Зміст
Добірка наукової літератури з теми "Ударні навантаження"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Ударні навантаження".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Ударні навантаження"
Симонюк В.П., к.т.н., Денисюк В.Ю., к.т.н. та Лапченко Ю.С., к.т.н. "ДОСЛІДЖЕННЯ ВИСОКОЧАСТОТНИХ ХАОТИЧНИХ ВІБРАЦІЙНИХ ПЕРЕМІЩЕНЬ ЕЛЕМЕНТІВ РОБОЧОГО СЕРЕДОВИЩА ВІБРОБУНКЕРА". Перспективні технології та прилади, № 14 (7 грудня 2019): 125–32. http://dx.doi.org/10.36910/6775-2313-5352-2019-14-22.
Повний текст джерелаRoda, Olga, Svitlana Kalytka та Ninel Matskevych. "Побудова базових мезоциклів бігунів на середні дистанції". Physical education, sports and health culture in modern society, № 4(44) (29 грудня 2018): 55–63. http://dx.doi.org/10.29038/2220-7481-2018-04-55-63.
Повний текст джерелаС. Ф. Гасанова та Е. Н. Лысенко. "Особливості прояву спеціальної працездатності у кваліфікованих жінок-боксерів в анаеробних умовах виконання навантажень". Спортивна медицина, фізична терапія та ерготерапія, № 2 (29 вересня 2017): 46–54. http://dx.doi.org/10.32652/spmed.2017.2.46-54.
Повний текст джерелаВ. Ю. Денисюк, Симонюк В.П., Лапченко Ю.С, Кайдик О.Л. та Пташенчук В.В. "ДОСЛІДЖЕННЯ ПРОЦЕСІВ ОБРОБКИ ДЕТАЛЕЙ ПРИ УДАРНО-ІМПУЛЬСНОМУ НАВАНТАЖЕННІ ВІБРОБУНКЕРА". Перспективні технології та прилади, № 18 (30 червня 2021): 43–50. http://dx.doi.org/10.36910/6775-2313-5352-2021-18-6.
Повний текст джерелаДенисюк В.Ю., к.т.н., Симонюк В.П., к.т.н, Лапченко Ю.С., к.т.н., Карманський М.В. та Ніщот Р.В. "МОДЕЛЮВАННЯ ПРОЦЕСУ ВЗАЄМОДІЇ ДЕТАЛІ І ГРАНУЛ ПРИ УДАРНОМУ НАВАНТАЖЕННІ ВІБРОБУНКЕРА". Перспективні технології та прилади, № 15 (19 грудня 2019): 33–44. http://dx.doi.org/10.36910/6775-2313-5352-2019-15-5.
Повний текст джерелаVasilchenko, Таtyana Oleksandrivna, Irene Arturivna Shevchenko, Yurii Hryhorovych Kobrin та Oleksii Mykolaiovych Hrechanyi. "ТЕОРЕТИЧНІ ДОСЛІДЖЕННЯ ПРОЦЕСУ ДРОБЛЕННЯ КРИХКИХ МАТЕРІАЛІВ В МОЛОТКОВИХ ДРОБАРКАХ". Modern Problems of Metalurgy 1, № 22 (6 листопада 2019): 22–39. http://dx.doi.org/10.34185/1991-7848.2019.01.03.
Повний текст джерелаГрищенко, А. А., та К. С. Красніков. "МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ ТА ПОРІВНЯННЯ ДИНАМІКИ УДАРІВ ПО ДВОХ ВИДАХ ЖИЛЕТІВ ДЛЯ ЄДИНОБОРСТВ". Математичне моделювання, № 2(45) (13 грудня 2021): 134–39. http://dx.doi.org/10.31319/2519-8106.2(45)2021.247064.
Повний текст джерелаЖуравльов, Ю. І., та Є. Ф. Костюченко. "ПІДВИЩЕННЯ ЕФЕКТИВНОСТІ ТЕХНІЧНОГО ОБСЛУГОВУВАННЯ І РЕМОНТУ СПОЛУЧЕНЬ ВАЛПІДШИПНИК КОВЗАННЯ НА ОСНОВІ МОДЕЛЮВАННЯ ЇХ ПОШКОДЖЕНЬ". Ship power plant 1 (5 серпня 2020): 152–61. http://dx.doi.org/10.31653/smf340.2020.152-161.
Повний текст джерелаДрозд, О. В. "Вдосконалення підвіски стрічки Вантажного конвеєра". Automation of technological and business processes 13, № 4 (3 лютого 2022): 4–7. http://dx.doi.org/10.15673/atbp.v13i4.2201.
Повний текст джерелаШахліна, Л. Я. Г., та М. О. Чистякова. "Особливості планування тренувальних навантажень у мікро- та мезоциклах підготовки спортсменок високої кваліфікації, які спеціалізуються у дзюдо". Спортивна медицина, фізична терапія та ерготерапія, № 2 (30 листопада 2018): 8–14. http://dx.doi.org/10.32652/spmed.2018.2.8-14.
Повний текст джерелаДисертації з теми "Ударні навантаження"
Рассоха, Олексій Миколайович, Ганна Миколаївна Черкашина та Ілля Андрійович Тараненко. "Захисні матеріали для ремонтних робіт газопромислового обладнання". Thesis, ТОВ "Нілан-ЛТД", 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/48751.
Повний текст джерелаОвчарова, Наталія Юріївна. "Скінченно-елементний аналіз швидкісного деформування захисних елементів машинобудівних конструкцій". Thesis, Інститут проблем машинобудування ім. А. М. Підгорного НАН України, 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/32352.
Повний текст джерелаThe thesis for a candidate of technical science degree in speciality 05.02.09 – Dynamics and Strength of Machines (engineering sciences) – Kharkov National University "Kharkov Polytechnic Institute", Kharkiv, 2017. In the thesis, the actual scientific and technical problem of determining the dynamic stress-strain state of the protective elements of machine-building structures under impulse and shock loads solved to ensure their strength and effective use during operation. The thesis proposes an improved three-dimensional model of high-rate deformation of structural elements, which is different by taking into account elastic-plastic finite deformations and dynamic properties of materials. Based on the proposed model, the dependences of the distribution of stresses on the speed of impact on spatial and temporal coordinates in structural elements made of various materials obtained. New features of the process of high-rate deformation of elements under local loads detected, differing in the definition of the size of a restricted stress zone with large gradients, the formation of craters and the process of unloading with the appearance of residual stresses and damages. Dependencies between stresses and impact speeds in a three-layer element for individual layers and deformations in layers depending on the speed of the impactor obtained. The dynamic stress-strain state changes significantly both in space coordinates and in time. Therefore, even for thin-walled constructions, the use of the theory of plates and shells is undesirable, since in this case the law of stress distribution over the thickness is preliminarily assumed, and part of the stresses perpendicular to the middle surface are not taken into account at all. The processes of high-speed deformation occur both in the elastic and in the plastic stage and partially accompanied by rather large deformations. Therefore, the work uses three-dimensional models, even for thin-walled structures. From a mathematical point of view, such problems are essentially non-linear and require analysis of a three-dimensional dynamic stress-strain state. The problems of high-rate elastic-plastic deformation of elements of cylindrical structures are considered. It is shown, that the largest displacements and stresses develop in local zones and in the case when the speed is increase up to V ≥ 150 m/s, the area of intense displacements and stresses is R ≤ (10-12) r, where r is the radius of the zone load. These features of the dynamic stress-strain state make it possible to isolate the corresponding region of the element and to make refined calculations for it using a denser grid. A number of practical problems of analyzing the stress-strain state of the elements of the gas turbine engine corps under shock loading considered which differ in the purpose, geometric characteristics and properties of the materials. It is shown, that the largest displacements and stresses develop in bounded zones and rapidly decrease in spatial coordinates both in time and in unloading. It is shown, that when the blade fragment is detached, as well as the foreign particles fall into the flow at the working speeds of the gas turbine engine rotation, the stress intensities do not exceed the prescribed boundaries. In some cases, preference is given to two-layer structures, since they resist shock loads better, than single-layer ones with a larger thickness of the same material.
