Добірка наукової літератури з теми "Швидкість передачі цифрових потоків"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Швидкість передачі цифрових потоків".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Швидкість передачі цифрових потоків"

1

Дмитрієв, Ілля, та Оксана Дмитрієва. "ОСОБЛИВОСТІ ТА ТЕНДЕНЦІЇ ЦИФРОВОЇ ЕКОНОМІКИ В УКРАЇНІ". Проблеми і перспективи розвитку підприємництва, № 27 (14 листопада 2021): 60. http://dx.doi.org/10.30977/ppb.2226-8820.2021.27.60.

Повний текст джерела
Анотація:
УДК 330.341; JEL Classification: O33 Мета: Метою статті є вивчення основних тенденцій розвитку цифрової економіки України та ідентифікація чинного законодавчого підґрунтя. Методика дослідження: В роботі використано методи аналізу та синтезу, системний підхід, порівняльний аналіз. Результати: Характерною ознакою сучасного етапу розвитку економіки є використання цифрових технологій, які стали каталізатором різкого збільшення мобільності товарних та фінансових потоків, забезпечують високу швидкість передачі інформації, внесли значний вклад в глобалізаційні та інтеграційні процеси світової економіки. Інформаційні технології стали невід’ємною частиною суспільних відносин та призвели до появи нових галузей господарства, ринків, конкурентних товарів та послуг. Одним із важливих параметрів, які на світовому рівні визначають якість та ступінь розвитку цифрової економіки, є світові рейтинги. Згідно з Концепцією розвитку цифрової економіки та суспільства України на 2018-2020 основними рейтинговими цілями її реалізації є досягнення визначених позицій у рейтингу. Для аналізу особливостей та тенденцій розвитку цифрової економіки України авторами проведено дослідження рейтингових індексів, що дають змогу оцінити її стан: Digital Economy and Society Index; Digital Evolution Index; Digital Adoption Index; ICT Development Index; Global Innovation Index; Networked Readiness Index; e-Intensity; IMD World Digital Competiveness Index; Global Competitiveness Index. В дослідженні проведено аналіз стану рівня використання та розвитку цифрових технологій в країні. Наукова новизна: існуючі нормативно-правові акти, що регламентують розвиток цифрової економіки України, актуалізують необхідність їх уніфікації та консолідації у вигляді Стратегії розвитку цифрової економіки України як стійкого законодавчого підґрунтя для забезпечення стратегічного розвитку цифрової економіки держави. Забезпечення розвитку цифрової економіки України передбачається через періодичне прийняття строкових програмних документів на у формі чинної Концепції розвитку цифрової економіки та суспільства України на 2018-2020 роки. Практична значущість: проведений аналіз та визначені особливості та тенденції розвитку цифрової економіки складають інтерес для органів державної влади, до відання яких належить регулювання цифрової економіки; для вітчизняних та зарубіжних науковців, що ведуть дослідження з цього питання.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Павленко, В., Ю. Підопригора та Т. Кузьменко. "Електронний мікроскоп як один із сучасних засобів 3d вимірювань." COMPUTER-INTEGRATED TECHNOLOGIES: EDUCATION, SCIENCE, PRODUCTION, № 40 (22 вересня 2020): 65–69. http://dx.doi.org/10.36910/6775-2524-0560-2020-40-10.

Повний текст джерела
Анотація:
. Розкрито сучасні засоби 3d вимірювань у вигляді електронного мікроскопу. Визначено поняття електронної мікроскопії, що являє собою сукупність методів морфологічного дослідження об'єктів за допомогою потоку електронів, структурованих електричними полями в електронних мікроскопах. Досліджено будову сучасного електронного мікроскопу. Наголошується, що електронний мікроскоп використовує замість променя світла (фотонів) потік електронів, у яких довжина хвилі значно менше, і цим він відрізняється від світлового мікроскопа. Як відомо з фізики, чим швидше швидкість електронів, тим менше довжина хвилі, а швидкість потоку електронів залежить від різниці потенціалів, яка в деяких моделях становить кілька мільйонів вольт і при цьому збільшення може досягати до двох мільйонів крат. Визначено принцип роботи електронної мікроскопії. В основі принципу лежить цифрова технологія, як комплекс, який складається з мікроскопа і персонального комп'ютера зі встановленим спеціальним програмним забезпеченням. Підкреслюється, що цифровий мікроскоп складається безпосередньо з мікроскопа і фото- або відеокамери, яка відповідає за виведення зображення, забезпечити належну якість якого можна тільки використовуючи професійне обладнання для цифрової мікроскопії. Наведено структурно-функціональну схему цифрової мікроскопії та описано структурні елементи. Розкрито принцип формування зображення та перехід від 2D до 3D моделі. Визначено, що для з'єднання фото- або відеокамери і мікроскопа використовуються адаптери, що забезпечують, крім надійного кріплення камери, передачу зображення з максимальним полем видимості і без спотворення картинки. Окреслено можливості модернізованих цифрових мікроскопів останнього покоління, головним з них є те, що з'єднання в єдину систему всіх складових дозволяє отримати нові можливості для аналізу, які недоступні для кожного окремого вузла цифрового мікроскопа.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ролик, Александр Иванович. "Моделювання управління потоками даних в корпоративних IP-мережах". Адаптивні системи автоматичного управління 1, № 18 (11 грудня 2011): 93–102. http://dx.doi.org/10.20535/1560-8956.18.2011.33509.

Повний текст джерела
Анотація:
Розглянуто моделі трьох методів управління мережевим трафіком, що забезпечують недопущення перевантажень телекомунікаційних каналів. В основу апаратної моделі лягла технологія обмеження потоків даних через мережеві вузли. Програмна модель є регулятором, який на основі порівняння вхідного та бажаного значень завантаженості каналів виробляє команди для джерел трафіку. Третя модель використовує методи теорії автоматичного управління для обмеження потоків трафіку, а саме оптимальний по швидкодії регулятор. Наводиться структура і опис всіх цих моделей, а також проаналізовані переваги та недоліки кожної з моделей за такими критеріями: швидкодія регулятора, тобто швидкість, з якою регулятор виробляє необхідну керуючу дію; вплив затримок передачі даних на своєчасність регулюючої дії; види трафіку, які здатен регулювати регулятор; простота розрахунку та реалізації регулятора; ефективне використання наявних мережевих ресурсів.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ozerchuk, I. "Формування стійкого каналу передачі даних у мережі Інтернет". COMPUTER-INTEGRATED TECHNOLOGIES: EDUCATION, SCIENCE, PRODUCTION, № 43 (30 червня 2021): 212–17. http://dx.doi.org/10.36910/6775-2524-0560-2021-43-35.

Повний текст джерела
Анотація:
Проведено дослідження принципів формування стійкого каналу передачі даних у мережі Інтернет. Розкрито моделі, методи та алгоритми реалізації передачі даних у мережі Інтернет. Описано принципи формування мережі передачі даних. Підкреслено, що такий параметр, як швидкість передачі пакетів даних у мережі Інтернет контролюється потоком даних і одночасно – непрямими вимірами. Зазначено, що особливої проблематики набуває розподіл потоків даних найкоротшими шляхами для здійснення швидкої і якісної передачі масивів даних. Наголошено, що способи передачі даних у мережі Інтернет, які вимагають мінімального часу, або способи з мінімальними перешкодами належать до такого роду проблем, на основі цього, зауважено, що оптимізація тракту повинна здійснюватися за будь-якими технічними та економічними критеріями, а обрані шляхи повинні гарантувати ефективне використання ліній та вершин зв'язку. Обґрунтована необхідність створення та розвитку нових моделей комп’ютерних мереж у зв’язку з появою глобальних мереж, зростанням інформації, що підлягає передачі, її об’ємами та необхідністю підтримки якісної комп'ютерної безпеки. Описано реалізацію методу Дейкстри, Джонсона та Джексона. Математично обґрунтовано кожен з алгоритмів та сформовано низку переваг та недоліків описаних алгоритмів у процесі передачі даних у мережі Інтернет з урахуванням умов передачі, кількості інформації, що передається та каналів, як застосовано для передачі. Наголошено, що застосування розглянутих алгоритмів передачі даних дозволить оптимізувати процес передачі та обробки даних у комп’ютерних мережах, в свою чергу, оптимізована передача та обробка даних значно скоротить час роботи, а також витрати на розробку та підтримку програмних продуктів, зменшення витрат на вдосконалення серверного програмного забезпечення можливо за рахунок інтеграції інформаційних ресурсів у центр обробки даних, за умови здійснення інтеграції, значно знизяться витрати на послуги та передачу даних у мережі Інтернет.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ozerchuk, I. "Формування стійкого каналу передачі даних у мережі Інтернет". COMPUTER-INTEGRATED TECHNOLOGIES: EDUCATION, SCIENCE, PRODUCTION, № 43 (30 червня 2021): 212–17. http://dx.doi.org/10.36910/6775-2524-0560-2021-43-35.

Повний текст джерела
Анотація:
Проведено дослідження принципів формування стійкого каналу передачі даних у мережі Інтернет. Розкрито моделі, методи та алгоритми реалізації передачі даних у мережі Інтернет. Описано принципи формування мережі передачі даних. Підкреслено, що такий параметр, як швидкість передачі пакетів даних у мережі Інтернет контролюється потоком даних і одночасно – непрямими вимірами. Зазначено, що особливої проблематики набуває розподіл потоків даних найкоротшими шляхами для здійснення швидкої і якісної передачі масивів даних. Наголошено, що способи передачі даних у мережі Інтернет, які вимагають мінімального часу, або способи з мінімальними перешкодами належать до такого роду проблем, на основі цього, зауважено, що оптимізація тракту повинна здійснюватися за будь-якими технічними та економічними критеріями, а обрані шляхи повинні гарантувати ефективне використання ліній та вершин зв'язку. Обґрунтована необхідність створення та розвитку нових моделей комп’ютерних мереж у зв’язку з появою глобальних мереж, зростанням інформації, що підлягає передачі, її об’ємами та необхідністю підтримки якісної комп'ютерної безпеки. Описано реалізацію методу Дейкстри, Джонсона та Джексона. Математично обґрунтовано кожен з алгоритмів та сформовано низку переваг та недоліків описаних алгоритмів у процесі передачі даних у мережі Інтернет з урахуванням умов передачі, кількості інформації, що передається та каналів, як застосовано для передачі. Наголошено, що застосування розглянутих алгоритмів передачі даних дозволить оптимізувати процес передачі та обробки даних у комп’ютерних мережах, в свою чергу, оптимізована передача та обробка даних значно скоротить час роботи, а також витрати на розробку та підтримку програмних продуктів, зменшення витрат на вдосконалення серверного програмного забезпечення можливо за рахунок інтеграції інформаційних ресурсів у центр обробки даних, за умови здійснення інтеграції, значно знизяться витрати на послуги та передачу даних у мережі Інтернет.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Анищенко, О. "Щодо питання передачі та збереження масивів графічних даних у глобальних і локальних мережах." COMPUTER-INTEGRATED TECHNOLOGIES: EDUCATION, SCIENCE, PRODUCTION, № 44 (29 жовтня 2021): 87–93. http://dx.doi.org/10.36910/6775-2524-0560-2021-44-14.

Повний текст джерела
Анотація:
У статті розкрито питання передачі та збереження масивів графічних даних у глобальних і локальних мережах. Описано структуру сучасних комп’ютерних мереж, визначено основні проблеми, які виникають при передачі даних всередині мережі. Окреслено складність моделювання глобальних і локальних мереж. Зазначається, що побудова логічної системи управління передачею графічних даних у мережах дозволить підвищити швидкість передачі та знизити можливості втрати інформації. Описано вплив моделі Гілберта на лінію передачі даних та відокремлено механізм впливу прихованого харківського процесу на передачу даних. Деталізовано метод ідентифікації характеристик лінії передачі та вибору оптимального методу кодування сигналу, узгодженого з поточною частотною характеристикою лінії передачі. Розкрито стохастичну теорію управління в системах із прихованими марківськими процесами та обґрунтовано її вплив на задачі управління системами передачі даних. Підкреслено, що основною проблемою в організації локальних та глобальних мереж є розподіл потоків даних за найкоротшими шляхами. До такої проблеми належать способи передачі даних, які вимагають мінімального часу, або шляхи з мінімальними перешкодами. Таким чином, на основі цього визначення, наголошено, що оптимізація шляху має здійснюватися за будь-якими технічними та економічними критеріями, а обрані шляхи мають гарантувати ефективне використання ліній та вершин зв'язку. Детально описано алгоритм Дейкстри та визначено напрямки його реалізації та впливу на процес передачі графічних даних у глобальних та локальних мережах. Сформовано підгрунття реалізації алгоритму Джексона та доведено, що дискретний марківський процес, що описує роботу мережі Джексона зі змінною структурою, ергодичний. Здійснено порівняльний аналіз описаних підходів з детальним порівнянням алгоритмів та визначення найбільш дієвого. Відокремлено фактори, які впливають на оптимізацію передачі пакетів графічних даних у локальних та глобальних мережах. Наголошено, що оптимізація мереж передачі даних призводить до кешування та стиснення переданих даних, оптимізації трафіку, зміни транспортного протоколу TSP, які збільшують інтерактивність продуктивності мережевого додатку та зменшують обсяг переданих даних.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Вишняков, Володимир Михайлович, та Мхамад Ібрагім Ахмад Альомар. "Збільшення корисного завантаження вузлового обладнання комп’ютерних мереж". New computer technology 11 (22 листопада 2013): 159–60. http://dx.doi.org/10.55056/nocote.v11i1.164.

Повний текст джерела
Анотація:
Однією з важливих умов під час експлуатації вузлового обладнання комп’ютерних мереж є забезпечення високого значення коефіцієнту корисного завантаження обладнання [1]. Цей коефіцієнт визначають як відношення середньої швидкості передачі даних крізь вузлове обладнання до пропускної здатності даного обладнання. Проблема збільшення коефіцієнту корисного завантаження вузлового обладнання полягає в тому, що магістральний трафік має пульсуючий характер, який відносять до самоподібних (фрактальних) випадкових процесів [2]. Таким процесам притаманні непередбачувані зміни та неможливість прогнозування. Через це існуючі технології обробки протокольних блоків даних в умовах пульсуючого трафіку не в змозі забезпечити високий рівень завантаження вузлового обладнання (ВО), зокрема магістральних мультиплексорів, комутаторів, маршрутизаторів, шлюзів, серверів тощо.Ступінь завантаження ВО поточним трафіком на проміжку часу τ визначається коефіцієнтом завантаження КВО – відношенням досягнутої на цьому проміжку швидкості (інтенсивності) обробки пакетів ІВО до пропускної спроможності цього обладнання СВО,тобтоКВО=ІВО/СВО. По мірі підвищення завантаження ВО на часових ділянках сплесків трафіку ймовірність перенавантаження зростає, що може призвести до лавиноподібного збільшення втрат пакетів і, отже, до перевищення нормативного значення коефіцієнту втрат пакетів, що неприпустимо [3]. Тому доводиться суттєво обмежувати середню швидкість обробки пакетів на портах ВО у порівнянні із його пропускною здатністю з тим, щоб уникнути втрат пакетів під час пульсацій трафіку. Робота пакетної мережі може вважатися лише тоді ефективною, коли кожен її ресурс є суттєво завантаженим, але не перенавантаженим. Оскільки обладнання сучасних пакетних мереж є високо вартісним, то міркування економічної доцільності змушують прагнути до найбільш повного використання ресурсів такого обладнання, щоб обробляти якомога більші обсяги даних у перерахунку на одиницю вартості задіяного обладнання, і при цьому в умовах пульсацій трафіка намагатися не втратити якість обробки інформації. Тобто, необхідно намагатися забезпечити оптимальний компроміс між рівнем завантаження ресурсів мережі і якістю надання послуг.З метою підвищення завантаженості вузлового обладнання (ВО) визначено можливі шляхи удосконалення технології адаптивного управління розподілом ресурсів пакетних мереж [4; 5]. У роботі [5]пропонується ефективний спосіб збільшення корисного завантаження ВО за рахунок використання механізму адаптивного перерозподілу пропускної спроможності пакетного комутатора між його портами у реальному часі. Проте цей спосіб не враховує статистичні характеристики реального пакетного трафіку, що суттєво зменшує ефективність застосування вищеназваного способу на практиці. Окрім того, не враховується негативний вплив системних помилок, пов’язаних із адаптивністю та дискретністю процесу перерозподілу. З метою підвищення ефективності адаптивного управління авторами проведено дослідження статистичних характеристик реального пакетного трафіку і запропоновано способи перетворення нестаціонарних потоків трафіку у квазістаціонарні відрізки, що надає можливість зменшення системних помилок адаптивного управління. При цьому потік пакетів розподіляється на декілька черг з різним пріоритетом [5]. Для визначення пріоритету аналізуються тільки заголовки пакетів, що забезпечує мінімальну затримку під час аналізу.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Гуржій, Андрій Миколайович, Валерій Яковлевич Жуйков, Анатолій Тимофійович Орлов, Віктор Михайлович Співак, Олександр Володимирович Богдан, Микола Іванович Шут, Людмила Юріївна Благодаренко та ін. "Викладання фізики з використанням вітчизняної електронної цифрової лабораторії, створеної на основі ІКТ". Theory and methods of e-learning 4 (17 лютого 2014): 69–78. http://dx.doi.org/10.55056/e-learn.v4i1.372.

Повний текст джерела
Анотація:
У зв’язку із загальною інформатизацією освіти і швидким розвитком цифрових засобів обробки інформації назріла необхідність впровадження в лабораторні практикуми вищих та середніх навчальних закладів цифрових засобів збору, обробки та оформлення експериментальних результатів, в тому числі під час виконання лабораторних робот з основ електротехнічних пристроїв та систем. При цьому надмірне захоплення віртуальними лабораторними роботами на основі комп’ютерного моделювання в порівнянні з реальним (натурним) експериментом може призводити до втрати особової орієнтації в технології освіти і відсутності надалі у випускників навчальних закладів ряду практичних навичок.У той же час світові компанії, що спеціалізуються в учбово-технічних засобах, переходять на випуск учбового устаткування, що узгоджується з комп’ютерною технікою: аналого-цифрових перетворювачів і датчиків фізико-хімічних величин, учбових приладів керованих цифро-аналоговими пристроями, автоматизованих учбово-експеримен­тальних комплексів, учбових експериментальних установок дистанційного доступу.У зв’язку із цим в області реального експерименту відбувається поступовий розвиток інформаційних джерел складної структури, до яких, у тому числі, відносяться комп’ютерні лабораторії, що останнім часом оформлюються у новий засіб реалізації учбового натурного експерименту – цифрові електронні лабораторії (ЦЕЛ).Відомі цифрові лабораторії для шкільних курсів фізики, хімії та біології (найбільш розповсюджені компаній Vernier Software & Technology, USA та Fourier Systems Inc., Israel) можуть бути використані у ВНЗ України, але вони мають обмежений набір датчиків, необхідність періодичного ручного калібрування, використовують застарілий та чутливий до електромагнітних завад аналоговий інтерфейс та спрощене програмне забезпечення, що не дозволяє проводити статистичну обробку результатів експерименту та з урахуванням низької розрядності аналого-цифрових перетворювачів не може використовуватись для проведення науково-дослідних робіт у вищих навчальних закладах, що є однією із складових підготовки висококваліфікованих спеціалістів, особливо в університетах, які мають статус дослідницьких.Із вітчизняних аналогів відомі окремі компоненти цифрових лабораторій, що випускаються ТОВ «фірма «ІТМ» м. Харків. Вони поступаються продукції компаній Vernier Software & Technology, USA та Fourier Systems Inc. та мають близькі цінові характеристики на окремі компоненти. Тому необхідність розробки вітчизняної цифрової навчальної лабораторії є нагальною, проблематика досліджень та предмет розробки актуальні.Метою проекту є створення сучасної вітчизняної цифрової електронної лабораторії та відпрацювання рекомендацій по використанню у викладанні на її основі базового переліку науково-природничих та біомедичних дисциплін у ВНЗ I-IV рівнів акредитації при значному зменшенні витрат на закупку приладів, комп’ютерної техніки та навчального-методичного забезпечення. В роботі використані попередні дослідження НДІ Прикладної електроніки НТУУ «КПІ» в галузі МЕМС-технологій (micro-electro-mechanical) при створенні датчиків фізичних величин, виконано огляд технічних та методичних рішень, на яких базуються існуючі навчальні цифрові лабораторії та датчики, розроблені схемотехнічні рішення датчиків фізичних величин, проведено конструювання МЕМС – первинних перетворювачів, та пристроїв реєстрації інформації. Розроблені прикладні програми інтерфейсу пристроїв збору інформації та вбудованих мікроконтролерів датчиків. Сформульовані вихідні дані для розробки бездротового інтерфейсу датчиків та програмного забезпечення цифрової лабораторії.Таким чином, у даній роботі пропонується нова вітчизняна цифрова електронна лабораторія, що складається з конструкторської документації та дослідних зразків обладнання, програмного забезпечення та розробленого єдиного підходу до складання навчальних методик для цифрових лабораторій, проведення лабораторних практикумів з метою економії коштів під час створення нових лабораторних робіт із реєстрацією даних, обробки результатів вимірювань та оформленням результатів експерименту за допомогою комп’ютерної техніки.Цифрова електронна лабораторія складається із таких складових частин: набірного поля (НП); комплектів модулів (М) із стандартизованим вихідним інтерфейсом, з яких складається лабораторний макет для досліджування об’єкту (це – набір електронних елементів: резисторів, ємностей, котушок індуктивності, цифро-аналогових та аналого-цифрових перетворювачів (ЦАП та АЦП відповідно)) та різноманітних датчиків фізичних величин; комп’ютерів студента (планшетного комп’ютера або спеціалізованого комп’ютера) з інтерфейсами для датчиків; багатовходових пристроїв збору даних та їх перетворення у вигляд, узгоджений з інтерфейсом комп’ютера (реєстратор інформації або Data Logger); комп’ютер викладача (або серверний комп’ютер із спеціалізованим програмним забезпеченням); пристрої зворотного зв’язку (актюатори), що керуються комп’ютером; трансивери для бездротового прийому та передачі інформації з НП.Таким чином, з’являється новий клас бездротових мереж малої дальності. Ці мережі мають ряд особливостей. Пристрої, що входять в ці мережі, мають невеликі розміри і живляться в основному від батарей. Ці мережі є Ad-Hoc мережами – високоспеціалізованими мережами з динамічною зміною кількісного складу мережі. У зв’язку з цим виникають завдання створення та функціонування даних мереж – організація додавання і видалення пристроїв, аутентифікація пристроїв, ефективна маршрутизація, безпека даних, що передаються, «живучість» мережі, продовження часу автономної роботи кінцевих пристроїв.Протокол ZigBee визначає характер роботи мережі датчиків. Пристрої утворюють ієрархічну мережу, яка може містити координатор, маршрутизатори і кінцеві пристрої. Коренем мережі являється координатор ZigBee. Маршрутизатори можуть враховувати ієрархію, можлива також оптимізація інформаційних потоків. Координатор ZigBee визначає мережу і встановлює для неї оптимальні параметри. Маршрутизатори ZigBee підключаються до мережі або через координатор ZigBee, або через інші маршрутизатори, які вже входять у мережу. Кінцеві пристрої можуть з’єднуватися з довільним маршрутизатором ZigBee або координатором ZigBee. По замовчуванню трафік повідомлень розповсюджується по вітках ієрархії. Якщо маршрутизатори мають відповідні можливості, вони можуть визначати оптимізовані маршрути до визначеної точки і зберігати їх для подальшого використання в таблицях маршрутизації.В основі будь-якого елементу для мережі ZigBee лежить трансивер. Активно розробляються різного роду трансивери та мікроконтролери, в які потім завантажується ряд керуючих програм (стек протоколів ZigBee). Так як розробки ведуться багатьма компаніями, то розглянемо та порівняємо новинки трансиверів тільки кількох виробників: СС2530 (Texas Instruments), AT86RF212 (Atmel), MRF24J40 (Microchip).Texas Instruments випускає широкий асортимент трансиверів. Основні з них: CC2480, СС2420, CC2430, CC2431, CC2520, CC2591. Всі вони відрізняються за характеристиками та якісними показниками. Новинка від TI – мікросхема СС2530, що підтримує стандарт IEEE 802.15.4, призначена для організації мереж стандарту ZigBee Pro, а також засобів дистанційного керування на базі ZigBee RF4CE і обладнання стандарту Smart Energy. ІС СС2530 об’єднує в одному кристалі РЧ-трансивер і мікроконтролер, ядро якого сумісне зі стандартним ядром 8051 і відрізняється від нього поліпшеною швидкодією. ІС випускається в чотирьох виконаннях CC2530F32/64/128/256, що розрізняються обсягом флеш-пам’яті – 32/64/128/256 Кбайт, відповідно. В усьому іншому всі ІС ідентичні: вони поставляються в мініатюрному RoHS-сумісному корпусі QFN40 розмірами 6×6 мм і мають однакові робочі характеристики. СС2530 являє собою істотно покращений варіант мікросхеми СС2430. З точки зору технічних параметрів і функціональних можливостей мікросхема СС2530 перевершує або не поступається CC2430. Однак через підвищену вихідну потужність (4,5 дБм) незначно виріс струм споживання (з 27 до 34 мА) при передачі. Крім того, ці мікросхеми мають різні корпуси і кількість виводів (рис. 1). Рис. 1. Трансивери СС2530, СС2430 та СС2520 фірми Texas Instruments AT86RF212 – малопотужний і низьковольтний РЧ-трансивер діапазону 800/900 МГц, який спеціально розроблений для недорогих IEEE 802.15.4 ZigBee-сумісних пристроїв, а також для ISM-пристроїв з підвищеними швидкостями передачі даних. Працюючи в діапазонах частот менше 1 ГГц, він підтримує передачу даних на малих швидкостях (20 і 40 Кбіт/с) за стандартом IEEE 802.15.4-2003, а також має опціональну можливість передачі на підвищених швидкостях (100 і 250 Кбіт/с) при використанні модуляції O-QPSK у відповідності зі стандартом IEEE 802.15.4-2006. Більше того, при використанні спеціальних високошвидкісних режимів, можлива передача на швидкості до 1000 Кбіт/с. AT86RF212 можна вважати функціональним блоком, який з’єднує антену з інтерфейсом SPI. Всі критичні для РЧ тракту компоненти, за винятком антени, кварцового резонатора і блокувальних конденсаторів, інтегровані в ІС. Для поліпшення загальносистемної енергоефективності та розвантаження керуючого мікроконтролера в ІС інтегровані прискорювачі мережевих протоколів (MAC) і AES- шифрування.Компанія Microchip Technology виробляє 8-, 16- і 32- розрядні мікроконтролери та цифрові сигнальні контролери, а також аналогові мікросхеми і мікросхеми Flash-пам’яті. На даний момент фірма випускає передавачі, приймачі та трансивери для реалізації рішень для IEEE 802.15.4/ZigBee, IEEE 802.11/Wi-Fi, а також субгігагерцового ISM-діапазону. Наявність у «портфелі» компанії PIC-мікроконтролерів, аналогових мікросхем і мікросхем пам’яті дозволяє їй запропонувати клієнтам комплексні рішення для бездротових рішень. MRF24J40 – однокристальний приймач, що відповідає стандарту IEEE 802.15.4 для бездротових рішень ISM-діапазону 2,405–2,48 ГГц. Цей трансивер містить фізичний (PHY) і MAC-функціонал. Разом з мікроспоживаючими PIC-мікроконтролерами і готовими стеками MiWi і ZigBee трансивер дозволяє реалізувати як прості (на базі стека MiWi), так і складніші (сертифіковані для роботи в мережах ZigBee) персональні бездротові мережі (Wireless Personal Area Network, WPAN) для портативних пристроїв з батарейним живленням. Наявність MAC-рівня допомагає зменшити навантаження на керуючий мікроконтролер і дозволяє використовувати недорогі 8-розрядні мікроконтролери для побудови радіомереж.Ряд компаній випускає завершені модулі ZigBee (рис. 2). Це невеликі плати (2÷5 кв.см.), на яких встановлено чіп трансивера, керуючий мікроконтролер і необхідні дискретні елементи. У керуючий мікроконтролер, у залежності від бажання і можливості виробника закладається або повний стек протоколів ZigBee, або інша програма, що реалізує можливість простого зв’язку між однотипними модулями. В останньому випадку модулі іменуються ZigBee-готовими (ZigBee-ready) або ZigBee-сумісними (ZigBee compliant).Всі модулі дуже прості в застосуванні – вони містять широко поширені інтерфейси (UART, SPI) і управляються за допомогою невеликого набору нескладних команд. Застосовуючи такі модулі, розробник позбавлений від роботи з високочастотними компонентами, так як на платі присутній ВЧ трансивер, вся необхідна «обв’язка» і антена. Модулі містять цифрові й аналогові входи, інтерфейс RS-232 і, в деяких випадках, вільну пам’ять для прикладного програмного забезпечення. Рис. 2. Модуль ZigBee із трансивером MRF24J40 компанії Microchip Для прикладу, компанія Jennic випускає лінійку ZigBee-сумісних радіомодулів, побудованих на низькоспоживаючому бездротовому мікроконтролері JN5121. Застосування радіомодуля значно полегшує процес розробки ZigBee-мережі, звільняючи розробника від необхідності конструювання високочастотної частини виробу. Використовуючи готовий радіомодуль, розробник отримує доступ до всіх аналогових і цифрових портів вводу-виводу чіпу JN5121, таймерам, послідовного порту і інших послідовних інтерфейсів. У серію входять модулі з керамічної антеною або SMA-коннектором з дальністю зв’язку до 200 метрів. Розмір модуля 18×30 мм. Версія модуля з підсилювачем потужності і підсилювачем вхідного сигналу має розмір 18×40 мм і забезпечує дальність зв’язку більше 1 км. Кожен модуль поставляється з вбудованим стеком протоколу рівня 802.15.4 MAC або ZigBee-стеком.За висновками експертів з аналізу ринку сьогодні одним з найперспективніших є ринок мікросистемних технологій, що сягнув 40 млрд. доларів станом на 2006 рік зі значними показниками росту. Самі мікросистемні технології (МСТ) почали розвиватися ще з середини ХХ ст. і, отримуючи щоразу нові поштовхи з боку нових винаходів, чергових удосконалень технологій, нових галузей науки та техніки, динамічно розвиваються і дедалі ширше застосовуються у широкому спектрі промислової продукції у всьому світі.Прилад МЕМС є об’єднанням електричних та механічних елементів в одну систему дуже мініатюрних розмірів (значення розмірів механічних елементів найчастіше лежать у мікронному діапазоні), і достатньо часто такий прилад містить мікрокомп’ютерну схему керування для здійснення запрограмованих дій у системі та обміну інформацією з іншими приладами та системами.Навіть з побіжного аналізу структури МЕМС зрозуміло, що сумарний технологічний процес є дуже складним і тривалим. Так, залежно від складності пристрою технологічний процес його виготовлення, навіть із застосуванням сучасних технологій, може тривати від кількох днів до кількох десятків днів. Попри саме виготовлення, доволі тривалими є перевірка та відбраковування. Часто виготовляється відразу партія однотипних пристроїв, причому вихід якісної продукції часто не перевищує 2 %.Для виготовлення сучасних МЕМС використовується широка гама матеріалів: різноманітні метали у чистому вигляді та у сплавах, неметали, мінеральні сполуки та органічні матеріали. Звичайно, намагаються використовувати якомога меншу кількість різнорідних матеріалів, щоби покращити технологічність МЕМС та знизити собівартість продукції. Тому розширення спектра матеріалів прийнятне лише за наявності специфічних вимог до елементів пристрою.Спектр наявних типів сенсорів в арсеналі конструктора значно ширший та різноманітніший, що зумовлено багатоплановим застосуванням МЕМС. Переважно використовуються ємнісні, п’єзоелектричні, тензорезистивні, терморезистивні, фотоелектричні сенсори, сенсори на ефекті Холла тощо. Розроблені авторами в НДІ Прикладної електроніки МЕМС-датчики, їх характеристики, маса та розміри наведені у табл. 1.Таблиця 1 №з/пМЕМС-датчикиТипи датчиківДіапазони вимірюваньГабарити, маса1.Відносного тиску, тензорезистивніДВТ-060ДВТ-1160,01–300 МПа∅3,5–36 мм,5–130 г2.Абсолютного тиску,тензорезистивніДАТ-0220,01–60 МПа∅16 мм,20–50 г3.Абсолютного тиску, ємнісніДАТЄ-0090,05–1 МПа5×5 мм4.Лінійного прискорення,тензорезистивніДЛП-077±(500–100 000) м/с224×24×8 мм,100 г5.Лінійного прискорення,ємнісніАЛЄ-049АЛЄ-050±(5,6–1200) м/с235×35×22 мм, 75 г6.Кутової швидкості,ємнісніДКШ-011100–1000 °/с
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Швидкість передачі цифрових потоків"

1

Канюка, Максим Олександрович. "Дослідження ефективності застосування мережі VSAT в стільникових системах радіозв’язку". Магістерська робота, Хмельницький національний університет, 2021. http://elar.khnu.km.ua/jspui/handle/123456789/11017.

Повний текст джерела
Анотація:
В магістерській роботі проведено дослідження оцінки якості енергетичної ефективності цифрових сигналів супутникової лінії зв’язку для чотирьох наземних станцій мережі VSAT. Визначена залежність впливу швидкості передачі цифрових потоків інформації в мережах супутникового зв’язку на базі VSAT – мала супутникова наземна станція при відповідних співвідношеннях сигнал/шум на вході приймача абонентської супутникової станції на ймовірність бітової помилки. Наводяться технічні характеристики абонентських супутникових станцій, які працюють в Ku – діапазоні частот 11/14 ГГц з штучним супутником Землі на геостаціонарній орбіті. Визначено динамічний діапазон зміни потужностей сигналу на вході приймача наземної станції супутникового зв’язку на базі VSAT при різних швидкостях передачі даних, який забезпечує задане співвідношення сигнал/шум та ймовірність бітових помилок в межах 10-7 - 10-4 для необхідної якості зв’язку.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Храпа, Володимир Петрович. "Методи та засоби узгодження вихідних цифрових потоків медичних приладів з безпровідною мережею". Master's thesis, 2019. http://elartu.tntu.edu.ua/handle/lib/29844.

Повний текст джерела
Анотація:
Дипломну роботу магістра присвячено розробленню методів та засобів узгодження вихідних цифрових потоків медичних приладів з безпровідною мережею. Проведено огляд методів та засобів узгодження вихідних цифрових потоків медичних приладів з безпровідною мережею. Проаналізовано апаратні засоби формування цифрових потоків та визначено типові інтерфейси передавання даних при їх підключенні до ПК. Проаналізовано особливості стандартів передачі медичних даних. Побудовано структурну схему пристрою узгодження вихідних цифрових потоків. Обґрунтовано використання різних апаратних засобів для побудови пристрою узгодження вихідних цифрових потоків. Розроблено методику конфігурування та тестування радіомодулів XBee для роботи пристрою узгодження вихідних цифрових потоків. А також проведено тестування безпровідної мережі Wi-Fi для ефективного розміщення пристрою узгодження вихідних цифрових потоків.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії