Добірка наукової літератури з теми "Цикл Ренкіна"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Цикл Ренкіна".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Цикл Ренкіна"

1

Галашов, Николай Никитович, та Святослав Анатольевич Цибульский. "ПАРАМЕТРИЧЕСКИЙ АНАЛИЗ СХЕМЫ ПАРОГАЗОВОЙ УСТАНОВКИ С КОМБИНАЦИЕЙ ТРЕХ ЦИКЛОВ ДЛЯ ПОВЫШЕНИЯ КПД ПРИ РАБОТЕ В СЕВЕРНЫХ ГАЗОДОБЫВАЮЩИХ РАЙОНАХ". Izvestiya Tomskogo Politekhnicheskogo Universiteta Inziniring Georesursov 330, № 5 (13 травня 2019): 44–55. http://dx.doi.org/10.18799/24131830/2019/5/274.

Повний текст джерела
Анотація:
Актуальность. Парогазовые установки рассматриваются как одно из перспективных направлений развития теплоэнергетических установок, работающих на природном газе. Интерес к их внедрению в России объясняется большими запасами природного газа, низкими капиталовложениями и минимальными выбросами вредных веществ в окружающую среду. Из термодинамики известно, что для достижения высокого КПД цикла необходимо иметь высокую температуру подвода теплоты и низкую температуру ее отвода, а также обеспечить работу оборудования с минимальными внутренними потерями и иметь рациональную тепловую схему взаимосвязи оборудования в цикле. На современном этапе максимальная температура подвода теплоты в камере сгорания газотурбинной установки при существующих конструкционных материалах и способах охлаждения элементов турбины достигла 1600 °С, а температура отвода теплоты в конденсаторе при работе цикла Ренкина на воде по условиям экономичности не может быть ниже 15 °С. При этих условиях на наиболее совершенных трехконтурных парогазовых установках с промежуточным перегревом пара достигнут электрический КПД 63 %. Для цикла Ренкина при работе на воде температура конденсации пара по условию замерзания должна быть выше 0 °С. Для парогазовой установки при работе в условиях низких среднегодовых температур окружающей среды, что характерно для России и особенно отдаленных северных районов добычи газа, можно отводить теплоту в цикле Ренкина значительно ниже 0 °С, но это надежно можно выполнить только применяя конденсаторы с воздушным охлаждением, если в качестве рабочего тела в цикле Ренкина использовать органическое рабочее тело. Недостатком современных органических рабочих тел является низкая предельная температура их термического разложения, которая составляет 300…400 °С. Объект: парогазовые установки с циклами на трех рабочих телах, где верхний цикл Брайтона работает на продуктах сгорания природного газа, средний – цикл Ренкина – работает на воде и водяном паре в интервале температур 100…650 °С, а нижний – Органический цикл Ренкина – работает на органических рабочих телах в интервале температур –30…250 °С. Цель: выбор рациональной технологической схемы парогазовой установки c применением циклов на трех рабочих телах и воздушного конденсатора для возможности надежного отвода теплоты от органического рабочего тела при температуре ниже 0 °С и определение оптимальных параметров циклов. Методы. Сложные теплоэнергетические системы, включая парогазовые установки, характеризуются многообразием процессов, протекающих в их элементах. Такие установки можно эффективно исследовать только с помощью методов математического моделирования и оптимизации. При проведении исследований в данной работе использован системный подход, методы энергетических балансов и расчет термодинамических и теплофизических параметров рабочих тел с помощью современных сертифицированных программ. Результаты. Разработана оригинальная схема парогазовой установки утилизационного типа с циклами на трех рабочих телах, где верхний цикл Брайтона работает на продуктах сгорания природного газа, средний цикл Ренкина работает на воде и водяном паре, нижний – Органический цикл Ренкина – работает на органическом рабочем теле с конденсацией его в воздушном конденсаторе. Разработана математическая модель и программа расчета предложенной схемы. Определено наиболее эффективное органическое рабочее тело для нижнего цикла Ренкина. Проведен параметрический анализ влияния основных параметров циклов на КПД брутто и нетто парогазовой установки.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Джаватов, Джават Курбанович, та Амир Азизович Азизов. "ПОВЫШЕНИЕ ЭНЕРГЕТИЧЕСКОЙ ЭФФЕКТИВНОСТИ БИНАРНОЙ ГЕОЭС (НА ПРИМЕРЕ КУМУХСКОГО МЕСТОРОЖДЕНИЯ)". Izvestiya Tomskogo Politekhnicheskogo Universiteta Inziniring Georesursov 332, № 9 (28 вересня 2021): 178–86. http://dx.doi.org/10.18799/24131830/2021/9/3367.

Повний текст джерела
Анотація:
Актуальность исследования обусловлена необходимостью расширения топливно-энергетической и минерально-сырьевой базы путем освоения возобновляемых высокопотенциальных минерализованных ресурсов месторождений термальных вод. Однако эксплуатация таких месторождений затруднена высокой степенью минерализации природных рассолов. Использование бинарных геотермальных электростанций, реализующих термодинамический цикл Ренкина для утилизации тепловой энергии, позволяет решить эту проблему и получить относительно дешевую электрическую энергию. Возникает необходимость поиска и оценки методов повышения энергоэффективности термодинамических циклов, реализуемых при разработке одного из перспективных месторождений термальных вод Дагестана – Кумухское. Положительная оценка перспектив освоения геотермальных ресурсов месторождения показывает значительный потенциал для улучшения экономической структуры региона. Цель: оценить энергоэффективность бинарной геотермальной электростанции, в основе работы которой лежит органический цикл Ренкина в докритическом и сверхкритическом циклах и в разных режимах закачки отработанного теплоносителя для Кумухского месторождения термальных вод; показать перспективность и эффективность комплексного освоения геотермальных ресурсов месторождения.Объект: геотермальные системы для электроэнергетического освоения высокопотенциальных минерализованных термальных вод месторождения. Методы исследования основаны на использовании данных геологоразведочных, гидротермальных и геохимических исследований по Кумухскому месторождению термальных вод, методов математического моделирования и оптимизации. Результаты. На примере конкретного месторождения термальных вод проведена оптимизация технологических параметров первичного контура геотермальной электростанции, оценена ее энергоэффективность в докритическом и сверхкритическом органических циклах Ренкина с низкокипящим вторичным теплоносителем. Показано, что утилизация низкопотенциальной энергии рассолов на теплонасосных установках позволяет улучшить эффективность энергетических циклов на месторождении. Проведенный анализ показывает, что создание комплексных технологий освоения высокопотенциальных минерализованных геотермальных ресурсов месторождения позволит существенно улучшить экономическую структуру региона.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Клер, А. М., А. Ю. Маринченко, Ю. М. Потанина та П. В. Жарков. "Оптимизационные исследования энергогенерирующих установок на древесной биомассе, реализующих органический цикл Ренкина". Известия Российской академии наук. Энергетика, № 6 (2019): 110–20. http://dx.doi.org/10.1134/s0002331019060062.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Upadhyaya, S., та V. Gumtapure. "Эксергоэкономическая оптимизация низкотемпературного органического цикла Ренкина на солнечной энергии". Теплоэнергетика, № 12 (2021): 45–51. http://dx.doi.org/10.1134/s0040363621120109.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Артеменко, С. В., та В. О. Мазур. "EN Машинне навчання для властивостей холодоагентів". Refrigeration Engineering and Technology 57, № 3 (15 жовтня 2021): 138–46. http://dx.doi.org/10.15673/ret.v57i3.2164.

Повний текст джерела
Анотація:
Міждисциплінарний характер нових цілей, спрямованих на розробку робочих матеріалів для екологічно чистих технологій вимагає більш динамічного використання інформаційних технологій (ІТ) для забезпечення правильних компромісних рішень у конкурентному середовищі. Машинне навчання (ML) — це частина методологій штучного інтелекту (AI), яка використовує алгоритми, які не є прямим рішенням проблеми, а навчаються за допомогою рішень незліченної кількості подібних проблем. Машинне навчання відкрило новий шлях у дослідженні термодинамічної поведінки нових речовин. Різні обчислювальні інструменти були застосовані для вирішення актуальної проблеми - прогнозування фазової поведінки soft речовин під значними екзогенними впливами. Метою цього дослідження є розробка нової точки зору щодо прогнозування термодинамічних властивостей м'яких речовин за допомогою методології, яка передбачає штучні нейронні мережі (ANN) та глобальну фазову діаграму для забезпечення кореляції між структурою та властивостями. В роботі представлено застосування машинного навчання в інженерній термодинаміці для прогнозування азеотропної поведінки бінарних холодоагентів і визначення коефіцієнта продуктивності (COP) для роботи органічного циклу Ренкіна (ORC). За даними про кипіння та критичні точки. Запропоновано новий підхід до прогнозування утворення азеотропного стану в суміші, який розроблено та представлено. Цей підхід використовує синергію нейронних мереж та методології глобальної фазової діаграми для кореляції азеотропних даних для бінарних сумішей на основі лише критичних властивостей та ацентричного коефіцієнта окремих компонентів у сумішах холодоагентів. Це не вимагає інтенсивних розрахунків. Побудова кореляцій ANN між інформаційними атрибутами робочих рідин та критеріями ефективності циклу Ренкіна звужує область компромісів у просторі конкурентних економічних, екологічних та технологічних критеріїв
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Toujani, N., N. Bouaziz, M. Chrigui та L. Kairouani. "Влияние рабочих параметров на производительность нового сочетания органического цикла Ренкина и парокомпрессионного цикла в режиме теплофикации". Теплоэнергетика, № 9 (2020): 85–98. http://dx.doi.org/10.1134/s0040363620090088.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Клер, А. М., А. Ю. Маринченко та Ю. М. Потанина. "Схемно-параметрическая оптимизация установок на древесной биомассе, реализующих различные варианты цикла Ренкина". Известия Российской академии наук. Энергетика, № 2 (2020): 141–54. http://dx.doi.org/10.31857/s0002331020020053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bo, Dakkah Baydaa, I′ldar A. Sultanguzin, and Yuriy V. Yavorovsky. "Heat Recovery Using Organic Rankine Cycle." Vestnik MEI, no. 5 (2021): 51–57. http://dx.doi.org/10.24160/1993-6982-2021-5-51-57.

Повний текст джерела
Анотація:
Heat losses in industrial processes can be divided into three sections (high-, medium-, and low-temperature heat), depending on the temperature of the exhaust gases. This heat is usually recovered either by heat exchangers or by a closed Rankine cycle. However, about 60% of low-temperature heat losses remain irreplaceable. Currently, the organic Rankine cycle has become a promising method of low-temperature energy recovery, and several theoretical studies on this topic have appeared, but a small number of experimental studies have been performed. In our work, we have built a 2 kW heat recovery laboratory test bench using tube-type heat exchangers, a gear pump and a turbo expander on the working fluid R141b. As a result, we found that the efficiency of the cycle increases as the boiling point and pressure increase, but an increase in overheating at the inlet of the expander leads to a decrease in efficiency due to the use of the working fluid R141b. At the inlet of the evaporator and the outlet of the condenser, respectively, overheating and supercooling of the working fluid occurs, which negatively affects the efficiency of the cycle. The amount of useful heat obtained was 45.4 W with an efficiency of 2.24%. as a result of low efficiency of the expander and pump, as well as leaks during the test. The development of an experimental test bench with working on organic Rankin cycle requires long-term research work and great scientific potential. In the future, it will be necessary to create a new test bench based on a deeper study, so that we can get a higher efficiency of the expander and pump, which would affect the efficiency of this cycle. Also, we need to replace the working fluid in the cycle with a more efficient one.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Falman, A. G., and D. E. Ageysky. "Rankine cycle working fluid for the use of regasification cold." Journal International Academy of Refrigeration 15, no. 2 (2016): 71–75. http://dx.doi.org/10.21047/1606-4313-2016-15-2-71-75.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dologlonyan, A. V., and V. T. Matviienko. "OPTIMIZATION OF PARAMETERS OF ORGANIC RANKINE CYCLE FOR THE SOURCE OF LOW-POTENTIAL ENERGY." Monitoring systems of environment 3 (September 23, 2019): 153–62. http://dx.doi.org/10.33075/2220-5861-2019-3-153-162.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Цикл Ренкіна"

1

Хамза, Хамза Алі Адел. "Вибір та обґрунтування параметрів дизель-електричної станції з системою утилізації теплоти". Thesis, НТУ "ХПІ", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/31934.

Повний текст джерела
Анотація:
Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.05.03 – двигуни та енергетичні установки. – Національний технічний університет "Харківський політехнічний інститут". – Харків, 2017. Дисертація присвячена вибору і обґрунтуванню параметрів дизель-електричної станції з системою утилізації вторинної теплоти дизеля з використанням циклу Ренкіна, що використовує теплоту відпрацьованих газів та системи охолодження. В результаті аналізу особливостей перспективної енергетичної установки з двигуном Hyundai 25/33 для виробництва електричної енергії на заводі в Іраку розроблена технологічна схема комплексної системи утилізації вторинної теплоти дизель-електричної станції з додатковим отриманням електроенергії, теплоти для підігріву важкого палива, конденсації технічної води з відпрацьованих газів двигуна. Для утилізації вторинної теплоти двигуна Hyundai H25/33 запропоновано утилізаційний контур установки, який працює за органічним циклом Ренкіна (ОЦР). В якості робочого тіла в циклі Ренкіна доцільно використовувати воду системи охолодження двигуна. З використанням розробленої математичної моделі утилізаційного контуру дизель-електростанції виконане розрахунково-експериментальне дослідження впливу температури навколишнього середовища на показники ефективності утилізаційного контуру. При зміні температури навколишнього середовища від 0 ° С до 40 ° С кількість електроенергії, виробленої за циклом Ренкіна для двигуна Hyundai H25/33 збільшується до 10%. При роботі однієї когенераційної установки з двигуном Hyundai H25/33 та розробленим утилізаційним комплексом можна отримати на добу до 2300 кг конденсату водяної пари, що є дуже цінною в Іраку. На основі результатів дослідження було розроблено два варіанта технологічної схеми (проекти "А" та "Б") модернізації дизельних електростанцій компанії Hyundai Heavy Industries. Виконана техніко-економічна оцінка проектів за метод NPV показала, що після того, як обладнання утилізаційного контуру в повному обсязі буде введено у експлуатацію, максимально досяжний прибуток складе близько 1 406 219 дол. США/рік.
Dissertation for the degree of candidate of technical sciences in specialty 05.05.03 – engines and power plants. – National Technical University "Kharkiv Polytechnic Institute". – Kharkiv, 2017. The dissertation is devoted to the choice and substantiation of parameters of a diesel power plant with heat recovery system of recycling the secondary heat from diesel engine using the Rankin cycle, which uses the heat of exhaust gases and cooling water systems. As a result of the analysis of the features of a promising power plant with a Hyundai 25/33 engine for the production of electric power at a plant in Iraq, a technological scheme of a comprehensive system for recycling diesel fuel from an electric power station with the additional generation of electricity, heat for heating heavy fuel, condensing technical water from exhaust gases. As a working fluid in the Rankin cycle, it is advisable to use the hot water from the engine cooling system. Using the developed mathematical model of the distillation circuit of the diesel power plant, the design-experimental study of the influence of the ambient temperature on the indicators of the efficiency of heat recovery was performed. When the ambient temperature changes from 0 ° C to 40 ° C, the amount of electric energy generated by the Rankin cycle for the Hyundai H25 / 33 engine increases to 10%. With a single cogeneration unit with a Hyundai H25 / 33 engine and a recycling complex developed, it is possible to get up to 2300 kg of water vapor condensate per day, which is very valuable in Iraq. Based on the results of the study, two variants of the technological scheme (projects A and B) were developed for the modernization of Hyundai diesel power plants. The feasibility study for the NPV method has shown that after the full recovery equipment is put into operation, the maximum achievable profit will be about 1 406 219 $ /year.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hamza, Hamza Ali Adel. "Selection and justification the parameters of diesel power plant with heat recovery system." Thesis, NTU "KhPI", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/31664.

Повний текст джерела
Анотація:
Dissertation for the degree of candidate of technical sciences in specialty 05.05.03 – engines and power plants. – National Technical University "Kharkiv Polytechnic Institute". – Kharkiv, 2017. The dissertation is devoted to the choice and substantiation of parameters of a diesel power plant with heat recovery system of recycling the secondary heat from diesel engine using the Rankin cycle, which uses the heat of exhaust gases and cooling water systems. As a result of the analysis of the features of a promising power plant with a Hyundai 25/33 engine for the production of electric power at a plant in Iraq, a technological scheme of a comprehensive system for recycling diesel fuel from an electric power station with the additional generation of electricity, heat for heating heavy fuel, condensing technical water from exhaust gases. As a working fluid in the Rankin cycle, it is advisable to use the hot water from the engine cooling system. Using the developed mathematical model of the distillation circuit of the diesel power plant, the design-experimental study of the influence of the ambient temperature on the indicators of the efficiency of heat recovery was performed. When the ambient temperature changes from 0 ° C to 40 ° C, the amount of electric energy generated by the Rankin cycle for the Hyundai H25 / 33 engine increases to 10%. With a single cogeneration unit with a Hyundai H25 / 33 engine and a recycling complex developed, it is possible to get up to 2300 kg of water vapor condensate per day, which is very valuable in Iraq. Based on the results of the study, two variants of the technological scheme (projects A and B) were developed for the modernization of Hyundai diesel power plants. The feasibility study for the NPV method has shown that after the full recovery equipment is put into operation, the maximum achievable profit will be about 1 406 219 $ /year.
Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.05.03 – двигуни та енергетичні установки. – Національний технічний університет "Харківський політехнічний інститут". – Харків, 2017. Дисертація присвячена вибору і обґрунтуванню параметрів дизель-електричної станції з системою утилізації вторинної теплоти дизеля з використанням циклу Ренкіна, що використовує теплоту відпрацьованих газів та системи охолодження. В результаті аналізу особливостей перспективної енергетичної установки з двигуном Hyundai 25/33 для виробництва електричної енергії на заводі в Іраку розроблена технологічна схема комплексної системи утилізації вторинної теплоти дизель-електричної станції з додатковим отриманням електроенергії, теплоти для підігріву важкого палива, конденсації технічної води з відпрацьованих газів двигуна. Для утилізації вторинної теплоти двигуна Hyundai H25/33 запропоновано утилізаційний контур установки, який працює за органічним циклом Ренкіна (ОЦР). В якості робочого тіла в циклі Ренкіна доцільно використовувати воду системи охолодження двигуна. З використанням розробленої математичної моделі утилізаційного контуру дизель-електростанції виконане розрахунково-експериментальне дослідження впливу температури навколишнього середовища на показники ефективності утилізаційного контуру. При зміні температури навколишнього середовища від 0 ° С до 40 ° С кількість електроенергії, виробленої за циклом Ренкіна для двигуна Hyundai H25/33 збільшується до 10%. При роботі однієї когенераційної установки з двигуном Hyundai H25/33 та розробленим утилізаційним комплексом можна отримати на добу до 2300 кг конденсату водяної пари, що є дуже цінною в Іраку. На основі результатів дослідження було розроблено два варіанта технологічної схеми (проекти "А" та "Б") модернізації дизельних електростанцій компанії Hyundai Heavy Industries. Виконана техніко-економічна оцінка проектів за метод NPV показала, що після того, як обладнання утилізаційного контуру в повному обсязі буде введено у експлуатацію, максимально досяжний прибуток складе близько 1 406 219 дол. США/рік.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Хамза, Хамза Алі Адел. "Вибір та обґрунтування параметрів дизель-електричної станції з системою утилізації теплоти". Thesis, НТУ "ХПІ", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/31663.

Повний текст джерела
Анотація:
Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.05.03 – двигуни та енергетичні установки. – Національний технічний університет "Харківський політехнічний інститут". – Харків, 2017. Дисертація присвячена вибору і обґрунтуванню параметрів дизель-електричної станції з системою утилізації вторинної теплоти дизеля з використанням циклу Ренкіна, що використовує теплоту відпрацьованих газів та системи охолодження. В результаті аналізу особливостей перспективної енергетичної установки з двигуном Hyundai 25/33 для виробництва електричної енергії на заводі в Іраку розроблена технологічна схема комплексної системи утилізації вторинної теплоти дизель-електричної станції з додатковим отриманням електроенергії, теплоти для підігріву важкого палива, конденсації технічної води з відпрацьованих газів двигуна. Для утилізації вторинної теплоти двигуна Hyundai H25/33 запропоновано утилізаційний контур установки, який працює за органічним циклом Ренкіна (ОЦР). В якості робочого тіла в циклі Ренкіна доцільно використовувати воду системи охолодження двигуна. З використанням розробленої математичної моделі утилізаційного контуру дизель-електростанції виконане розрахунково-експериментальне дослідження впливу температури навколишнього середовища на показники ефективності утилізаційного контуру. При зміні температури навколишнього середовища від 0 ° С до 40 ° С кількість електроенергії, виробленої за циклом Ренкіна для двигуна Hyundai H25/33 збільшується до 10%. При роботі однієї когенераційної установки з двигуном Hyundai H25/33 та розробленим утилізаційним комплексом можна отримати на добу до 2300 кг конденсату водяної пари, що є дуже цінною в Іраку. На основі результатів дослідження було розроблено два варіанта технологічної схеми (проекти "А" та "Б") модернізації дизельних електростанцій компанії Hyundai Heavy Industries. Виконана техніко-економічна оцінка проектів за метод NPV показала, що після того, як обладнання утилізаційного контуру в повному обсязі буде введено у експлуатацію, максимально досяжний прибуток складе близько 1 406 219 дол. США/рік.
Dissertation for the degree of candidate of technical sciences in specialty 05.05.03 – engines and power plants. – National Technical University "Kharkiv Polytechnic Institute". – Kharkiv, 2017. The dissertation is devoted to the choice and substantiation of parameters of a diesel power plant with heat recovery system of recycling the secondary heat from diesel engine using the Rankin cycle, which uses the heat of exhaust gases and cooling water systems. As a result of the analysis of the features of a promising power plant with a Hyundai 25/33 engine for the production of electric power at a plant in Iraq, a technological scheme of a comprehensive system for recycling diesel fuel from an electric power station with the additional generation of electricity, heat for heating heavy fuel, condensing technical water from exhaust gases. As a working fluid in the Rankin cycle, it is advisable to use the hot water from the engine cooling system. Using the developed mathematical model of the distillation circuit of the diesel power plant, the design-experimental study of the influence of the ambient temperature on the indicators of the efficiency of heat recovery was performed. When the ambient temperature changes from 0 ° C to 40 ° C, the amount of electric energy generated by the Rankin cycle for the Hyundai H25 / 33 engine increases to 10%. With a single cogeneration unit with a Hyundai H25 / 33 engine and a recycling complex developed, it is possible to get up to 2300 kg of water vapor condensate per day, which is very valuable in Iraq. Based on the results of the study, two variants of the technological scheme (projects A and B) were developed for the modernization of Hyundai diesel power plants. The feasibility study for the NPV method has shown that after the full recovery equipment is put into operation, the maximum achievable profit will be about 1 406 219 $ /year.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Цикл Ренкіна"

1

Grigoriev, B. A., and N. A. Ovchinnikov. "COGENERATING PLANT BASED ON ORGANIC RENKIN CYCLE." In RENEWABLE ENERGY: CHALLENGES AND PROSPECTS. ALEF, 2020. http://dx.doi.org/10.33580/2313-5743-2020-8-1-442-448.

Повний текст джерела
Анотація:
В докладе дано обоснование концепции когенерационной установки (КГУ) электрической мощностью 400 кВт на основе органического цикла Ренкина (ОЦР), работающей на местном биотопливе. Обоснован выбор рабочего тела и представлены диаграммы состояния ОЦР. Приведен расчет основных энергетических показателей и тепловых нагрузок аппаратов в составе КГУ.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії