-5 (Contemporary Mathematics). American Mathematical Society, 2001.
Знайти повний текст джерела1951-, Denef Jan, ed. Hilbert's tenth problem: Relations with arithmetic and algebraic geometry : workshop on Hilbert's tenth problem : relations with arithmetic and algebraic geometry, November 2-5, 1999, Ghent University, Belgium. Providence, R.I: American Mathematical Society, 2000.
Знайти повний текст джерела(Editor), Doug Clements, ed. Picturing Polygons: 2-D Geometry (Investigations in Number, Data, and Space, Grades 5-6) (MacIntosh Disk Included). Dale Seymour Publications, 1996.
Знайти повний текст джерелаLaboratoire Gravitation et Cosmologie Re. Gravitation, Geometry and Relativistic Physics: Proceedings of the "Journees Relativistes" held at Aussois, France, May 2-5, 1984. Springer, 2014.
Знайти повний текст джерелаChruściel, Piotr T. Geometry of Black Holes. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198855415.001.0001.
Повний текст джерелаЧастини книг з теми "2.5 geometry"
"2 × 2 Linear Systems." In The Geometry Toolbox for Graphics and Modeling, 79–95. A K Peters/CRC Press, 2017. http://dx.doi.org/10.1201/9781315275550-5.
Повний текст джерелаDodson, C. T. J. "Manifold Geometry." In Encyclopedia of Physical Science and Technology, 49–76. Elsevier, 2003. http://dx.doi.org/10.1016/b0-12-227410-5/00400-2.
Повний текст джерелаAshtekar, A., and J. Lewandowski. "Quantum Geometry and Its Applications." In Encyclopedia of Mathematical Physics, 230–36. Elsevier, 2006. http://dx.doi.org/10.1016/b0-12-512666-2/00231-5.
Повний текст джерела"5 Lattices and their Voronoï and Delone cells." In Introduction to Louis Michel's lattice geometry through group action, 81–100. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1952-2-006.
Повний текст джерела"5 Lattices and their Voronoï and Delone cells." In Introduction to Louis Michel's lattice geometry through group action, 81–100. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1952-2.c006.
Повний текст джерелаShaw, Ron. "Double-fives and partial spreads in PG(5, 2)." In Geometry, Combinatorial Designs and Related Structures, 201–16. Cambridge University Press, 1997. http://dx.doi.org/10.1017/cbo9780511526114.018.
Повний текст джерелаBESTVINA, M. "ℝ-Trees in Topology, Geometry, and Group Theory." In Handbook of Geometric Topology, 55–91. Elsevier, 2001. http://dx.doi.org/10.1016/b978-044482432-5/50003-2.
Повний текст джерелаBerkane, Maia, and Peter M. Bentler. "The geometry of mean or covariance structure models in multivariate normal distributions: A unified approach." In Multivariate Analysis: Future Directions 2, 153–69. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-444-81531-6.50015-5.
Повний текст джерелаGrechneva, M. O., and P. G. Stegantseva. "Geometry of Grassmann image of the nonisotropic surface of Minkowski space." In Innovative paradigm of the development of modern physical-mathematical sciences, 18–41. Izdevnieciba “Baltija Publishing”, 2022. http://dx.doi.org/10.30525/978-9934-26-200-5-2.
Повний текст джерелаAmose, Yardily, Fathima Shahana, and Abbs Fen Reji. "Density Functional Theory and Molecular Modeling of the Compound 2-[2-(4-Methylphenylamino)-4-phenylthiazol-5-yl]benzofuran." In Furan Derivatives - Recent Advances and Applications. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.99577.
Повний текст джерелаТези доповідей конференцій з теми "2.5 geometry"
Ford, Matthew D., Sang-Wook Lee, Stephen P. Lownie, David W. Holdsworth, and David A. Steinman. "Geometry Anticipates Hemodynamic Phenotype of Basilar Tip Aneurysms." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-171979.
Повний текст джерелаChevil, Karina, Abdoulmajid Eslami, Weixing Chen, Reg Eadie, Richard Kania, Robert Worthingham, and Greg Van Boven. "Developing Cathodic Protection Based on Disbondment Geometry." In 2012 9th International Pipeline Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ipc2012-90675.
Повний текст джерелаWang, Hanlin, and Lesley M. Wright. "Effect of Inlet Geometry on Flat Plate, Film Cooling Effectiveness From Shaped Holes." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-73135.
Повний текст джерелаYuan, Haomin, Vakhtang Makarashvili, Elia Merzari, Aleksandr Obabko, and Yiqi Yu. "Large Eddy Simulations of a Coolant Flow in Spacer Grid Fuel Assemblies With a Spectral Element Solver." In 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-81892.
Повний текст джерелаSahari, Ali, Meghan Canter, and Bahareh Behkam. "Effect of Body Geometry on the Motile Behavior of Bacteriabots." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80901.
Повний текст джерелаLee, Yuan-Shin, and Hong Ji. "Feasible Machining Strip Evaluation for 5-Axis CNC Die and Mold Machining." In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-1089.
Повний текст джерелаMann, J. Adin, Brandon Yost, Gregory Westwater, Christopher R. Johnson, Brett Pollock, and Katharine Liu. "Validating FEA Simulations of Structural Collapse of a Complex Vessel Geometry." In ASME 2016 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/pvp2016-63817.
Повний текст джерелаBoyak, Craig. "A Comparative Study of Radial Nozzle Criteria; Section VIII, Division 2, Part 4.5.5 to Part 5.2.2." In ASME 2021 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/pvp2021-66583.
Повний текст джерелаSreedharan, Sai Shrinivas, and Danesh K. Tafti. "Effect of Blowing Ratio on Syngas Flyash Particle Deposition on a Three-Row Leading Edge Film Cooling Geometry Using Large Eddy Simulations." In ASME Turbo Expo 2009: Power for Land, Sea, and Air. ASMEDC, 2009. http://dx.doi.org/10.1115/gt2009-59326.
Повний текст джерелаChang, Zhiyong, Zezhong C. Chen, Jie Zhao, and Dinghua Zhang. "A Generic Approach to Modeling Geometry of Un-Deformed Chip by Mathematical Representing Envelopes of Swept Cutter in Five-Axis CNC Milling." In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-34135.
Повний текст джерелаЗвіти організацій з теми "2.5 geometry"
Kirchhoff, Helmut, and Ziv Reich. Protection of the photosynthetic apparatus during desiccation in resurrection plants. United States Department of Agriculture, February 2014. http://dx.doi.org/10.32747/2014.7699861.bard.
Повний текст джерела