Овчарова, Наталія Юріївна. "Скінченно-елементний аналіз швидкісного деформування захисних елементів машинобудівних конструкцій". Thesis, НТУ "ХПІ", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/32351.
Повний текст джерелаThe thesis for a candidate of technical science degree in speciality 05.02.09 – Dynamics and Strength of Machines (engineering sciences) – Kharkov National University "Kharkov Polytechnic Institute", Kharkiv, 2017. In the thesis, the actual scientific and technical problem of determining the dynamic stress-strain state of the protective elements of machine-building structures under impulse and shock loads solved to ensure their strength and effective use during operation. The thesis proposes an improved three-dimensional model of high-rate deformation of structural elements, which is different by taking into account elastic-plastic finite deformations and dynamic properties of materials. Based on the proposed model, the dependences of the distribution of stresses on the speed of impact on spatial and temporal coordinates in structural elements made of various materials obtained. New features of the process of high-rate deformation of elements under local loads detected, differing in the definition of the size of a restricted stress zone with large gradients, the formation of craters and the process of unloading with the appearance of residual stresses and damages. Dependencies between stresses and impact speeds in a three-layer element for individual layers and deformations in layers depending on the speed of the impactor obtained. The dynamic stress-strain state changes significantly both in space coordinates and in time. Therefore, even for thin-walled constructions, the use of the theory of plates and shells is undesirable, since in this case the law of stress distribution over the thickness is preliminarily assumed, and part of the stresses perpendicular to the middle surface are not taken into account at all. The processes of high-speed deformation occur both in the elastic and in the plastic stage and partially accompanied by rather large deformations. Therefore, the work uses three-dimensional models, even for thin-walled structures. From a mathematical point of view, such problems are essentially non-linear and require analysis of a three-dimensional dynamic stress-strain state. The problems of high-rate elastic-plastic deformation of elements of cylindrical structures are considered. It is shown, that the largest displacements and stresses develop in local zones and in the case when the speed is increase up to V ≥ 150 m/s, the area of intense displacements and stresses is R ≤ (10-12) r, where r is the radius of the zone load. These features of the dynamic stress-strain state make it possible to isolate the corresponding region of the element and to make refined calculations for it using a denser grid. A number of practical problems of analyzing the stress-strain state of the elements of the gas turbine engine corps under shock loading considered which differ in the purpose, geometric characteristics and properties of the materials. It is shown, that the largest displacements and stresses develop in bounded zones and rapidly decrease in spatial coordinates both in time and in unloading. It is shown, that when the blade fragment is detached, as well as the foreign particles fall into the flow at the working speeds of the gas turbine engine rotation, the stress intensities do not exceed the prescribed boundaries. In some cases, preference is given to two-layer structures, since they resist shock loads better, than single-layer ones with a larger thickness of the same material.
Пчелінцев, Віктор Олександрович, Виктор Александрович Пчелинцев, Viktor Oleksandrovych Pchelintsev та Н. О. Зоренко. "Підвищення опору ударно-циклічним навантаженням титанових сплавів пластин кільцевих клапанів". Thesis, Вид-во СумДУ, 2010. http://essuir.sumdu.edu.ua/handle/123456789/6353.
Повний текст джерелаДзюба, Лідія Федорівна, Христина Іванівна Ліщинська та Микола Іванович Войтович. "До питання дослідження реакції елементів захисних конструкцій на дію фактора ураження". Thesis, Національна академія сухопутних військ, 2018. http://hdl.handle.net/123456789/5507.
Повний текст джерелаБерезін, Валентин Борисович, В. Б. Березин та V. B. Berezin. "Вплив ударно-коливального навантаження на кінетику поля деформацій та механічні властивості металів". Thesis, Тернопільський національний технічний університет ім. Івана Пулюя, 2014. http://elartu.tntu.edu.ua/handle/123456789/5030.
Повний текст джерелаЗ використанням власного розробленого програмного комплексу на основі методу кореляції цифрових зображень, який оснащався високошвидкісною камерою Phantom v711, встановлені основні закономірності кінетики поля деформацій металів різних класів: алюмінієвих сплавів Д16 і 2024-Т3, нержавіючої сталі 12Х17 та високоміцної корпусної сталі, при ударно-коливальному навантаженні «динамічний незрівноважений процес (ДНП)» і оцінений вплив різкої зміни кінетики поля деформацій при ДНП на зміну кінетики поля деформацій та механічних властивостей металів при подальшому статичному і ударному навантаженні. Показано, що реалізація ДНП в металах, в першу чергу, впливає на зміну пластичності при подальшому деформуванні. Причому цей вплив для різних металів неоднозначний. Так, зокрема, пластичні властивості алюмінієвих сплавів після реалізації ДНП при повторному статичному розтягу значно покращуються. Це відноситься як до затримки «шийкоутворення» в сплавах до 15 %, так і до підвищення загальної пластичності до 10%. Як показали спеціально проведенні метало-фізичні дослідження методом трансмісійної-електронної мікроскопії даний ефект напряму пов’язаний з утворенням при ДНП в об’ємі матеріалу тонко-смугової дисипативної структури. Пластичність нержавіючої сталі 12Х17 після ДНП при повторному статичному розтягу значно погіршується ~ на 15…35%. Виявлений значний вплив релаксаційних процесів після ДНП, в залежності від часу витримки, що практично у всіх випадках призводить до падіння пластичності до 35%. На зразку із сплаву Д16 встановлений безпосередній зв'язок між полем деформацій на поверхні зразка і утвореною дисипативною структурою. Показано, що після ДНП пластичність високоміцної корпусної сталі збільшується ~ в 2,5 рази. Також виявлена можливість збільшення ударної в’язкості високоміцної корпусної сталі за рахунок ДНП.
Диссертация посвящена установлению основных закономерностей кинетики поля деформации металлов разных классов: алюминиевые сплавы Д16, 2024 - Т3, нержавеющая сталь 12Х17 и высокопрочная корпусная сталь, в процессе и после ударно-колебательного режима нагружения («динамический неравновесный процесс»), и связи поля деформации с механическими свойствами и структурой металлов. Неравновесное состояние материала в механических системах связано с резким обменом энергии между отдельными элементами системы. При таких процессах формируется существенно неоднородное поле деформации на поверхности образца материала или элемента конструкции, связанное с образованием в объеме тонко-полосовой диссипативной структуры, плотность которой меньше плотности основного материала. В настоящей работе для оценки кинетики поля деформации для исследуемых режимов нагружения используется собственный разработанный программный комплекс на основе метода корреляции цифровых изображений, который оснащался современной высокоскоростной камерой Phantom v711.Для каждого из исследуемых материалов выявлены характерные режимы поля деформаций в процессе реализации ДНП: увеличение площади полосы неоднородной деформации со сменой ориентации ее фронта на ~ 900; разрыв полосы неоднородной деформации на две полосы, движущиеся в противоположных направлениях; разрыв полосы неоднородной деформации на две с их последующим взаимодейтвием. Показано, что за счет резкого изменения кинетики поля деформации металлов при ДНП при последующем статическом и ударном нагружении их механические свойства могут существенно изменяться по сравнению со стандартным статическим растяжением. В первую очередь, это сказывается на пластических свойствах металлов. Так, в частности, процесс «шейкообразования» в сплаве Д16 задерживается на 8-15% и увеличивается величина локальной максимальной пластической деформации в сплаве 2024-Т3 до 10%. При этом уменьшения прочности у сплава 2024 -Т3 после ДНП не отмечается, а в сплаве Д16 выявлено незначительное уменьшение прочности, на 10-30 МПа. Кроме того, было показано, что для алюминиевого сплава Д16 существует непосредственная связь между его полем деформации и структурным состоянием материала. Установлено монотонное поведение поля деформации нержавеющей стали 12Х17 как при статическом деформировании, так и при деформировании после ДНП. Поле деформации у данного вида материала при ДНП не характеризуется явно выраженными характерными видами деформирования, хотя и обладает особенностями. В отличие от алюминиевых сплавов пластичность нержавеющей стали 12Х17 после ДНП существенно уменьшается – на 15-35%, в тоже время задерживается процесс «шейкообразования» на 30% относительно деформации разрушения. В процессе исследований установлено существенное влияние релаксационных процессов на изменение механических свойств нержавеющей стали 12Х17 при последующем статическом растяжении. При временной выдержке после ДНП до 7 дней фиксируется значительное уменьшение пластичности на 20-30% а также раннее начало процесса шейкообразования. При временной выдержке 3 месяца отмечается уменьшение пластичности на 15-35%. Для нержавеющей стали был экспериментально установлен факт качественного подобия полей деформации и коэффициента гомогенности m, который определяется по методу LM-твердости, разработанному в Институте проблем прочности им. Г.С. Писаренко НАН Украины. Установлено существенное различие в локальных скоростях деформирования металлов разных классов при ДНП, для алюминиевых сплавов она составляла 100-6000%/с, а для нержавеющей стали 100-1000%/с. В работе показано, что за счет реализации ДНП можно существенно повысить пластичность высокопрочной корпусной стали ~ в 2,5 раза и регулировать ударную вязкость стали. Поле деформации данного материала характеризуется существенной неоднородностью вызванной как особенностями технологической обработки так и воздействием на него ДНП.
Thesis is devoted to the establishment of the basic laws of kinetics of the strain field of different classes of materials: aluminum alloys D16, 2024-T3, stainless steel 12H17 and high-strength cladding steel, during and after the specific impact-oscillatory mode of loading ("dynamic nonequilibrium process"), and to the determination of the dependencies between strain field, mechanical properties and structure of the material. In such processes, essentially inhomogeneous strain field is being formed on the surface of a sample of material or structural element associated with the formation of thin-strip dissipative structure in the bulk of the material, the density of which is less than the density of the base material. Herein we use own designed program complex, based on digital image correlation method to evaluate the kinetics of the deformation field for the test loading conditions equipped with modern high-speed camera Phantom v711 ( frame rate up to 1.4 million fps). For each of the tested materials the characteristic modes of deformation fields during and after the DNP were revealed. It is shown that due to the dramatic changes of the kinetics of the deformation field of materials at the DNP in the subsequent static and impact loading of materials, their mechanical properties can vary significantly compared with the conventional static tension. First of all, this affects the properties of the plastic materials. In particular, the process of necking in alloy D16 is delayed by 8-15 % and increases the maximum value of the local plastic deformation of the alloy 2024-T3 by 10%. Unlike aluminum alloys, stainless steel plasticity after DNP is significantly reduced - by 15-35%, at the same time the process is of necking is delayed by 30% relative to the strain at fracture point. During the study we found a significant effect of relaxation processes on the mechanical properties of stainless steel 12H17 during subsequent static tension. It is also shown that by implementing the DNP we can significantly improve the ductility of high-strength cladding steel – up to 2.5 times and adjust the impact toughness of steel.
Ягудін, Дмитро Сергійович, та Едуард Альфредович Сімсон. "Аналіз напружено-деформованого стану оброблюючого інструменту при ударі". Thesis, НТУ "ХПІ", 2015. http://repository.kpi.kharkov.ua/handle/KhPI-Press/19341.
Повний текст джерелаКуриляк, В. В. "Алгоритм проведення оцінки якості матеріалів в умовах ударних навантажень". Thesis, Київський національний університет технологій та дизайну, 2017. https://er.knutd.edu.ua/handle/123456789/8417.
Повний текст джерелаСамсоненко, Т. Ю., Оксана Петрівна Гапонова, Оксана Петровна Гапонова та Oksana Petrivna Haponova. "Підвищення працездатності інструменту, що зазнає значних ударних навантажень". Thesis, Сумський державний університет, 2016. http://essuir.sumdu.edu.ua/handle/123456789/46015.
Повний текст джерелаАвтономова, Людмила Володимирівна, Сергій Володимирович Бондарь та Дмитро Сергійович Ягудін. "Аналіз міцності робочого органу дискової борони при наїзді на перешкоду". Thesis, НТУ "ХПІ", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/38267.
Повний текст джерела