Добірка наукової літератури з теми "Ядерна енергетична установка"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Ядерна енергетична установка".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Ядерна енергетична установка"

1

Vlasenko, M., O. Godun та V. Kyrianchuk. "Оцінка сценаріїв розвитку ядерної генерації України після 2030 року". Nuclear and Radiation Safety, № 1(61) (17 березня 2014): 8–13. http://dx.doi.org/10.32918/nrs.2014.1(61).02.

Повний текст джерела
Анотація:
На підставі прогнозних даних з виробництва та споживання електроенергії в Україні та з використанням наданого у рамках співробітництва з МАГАТЕ коду моделювання MESSAGE проведено оцінки структури виробництва електроенергії для різних сценаріїв розвитку ядерної генерації України до 2100 року. Виконано оцінки перспектив подальшого розвитку ядерної генерації на основі відкритого ядерно-паливного циклу (ЯПЦ) та удосконалених легководних реакторних установок (РУ), проведено аналіз можливого розвитку ядерної генерації у разі впровадження частково-замкненого та замкненого ЯПЦ з введенням в експлуатацію важководних РУ типу CANDU та реакторів на швидких нейтронах. Для різних варіантів ЯПЦ отримано прогнозні оцінки з динаміки введення в експлуатацію нових потужностей РУ, накопичення відпрацьованого ядерного палива (ВЯП) та продуктів його переробки. Виконано порівняльний аналіз перспектив розвитку до 2100 року відкритого ядерно-паливного циклу України у разі накопичення (концепція «відкладеного рішення») та переробки ВЯП. Розроблено модель енергетичної системи України для коду МАГАТЕ MESSAGE.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Vlasenko, M., O. Godun та V. Kyrianchuk. "Порівняльна оцінка інноваційних варіантів відкритого ядерно-паливного циклу в Україні". Nuclear and Radiation Safety, № 3(63) (1 вересня 2014): 10–13. http://dx.doi.org/10.32918/nrs.2014.3(63).02.

Повний текст джерела
Анотація:
У рамках участі України в міжнародному проекті МАГАТЕ з інноваційних реакторних установок та ядерно-паливних циклів INPRO виконано порівняльну оцінку варіантів конфігурацій ЯПЦ на основі перспективних реакторних установок III+ та IV поколінь. Критеріями оцінки є зведена вартість виробленої електроенергії, споживання природного урану та накопичення відпрацьованого ядерного палива. Оцінки виконано з урахуванням прогнозної динаміки споживання електроенергіїв Україні до 2100 року та з використанням розробленої у рамках співпраці з МАГАТЕ моделі енергетичної системи України для коду MESSAGE. Показано можливість перспективного розвитку ядерної генерації України на основі інноваційних реакторних установок на воді з надкритичними параметрами з одночасним скороченням об’ємів накопичення відпрацьованого ядерного палива та зниженням зведеної вартості виробленої АЕС електроенергії.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kravchenko, V., E. Korchomny, A. R. Abdul Khuseyn та V. Kravchenko. "Деякі показники ядерної енергетичної установки типу КН-3". Nuclear and Radiation Safety, № 2(50) (15 червня 2011): 43–47. http://dx.doi.org/10.32918/nrs.2011.2(50).08.

Повний текст джерела
Анотація:
Розглянуто судову ЯЕУ електричною потужністю в конденсаційному режимі 152,3 МВт. Наведено її особливості порівняно зі стаціонарними ЯЕУ. Визначено залежність електричної потужності від кількості теплоти, що відпускається споживачеві. Отримано економічні показники використання інтерметалевого та оксидного ядерного палива.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lysychenko, G., та Yu Ol'khovyk. "Щодо повернення в Україну високоактивних відходів від переробки відпрацьованого ядерного палива ВВЕР-440 Рівненської АЕС". Nuclear and Radiation Safety, № 3(63) (1 вересня 2014): 43–47. http://dx.doi.org/10.32918/nrs.2014.3(63).09.

Повний текст джерела
Анотація:
Розглянуто процеси формування осклованих високоактивних відходів від переробки відпрацьованого ядерного палива на ВО «Маяк» (РФ). Показано, що технології оскловування призводять до формування алюмофосфатної матриці, яка містить змішаний склад продуктів поділу і трансуранових нуклідів, що утворились у відпрацьованому ядерному паливі енергетичних реакторів ВВЕР-440, реакторів на швидких нейтронах, дослідницьких реакторів і ядерних енергетичних установок атомних підводних човнів.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Khalatov, A. A., and T. V. Donyk. "Modular power plants, based on gas turbine: the way forward for the nuclear energy development." Visnik Nacional'noi' academii' nauk Ukrai'ni, no. 07 (July 20, 2019): 56–63. http://dx.doi.org/10.15407/visn2019.07.056.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mekh, O. A., and S. G. Boublyk. "Modular power plants, based on gas turbine: the way forward for the nuclear energy development." Visnik Nacional'noi' academii' nauk Ukrai'ni, no. 07 (July 20, 2019): 64–75. http://dx.doi.org/10.15407/visn2019.07.064.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Buryak, T., та N. Yaroshenko. "Зіставлення вимог вітчизняних і міжнародних стандартів до труб з корозійностійкої сталі для ядерних енергетичних установок". Nuclear and Radiation Safety, № 4(64) (16 грудня 2014): 36–40. http://dx.doi.org/10.32918/nrs.2014.4(64).07.

Повний текст джерела
Анотація:
Проаналізовано стандарти і технічні умови (ГОСТ, ТУ, ASTM, EN) на труби з корозійностійкої сталі серії Х18Н10Т (ТР321), що використовуються в конструкціях АЕС. Обґрунтовано доцільність оптимізації вимог до вітчизняних труб згідно з міжнародними стандартами та рекомендаціями стосовно наближення до євронорм.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Іваненко, Т. Г., та В. І. Коньшин. "ОЦІНКА ТЕХНІЧНОГО СТАНУ ТЕПЛООБМІННИКА СИСТЕМИ РОЗХОЛОДЖУВАННЯ БАСЕЙНУ ВИТРИМКИ ДЛЯ ЯДЕРНОЇ ЕНЕРГЕТИЧНОЇ УСТАНОВКИ З РЕАКТОРОМ ВВЕР-1000 З МЕТОЮ ПРОДОВЖЕННЯ ТЕРМІНУ ЕКСПЛУАТАЦІЇ". POWER ENGINEERING: economics, technique, ecology, № 1 (2 квітня 2017): 81–89. http://dx.doi.org/10.20535/1813-5420.1.2018.133053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Кравченко, В. П., Р. М. Середа, Чжоу Сяолун, Ю. І. Висоцький та О. М. Рибаков. "ВИБІР ОСНОВНИХ КОНСТРУКТИВНИХ ПАРАМЕТРІВ ПАРОГЕНЕРАТОРА ДЛЯ АЕС МАЛОЇ ПОТУЖНОСТІ". Problems of Atomic Science and Technology, 7 жовтня 2019, 62–68. http://dx.doi.org/10.46813/2019-123-062.

Повний текст джерела
Анотація:
Розглянуто конструкцію та методику розрахунку парогенератора (ПГ) для АЕС малої потужності. В якості прототипу прийнято ПГ ядерної енергетичної установки типу КЛТ-40С (РФ). Наведено загальний перелік робіт при проектуванні ПГ. Розроблено методику конструкційного розрахунку ПГ зі змієвиковою поверхнею нагріву, а також математичну модель ПГ, що включає конструкційний, тепловий, гідравлічний, міцностний та економічний розрахунки. Описано виведення формул для визначення товщини стінки теплообмінних трубок (ТОТ) та кількості концентричних шарів змійовиків. Наведено методику визначення основних розмірів корпусу, шахти та плоскої кришки. За допомогою розробленої комп’ютерної програми визначено оптимальні діаметр ТОТ, кроки розташування ТОТ у шарі та між шарами, швидкість живильної води на вході в ТОТ.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Ядерна енергетична установка"

1

Сафронова, Олена Олегівна. "Теплогідравлічні характеристики парогенератора ядерної енергетичної установки ГТ-МГР для виробництва електроенергії та водню". Master's thesis, Київ, 2018. https://ela.kpi.ua/handle/123456789/23079.

Повний текст джерела
Анотація:
Магістерська дисертація складається зі вступу, трьох розділів, висновків. Загальний об’єм дисертації становить 101 сторінку, з них 88 сторінок основного тексту, 31 рисунок, 4 таблиці, список джерел з 37 найменувань. Актуальність теми. Розвиток ядерної енергетики в даний час направлено на створення АЕС на базі екологічно чистих реакторів 4-го покоління. Однією з можливих концепцій таких реакторів є модульний гелієвий реактор, в якому в якості теплоносія використовується гелій. В даний час розробляються перспективні проекти створення газоохолоджувальних ЯЕУ 4-го покоління, які поєднують в собі виробництво електроенергії та водню методом високотемпературного електролізу пари, що здійснюється в високотемпературних парогенераторах. Найбільший інтерес у питанні моделювання парогенератора ЯЕУ представляє собою течія киплячої рідини в вертикальному каналі довільної форми. Тому пошук максимально можливої компактності конструкції при достатньому рівні міцності та високих теплогідравлічних характеристиках є актуальною проблемою. Зв'язок роботи з науковими програмами, планами, темами. Науково-дослідна робота по темі дисертації проводилася по програмі спільних робіт з «Відділенням Цільової Підготовки «КПІ ім. Ігоря Сікорського» для НАНУ за напрямком №1.7.1.АХ.2 «Термогазодинаміка турбулентних потоків в обертових каналах високотемпературних енергетичних установок» від 02.01.2018 р., реєстраційний номер 0118Г000006. Мета даної роботи − дослідження теплогідравлічних та геометричних параметрів парогенератора ГТ-МГР для виробництва електроенергії та водню, а також моделювання процесу теплообміну при кипінні рідини в вертикальній трубі. Досягнення мети передбачає виконання таких завдань: – Розробити математичну модель високотемпературного парогенератора ЯЕУ четвертого покоління з використанням гелію в якості первинного теплоносія з гвинтовими закрученими (змієвиковими) трубами. – Змоделювати процес теплообміну при кипінні рідини. – Дослідити структуру потоку та характерні режими теплообміну в вертикальній трубі. – Реалізувати п'ять різних методів розрахунку теплообміну при кипінні у вертикальній трубі, заснованих на експериментальних кореляційних залежностях. Об’єктом дослідження є теплогідравлічні процеси в парогенераторі ядерної енергетичної установки ГТ-МГР з гелієвим реактором для виробництва електроенергії та водню. Предметом дослідження є закономірності та показники впливу на теплообмін і гідродинаміку від температури і тиску при кипінні рідини в теплообмінному елементі парогенератора. Методи дослідження: При досліджуванні використовувався метод математичного моделювання за допомогою спеціалізованої програми «STEAMG» для теплового та гідравлічного розрахунку парогенератора. Наукова новизна одержаних автором результатів полягає у наступному: 1. За допомогою спеціалізованої програми «STEAMG» було змодельовано процес теплообміну при кипінні рідини в вертикальній трубі. 2. Було визначено найбільш коректний з фізичної точки зору метод Чена для розрахунку теплообміну при русі двофазного потоку в каналі довільної форми. 3. Було отримано, що з ростом діаметра зовнішнього кожуха парогенератора в діапазоні D = 2,2…3,6 м відносні втрати тиску в холодному тракті парогенератора зростають на 7 % і знижуються зі збільшенням числа труб в трубному пучку на 11 %. 4. Відносні втрати тиску в гарячому тракті парогенератора невеликі і зменшуються з ростом діаметра зовнішнього кожуха і збільшенням числа труб в трубному пучку на 5 %. 5. З ростом діаметра зовнішнього кожуха парогенератора маса і об’єм теплопередавальних поверхонь парогенератора зростають на 10 % через зниження середньої швидкості первинного теплоносія, зниження значень коефіцієнта тепловіддачі і зростання потрібної довжини труб парогенератора. 6. В гарячому тракті значення коефіцієнта тепловіддачі при ηT = 0,925 на 15 % вище, ніж при ηT = 0,85. Практичне значення даної роботи полягає в отриманні початкових даних для створення компактних високотемпературних теплообмінників ядерної енергетичної установки з гелієвим реактором по виробництву електроенергії та водню. Апробація результатів роботи. Основні положення і результати роботи доповідались і обговорювались на конференції: – ХVІ Науково практична конференція студентів аспірантів та молодих вчених «Теоретичні і прикладні проблеми фізики, математики та інформатики.», м. Київ, 2018 р
The Master's thesis consists of an introduction, three chapters, and conclusions. The total volume of the thesis is 101 pages, including 88 pages of the basic text, 31 figures, 4 tables, a list of references of 37 titles. Importance of scientific problem. The development of nuclear energy is currently aimed at the creation of a nuclear power plant based on the 4th generation environmentally friendly reactors. One of the possible concepts for such reactors is a modular helium reactor, in which helium is used as a coolant. Currently promising projects for the creation of gas-cooled UES of the 4th generation are being developed, which combine the production of electricity and hydrogen by high-temperature steam electrolysis, which is carried out in high-temperature steam generators. The greatest interest in the modeling of the steam generator EIEU is the flow of boiling fluid in a vertical channel of arbitrary shape. Therefore, finding the maximum possible compactness of the structure with sufficient strength and high thermo-hydraulic characteristics is an urgent problem. Relationship to scientific programs, plans and themes. The research work on the topic of the dissertation was conducted on the program of joint work with the "Department of Target Preparation" KPI them. Igor Sikorsky for the National Academy of Sciences of Ukraine in the direction №.1.7.1.AX.2 "Thermogasodynamics of turbulent flows in the rotary canals of high-temperature power plants" dated January 2, 2018, registration number 0118Г000006. The aim of this work is to study the thermohydraulic and geometrical parameters of the GT-MGG steam generator for the production of electricity and hydrogen, as well as to simulate the process of heat exchange during boiling liquid in a vertical pipe. Achieving the goal involves performing the following tasks: - To develop a mathematical model of the high-temperature steam generator EIEA of the fourth generation using helium as a primary coolant with spiral twisted (snake) pipes. - Modify the process of heat exchange with boiling liquids. - Explore the flow structure and characteristic heat transfer modes in the vertical pipe. - Realize five different methods of calculating heat transfer when boiling in a vertical pipe, based on experimental correlation dependencies. The object of research is the thermal-hydraulic processes in the steam generator of the nuclear power plant GT-MGR with a helium reactor for the production of electricity and hydrogen. The subject of research is the patterns and indicators of the effect on heat transfer and hydrodynamics from temperature and pressure at boiling liquid in the heat-exchange element of the steam generator. Research methodology: In the study, the method of mathematical modeling was used with the help of a specialized program "STEAMG" for thermal and hydraulic calculation of the steam generator. The scientific novelty of the results obtained by the author is as follows: 1. With the use of the STEAMG specialized program, the process of heat exchange during boiling liquid in a vertical pipe was simulated. 2. It was determined that the most correct from the physical point of view is the Chen method for calculating heat transfer in the movement of two-phase flow in a channel of arbitrary form. 3. It was found that with increasing diameter of the outer casing of the steam generator in the range D = 2,2…3,6 m relative pressure losses in the cold tract of the steam generator increase by 7% and decrease with an increase in the number of pipes in the tube bundle by 11%. 4. Relative pressure losses in the hot path of the steam generator are small and diminish with the growth of the diameter of the outer casing and the increase in the number of pipes in the tube bundle by 5%. 5. With the growth of the diameter of the outer casing of the steam generator, the mass and volume of the heat transfer surfaces of the steam generator increase by 10% due to the decrease in the average speed of the primary coolant, the decrease in the values of the coefficient of heat transfer and the growth of the required length of steam of the steam generator. 6. In the hot path, the value of the coefficient of heat transfer at ηT = 0,925 is 15% higher than at ηT = 0,85. The importance for practice of this work is to obtain the initial data for the creation of compact high-temperature heat exchangers of a nuclear power plant with a helium reactor for the production of electricity and hydrogen. Conferences. The main provisions and results of work were reported and discussed at the conference: - XVI Scientific and Practical Conference of Students of Postgraduate Students and Young Scientists "Theoretical and Applied Problems of Physics, Mathematics and Informatics.", Kyiv, 2018
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії