Добірка наукової літератури з теми "040403 Geophysical Fluid Dynamics"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "040403 Geophysical Fluid Dynamics".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "040403 Geophysical Fluid Dynamics"

1

Giga, Yoshikazu, Matthias Hieber, and Edriss Titi. "Geophysical Fluid Dynamics." Oberwolfach Reports 10, no. 1 (2013): 521–77. http://dx.doi.org/10.4171/owr/2013/10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Giga, Yoshikazu, Matthias Hieber, and Edriss Titi. "Geophysical Fluid Dynamics." Oberwolfach Reports 14, no. 2 (April 27, 2018): 1421–62. http://dx.doi.org/10.4171/owr/2017/23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Busse, F. H. "Geophysical Fluid Dynamics." Eos, Transactions American Geophysical Union 68, no. 50 (1987): 1666. http://dx.doi.org/10.1029/eo068i050p01666-02.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Maxworthy, Tony. "Geophysical fluid dynamics." Tectonophysics 111, no. 1-2 (January 1985): 165–66. http://dx.doi.org/10.1016/0040-1951(85)90076-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ajakaiye, D. E. "Geophysical fluid dynamics." Earth-Science Reviews 22, no. 3 (November 1985): 245. http://dx.doi.org/10.1016/0012-8252(85)90068-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rycroft, M. J. "Theoretical Geophysical Fluid Dynamics,." Journal of Atmospheric and Terrestrial Physics 56, no. 11 (September 1994): 1529. http://dx.doi.org/10.1016/0021-9169(94)90119-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Samelson, R. M. "Lectures in geophysical fluid dynamics." Eos, Transactions American Geophysical Union 79, no. 45 (1998): 547. http://dx.doi.org/10.1029/98eo00402.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yano, Jun-Ichi, and Joël Sommeria. "Unstably stratified geophysical fluid dynamics." Dynamics of Atmospheres and Oceans 25, no. 4 (May 1997): 233–72. http://dx.doi.org/10.1016/s0377-0265(96)00478-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Robinson, Allan R. "Progress in geophysical fluid dynamics." Earth-Science Reviews 26, no. 1-3 (January 1989): 191–219. http://dx.doi.org/10.1016/0012-8252(89)90022-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Giga, Yoshikazu, Matthias Hieber, Peter Korn, and Edriss S. Titi. "Mathematical Advances in Geophysical Fluid Dynamics." Oberwolfach Reports 17, no. 2 (July 1, 2021): 857–76. http://dx.doi.org/10.4171/owr/2020/15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "040403 Geophysical Fluid Dynamics"

1

Khan, Sharon. "Studies in geophysical fluid dynamics." Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hsia, Chun-Hsiung. "Bifurcation and stability in fluid dynamics and geophysical fluid dynamics." [Bloomington, Ind.] : Indiana University, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3223038.

Повний текст джерела
Анотація:
Thesis (Ph.D.)--Indiana University, Dept. of Mathematics, 2006.
"Title from dissertation home page (viewed June 28, 2007)." Source: Dissertation Abstracts International, Volume: 67-06, Section: B, page: 3165. Adviser: Shouhong Wang.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Waugh, Darryn W. "Single-layer geophysical vortex dynamics." Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239162.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Delahaies, Sylvain. "Complex and contact geometry in geophysical fluid dynamics." Thesis, University of Surrey, 2008. http://epubs.surrey.ac.uk/842763/.

Повний текст джерела
Анотація:
Due to its conceptual simplicity and its remarkable mathematical properties, semi-geostrophic theory has been much used for the analysis of large-scale atmospheric dynamics since its introduction by Hoskins [41] in the mid-seventies. Despite its limited accuracy, its ability to tolerate contact discontinuities within the fluid makes it a useful and elegant model for the study of subsynoptic phenomenon such as fronts and jets. In their attempt to find a suitable candidate for a model whose accuracy improves over semi-geostrophic theory while retaining its essential features, McIntyre & Roulstone [59] discovered the existence of a hyper-Kahler structure for a class of Hamiltonian balanced models. In this thesis, in the context of shallow-water dynamics, we recall the formulation of f-plane semi-geostrophic theory and the derivation of McIntyre & Roulstone balanced models firstly using a Hamiltonian framework and secondly using a multisymplectic framework. Introducing the notion of contact manifold, we propose a classification of contact transformations and a characterisation of contact transformations in terms of generating functions. We then introduce the theory of Monge-Ampere operators introduced by Lychagin [54] to study the geometric properties of the Monge-Ampere equation relating the potential vorticity to the geopotential for balanced models. Using this formalism we give a systematic derivation of hyper-Kahler and hyper-para-Kahler structures associated with symplectic nondegenerate Monge-Ampere equations and we use these structures to extend some of the properties of semi-geostrophic theory to McIntyre & Roulstone's balanced models. We discuss the application of the theory of Monge-Ampere operators to the divergence equation for shallow-water model. Finally we present semi-geostrophic theory in three dimensions, and we show how the theory of Monge-Ampere operators in R3 associates a real generalised Calabi-Yau structure to this model.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lewis, Gregory M. "Double Hopf bifurcations in two geophysical fluid dynamics models." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ48653.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Schulz, Raphael [Verfasser]. "Spatial Asymptotic Profile in Geophysical Fluid Dynamics / Raphael Schulz." München : Verlag Dr. Hut, 2012. http://d-nb.info/1025821327/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Dunn, David Christopher. "Vortex interactions with topographic features in geophysical fluid dynamics." Thesis, University College London (University of London), 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.395836.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Matthews, Jonathan. "The Quaternicionic structure of the Equation of Geophysical fluid Dynamics." Thesis, University of Reading, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.494783.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Matthews, Jonathan. "The Quaternionic structure of the Equations of Geophysical fluid Dynamics." Thesis, University of Reading, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.494800.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Fotheringham, Paul. "A numerical study of magnetic and non-magnetic geophysical fluid dynamics." Thesis, University of Glasgow, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312704.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "040403 Geophysical Fluid Dynamics"

1

Hans, Ertel. Geophysical fluid dynamics. Bremen]: Arbeitskreis Geschichte Geophysik und Kosmische Physik, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pedlosky, Joseph. Geophysical Fluid Dynamics. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4650-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Pedlosky, Joseph. Geophysical fluid dynamics. 2nd ed. New York: Springer-Verlag, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Özsoy, Emin. Geophysical Fluid Dynamics II. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74934-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Monin, A. S. Theoretical Geophysical Fluid Dynamics. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-1880-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Özsoy, Emin. Geophysical Fluid Dynamics I. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-16973-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Monin, A. S. Theoretical geophysical fluid dynamics. Dordrecht: Kluwer Academic Publishers, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Monin, A. S. Theoretical Geophysical Fluid Dynamics. Dordrecht: Springer Netherlands, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lectures on geophysical fluid dynamics. New York: Oxford University Press, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Introduction to geophysical fluid dynamics. Englewood Cliffs, N.J: Prentice Hall, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "040403 Geophysical Fluid Dynamics"

1

Monin, A. S. "Geophysical Turbulence." In Theoretical Geophysical Fluid Dynamics, 202–36. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-1880-1_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pedlosky, Joseph. "Preliminaries." In Geophysical Fluid Dynamics, 1–21. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4650-3_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Pedlosky, Joseph. "Fundamentals." In Geophysical Fluid Dynamics, 22–56. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4650-3_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pedlosky, Joseph. "Inviscid Shallow-Water Theory." In Geophysical Fluid Dynamics, 57–178. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4650-3_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pedlosky, Joseph. "Friction and Viscous Flow." In Geophysical Fluid Dynamics, 179–253. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4650-3_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pedlosky, Joseph. "Homogeneous Models of the Wind-Driven Oceanic Circulation." In Geophysical Fluid Dynamics, 254–335. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4650-3_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pedlosky, Joseph. "Quasigeostrophic Motion of a Stratified Fluid on a Sphere." In Geophysical Fluid Dynamics, 336–489. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4650-3_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pedlosky, Joseph. "Instability Theory." In Geophysical Fluid Dynamics, 490–623. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4650-3_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pedlosky, Joseph. "Ageostrophic Motion." In Geophysical Fluid Dynamics, 624–88. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4650-3_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Cavallini, Fabio, and Fulvio Crisciani. "Basic Geophysical Fluid Dynamics." In Quasi-Geostrophic Theory of Oceans and Atmosphere, 43–156. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4691-6_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "040403 Geophysical Fluid Dynamics"

1

Lipinski, Douglas M., and Kamran Mohseni. "The Interaction of Hyperbolic and Shear Stretching in Geophysical Vortex Flows." In 43rd AIAA Fluid Dynamics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-2874.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

LeBeau, Raymond, Xiaolong Deng, and Csaba Palotai. "The Influence of Persistent Companion Clouds on Geophysical Vortex Dynamics." In 40th Fluid Dynamics Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-4300.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

da Silva, Renato Ramos, and Clemente Tanajura. "Geophysical Fluid Dynamics Modeling for the Bahia Atmospheric Coastal Environment." In 11th International Congress of the Brazilian Geophysical Society & EXPOGEF 2009, Salvador, Bahia, Brazil, 24-28 August 2009. Society of Exploration Geophysicists and Brazilian Geophysical Society, 2009. http://dx.doi.org/10.1190/sbgf2009-126.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ramos Da Silva, Renato, and Clemente Tanajura. "Geophysical Fluid Dynamics Modeling For The Bahia Atmospheric Coastal Environment." In 11th International Congress of the Brazilian Geophysical Society. European Association of Geoscientists & Engineers, 2009. http://dx.doi.org/10.3997/2214-4609-pdb.195.1634_evt_6year_2009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wang, Yifeng. "Fluid flow in low permeability media: Nanoconfinement and nonlinear dynamics." In Proposed for presentation at the American Geophysical Union Meeting. US DOE, 2020. http://dx.doi.org/10.2172/1832726.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Huang, Xitong, and Haibin Song*. "A new method to study seawater seismic facies, based on computational fluid dynamics." In International Geophysical Conference, Qingdao, China, 17-20 April 2017. Society of Exploration Geophysicists and Chinese Petroleum Society, 2017. http://dx.doi.org/10.1190/igc2017-226.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Duane, Gregory S., and Hakeem M. Oluseyi. "Synchronized Chaos in Geophysical Fluid Dynamics and in the Predictive Modeling of Natural Systems." In 007. AIP, 2008. http://dx.doi.org/10.1063/1.2905145.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Larkin, Dennis, Matthew Michini, Alexandra Abad, Stephanie Teleski, and M. Ani Hsieh. "Design of the Multi-Robot Coherent Structure Testbed (mCoSTe) for Distributed Tracking of Geophysical Fluid Dynamics." In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-35517.

Повний текст джерела
Анотація:
We present the design and validation of the multi-robot coherent structure testbed (mCoSTe). The mCoSTe is an experimental testbed that is used to evaluate the performance of manifold and coherent structure tracking strategies by a team of autonomous surface vehicles in two-dimensional flows. It consists of a fleet of micro-autonomous surface vehicles (mASVs) equipped with onboard flow sensors and three experimental flow tanks: a Low Reynolds number (LoRe) Tank, a High Reynolds number (HiRe) Tank, and a Multi-Robot (MR) Tank. Each of the flow tanks are capable of producing controllable ocean-like flows in a laboratory setting. Flows in the HiRe and MR tanks are generated using a grid of independently controlled vortex driving cylinders. We show how the HiRe tank is capable of producing repeatable and controllable coherent structures in 2D by analyzing the surface flows using a a combination of Finite-Time Lyapunov Exponents (FTLE) and Dynamic Mode Decomposition (DMD). Using these results, a scaled flow is replicated in the MR Tank for experimental validation of robotic tracking strategies. Building upon our existing work, robotic tracking of manifolds and coherent structures in 2D flows is achieved through local sampling of the flow field using each vehicles onboard flow sensors. We describe the design and development of the mASVs and the onboard flow sensor and present experimental results to show the validity of our designs.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ahmadian, Mohsen, Mahdi Haddad, Liangze Cui, Alfred Kleinhammes, Patrick Doyle, Jeffrey Chen, Trevor Pugh, Qing Huo Liu, Yue Wu, and Darwin Mohajeri. "Real-Time Monitoring of Fracture Dynamics with a Contrast Agent-Assisted Electromagnetic Method." In SPE Hydraulic Fracturing Technology Conference and Exhibition. SPE, 2023. http://dx.doi.org/10.2118/212376-ms.

Повний текст джерела
Анотація:
Abstract In collaboration with the Advanced Energy Consortium, our team has previously demonstrated that the placement of electrically active proppants (EAPs) in a hydraulic fracture surveyed by electromagnetic (EM) methods can enhance the imaging of the stimulated reservoir volumes during hydraulic fracturing. That work culminated in constructing a well-characterized EAP-filled fracture anomaly at the Devine field pilot site (DFPS). In subsequent laboratory studies, we observed that the electrical conductivity of our EAP correlates with changes in pressure, salinity, and flow. Thus, we postulated that the EAP could be used as an in-situ sensor for the remote monitoring of these changes in previously EAP-filled fractures. This paper presents our latest field data from the DFPS to demonstrate such correlations at an intermediate pilot scale. We conducted surface-based EM surveys during freshwater (200 ppm) and saltwater (2,500 ppm) slug injections while running surfaced-based EM surveys. Simultaneously, we measured the following: 1) bottomhole pressure and salinity in five monitoring wells; 2) injection rate using high-precision data loggers; 3) distributed acoustic sensors in four monitoring wells; and 4) tiltmeter data on the survey area. We demonstrated that injections into an EAP-filled fracture could be successfully coupled with real-time electric field measurements on the surface, leading to remote monitoring of dynamic changes within the EAP-filled fracture. Furthermore, by comparing the electrical field traces with the bottomhole pressure, flow rate, and salinity, we concluded that the observed electric field in our study is influenced by fracture dilation and flow rate. Salinity effect was observed when saltwater was injected. EM simulations solely based on assumptions of fracture conductivity changes during injection did not reproduce all of the measured electric field magnitudes. Preliminary estimates showed that including streaming potential in our geophysical model may be needed to reduce the simulation mismatch. The methods developed and demonstrated during this study will lead to a better understanding of the extent of fracture networks, formation stress states, fluid leakoff and invasion, characterizations of engineered fracture systems, and other applications where monitoring subsurface flow tracking is deemed important.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kaeng, Geovani Christopher, Kate Evans, Florence Bebb, and Rebecca Head. "Using Basin Modelling to Understand Injected CO2 Migration and Trapping Mechanisms: A Case Study from the Sleipner CO2 Storage Operation." In SPE Eastern Europe Subsurface Conference. SPE, 2021. http://dx.doi.org/10.2118/208544-ms.

Повний текст джерела
Анотація:
Abstract CO2 migration and trapping in saline aquifers involves the injection of a non-wetting fluid that displaces the in-situ brine, a process that is often termed ‘drainage’ in reservoir flow dynamics. With respect to simulation, however, this process is more typical of regional basin modelling and percolating hydrocarbon migration. In this study, we applied the invasion percolation method commonly used in hydrocarbon migration modelling to the CO2 injection operation at the Sleipner storage site. We applied a CO2 migration model that was simulated using a modified invasion percolation algorithm, based upon the Young-Laplace principle of fluid flow. This algorithm assumes that migration occurs in a state of capillary equilibrium in a flow regime dominated by buoyancy (driving) and capillary (restrictive) forces. Entrapment occurs when rock capillary threshold pressure exceeds fluid buoyancy pressure. Leaking occurs when fluid buoyancy pressure exceeds rock capillary threshold pressure. This is now widely understood to be an accurate description of basin-scale hydrocarbon migration and reservoir filling. The geological and geophysical analysis of the Sleipner CO2 plume anatomy, as observed from the seismic data, suggested that the distribution of CO2 was strongly affected by the geological heterogeneity of the storage formation. In the simulation model, the geological heterogeneity were honored by taking the original resolution of the seismic volume as the base grid. The model was then run at an ultra-fast simulation time in a matter of seconds or minutes per realization, which allowed multiple scenarios to be performed for uncertainty analysis. It was then calibrated to the CO2 plume distribution observed on seismic, and achieved an accurate match. The paper establishes that the physical principle of CO2 flow dynamics follows the Young-Laplace flow physics. It is then argued that this method is most suitable for the regional site screening and characterization, as well as for site-specific injectivity and containment analysis in saline aquifers.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "040403 Geophysical Fluid Dynamics"

1

Whitehead, John A., Neil J. Balmforth, and Philip J. Morrison. Interdisciplinary Research Programs in Geophysical Fluid Dynamics. Fort Belvoir, VA: Defense Technical Information Center, June 2009. http://dx.doi.org/10.21236/ada500429.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Whitehead, John A., Neil J. Balmforth, and Philip J. Morrison. Interdisciplinary Research Programs in Geophysical Fluid Dynamics. Fort Belvoir, VA: Defense Technical Information Center, March 2006. http://dx.doi.org/10.21236/ada444830.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Samelson, Roger M. Predictability and Dynamics of Geophysical Fluid Flows. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada612199.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Whitehead, John A., Neil J. Balmforth, and Philip J. Morrison. Interdisciplinary Research Programs in Geophysical Fluid Dynamics. Fort Belvoir, VA: Defense Technical Information Center, September 2008. http://dx.doi.org/10.21236/ada533989.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Samelson, Roger M. Predictability and Dynamics of Geophysical Fluid Flows. Fort Belvoir, VA: Defense Technical Information Center, September 2003. http://dx.doi.org/10.21236/ada630164.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Whitehead, John A. Interdisciplinary Research Programs in Geophysical Fluid Dynamics. Fort Belvoir, VA: Defense Technical Information Center, February 2004. http://dx.doi.org/10.21236/ada420192.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Whitehead, John A., Neil J. Balmforth, and Philip J. Morrison. Interdisciplinary Research Programs in Geophysical Fluid Dynamics. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada604696.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Whitehead, John A. Interdisciplinary Research Programs in Geophysical Fluid Dynamics. Fort Belvoir, VA: Defense Technical Information Center, August 2002. http://dx.doi.org/10.21236/ada626865.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Helfrich, Karl R., and Claudia Cenedese. Interdisciplinary Research and Training at the Geophysical Fluid Dynamics Program. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada590441.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Helfrich, Karl R., and Claudia Cenedese. Interdisciplinary Research and Training at the Geophysical Fluid Dynamics Program. Fort Belvoir, VA: Defense Technical Information Center, September 2009. http://dx.doi.org/10.21236/ada602945.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії