Добірка наукової літератури з теми "Теплота відпрацьованих газів"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Теплота відпрацьованих газів".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Теплота відпрацьованих газів"

1

Коротинський, М. А., та С. Є. Аболешкін. "ПІДВИЩЕННЯ ЕФЕКТИВНОСТІ УТИЛІЗАЦІЇ ТЕПЛОТИ СУДНОВИХ ЕНЕРГЕТИЧНИХ УСТАНОВОК". Ship power plant 41 (5 листопада 2020): 34–37. http://dx.doi.org/10.31653/smf341.2020.34-37.

Повний текст джерела
Анотація:
Бурхливий розвиток світового морського флоту, визначило його якісна зміна, збільшивши його загальну енергоємність, підвищило потужності головної енергетичної установки, суднової електростанції. Параметри суднових двигунів внутрішнього згоряння СДВЗ постійно підвищуються, що веде до збільшення параметрів утилізованого тепла. Разом з тим, обсяги низькотемпературного тепла (також його називають викидними теплом), теж збільшуються, надаючи певні можливості в його використанні. У передових наукових розробках дані конкретні розрахунки використання утилізованого тепла, яке може скласти до 10% потужності головної енергетичної установки. Сам процес утилізації тепла на сучасних судах останнім часом отримав свій розвиток в використанні енергії відпрацьованих газів головного двигуна в утиль-котлах для роботи допоміжного паротурбогенератору, і на пряму після турбіни наддуву двигуна він утилізується в турбогенераторі відпрацьованих газів. Ідея спрямована на використання низькотемпературного тепла в ГПТ на морських судах. Проаналізувавши наукові публікації вітчизняних і зарубіжних авторів, включаючи останні розробки та теплові схеми світових лідерів виробляють суднове енергетичне обладнання, за основу взято обладнання Mitsubishi Heavy Industries, Ltd (MHI).
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Побережний, Р. В. ,., та С. В. Сагін. "ЗАБЕЗПЕЧЕННЯ ЕКОЛОГІЧНИХ ПОКАЗНИКІВ ДИЗЕЛІВ СУДЕН РІЧКОВОГО ТА МОРСЬКОГО ТРАНСПОРТУ". Ship power plant 41 (5 листопада 2020): 5–9. http://dx.doi.org/10.31653/smf340.2020.5-9.

Повний текст джерела
Анотація:
Дизель, виробляючи механічну енергію за рахунок окислення палива повітрям, в процесі роботи здійснює безперервний тепло-масообмін з навколишньою атмосферою. Він забирає повітря і споживає паливо, потім викидає відпрацьовані гази, що складаються з частини повітря і продуктів окислення палива. Таким чином, повітря, що надходить в циліндр дизеля, робить певний термодинамічний цикл, зазнаючи при цьому хімічні зміни, в результаті чого перетворюється в випускні гази (ВГ) – складну газову суміш з безліччю компонентів. Чотири компонента N2, О2, СО2 і Н2О складають понад 99...99,9 % обсягу газу, решта 0,1...1,0 % обсягу відпрацьованих газів складають домішки, які не представляють інтересу з технічної точки зору, але є шкідливими для навколишнього середовища, живої природи і людини. При випуску в атмосферу відпрацьовані гази зазвичай розсіюються і вступають в контакт з людиною вже в сильно розбавленому стані. Концентрація ряду шкідливих компонентів і температура газів в основному знижуються до безпечного рівня, але бувають зони, де ця речовина концентрується в кількостях, що надають шкідливу дію на живий організм і природу. Ця обставина змушує шукати шляхи зниження шкідливих речовин. До найбільш небезпечних речовин можна віднести СО, NОХ, SО2, альдегіди, вуглеводні, бенз--пірен
Стилі APA, Harvard, Vancouver, ISO та ін.
3

КРИШТОПА, Святослав, Людмила КРИШТОПА, Іван МИКИТІЙ, Марія ГНИП та Федір КОЗАК. "ЕКСПЕРИМЕНТАЛЬНІ ДОСЛІДЖЕННЯ ЗНИЖЕННЯ ВТРАТ ЕНЕРГІЇ В АГРЕГАТАХ ТРАНСМІСІЇ ПІДЙОМНИХ УСТАНОВОК ДЛЯ РЕМОНТУ СВЕРДЛОВИН". СУЧАСНІ ТЕХНОЛОГІЇ В МАШИНОБУДУВАННІ ТА ТРАНСПОРТІ 2, № 17 (14 листопада 2021): 89–103. http://dx.doi.org/10.36910/automash.v2i17.638.

Повний текст джерела
Анотація:
Стаття спрямована на вирішення проблеми зниження втрат енергії в трансмісійних агрегатах підйомних установок для ремонту свердловин. Були проаналізовані основні напрямки з скорочення енергоспоживання підйомних установок для ремонту свердловин. Проведений аналіз особливостей конструкції трансмісій підйомних установок для ремонту свердловин. Виконані дослідження в'язкісно-температурних характеристик сучасних трансмісійних олив та температурного режиму в трансмісійних агрегатах. Був запропонований метод швидкого прогріву та підтримання оптимального температурного режиму в трансмісійних агрегатах підйомних установок за рахунок використання теплоти відпрацьованих газів. Досліджена типова механічна трансмісія підйомної установки для ремонту свердловин на колісному шасі. Наведена методика та засоби експериментальних досліджень енергоефективності трансмісій підйомних установок. Виконані експериментальні дослідження реалізації запропонованого методу зниження втрат енергії в трансмісійних агрегатах. Встановлена залежність зміни температури трансмісійної оливи в коробці перемикання передач при різних режимах обертання первинного валу коробки передач. Одержана залежність втрат потужності в коробці перемикання передач підйомної установки моделі УПА 60/80А в залежності від температури та сорту трансмісійної оливи. Наведені результати розрахунків перевитрат палива в коробці перемикання передач підйомної установки моделі УПА 60/80А з різними силовими приводами та за різних температур трансмісійної оливи. Ключові слова: підйомна установка для ремонту свердловин, нафтогазовий технологічний транспорт; дизельний двигун; трансмісійний агрегат; коробка перемикання передач; утилізація теплоти; відпрацьовані гази; потужність; питома витрата палива.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Vorobiov, Oleh, Oleh Uhrynovych, Mykola Klontsak та Serhii Kondratiuk. "Обґрунтування концептуальних підходів щодо отримання енергії без витрати енергоносіїв". Journal of Scientific Papers "Social development and Security" 11, № 1 (20 лютого 2021): 80–86. http://dx.doi.org/10.33445/sds.2021.11.1.8.

Повний текст джерела
Анотація:
Стаття присвячена вирішенню проблем забезпечення енергією промислових галузей і об’єктів, транспортних засобів, особистих потреб людини та взагалі енергетичної безпеки майбутніх поколінь людства. Проведений аналіз наукових робіт в цій галузі і визначено, що ставка робиться на видобуток та використання альтернативних видів енергії, що не змозі забезпечити все збільшуючи потреби людства. Пропонуються концептуальні підходи щодо отримання енергії на основі наукової гіпотези отримання енергії без витрати енергоносіїв. В цьому випадку, традиційні теплова, електрична, гравітаційна, світлова, звукова, вітрова, гідравлічна, біологічна і інші види енергії є лише способами передачі, транспортування енергії, а не самою енергією. Енергія характеризується величинами коливальних параметрів хвиль випромінювань і займаним простором з певною щільністю енергії. На основі цих підходів відбувається активація палива, його енергезація, тобто підвищення енергетичної ефективності теплом відпрацьованих газів. Залежно від видів палив і пристроїв, де вони використовуються, при одному і тому ж кінцевому результаті витрата енергоносіїв, можливо, зменшена на 10 – 80 %. При цьому забезпечується повне згорання кожного окремого компоненту палива. Одночасно вирішуються не тільки енергетичні завдання, але і вельми складні екологічні проблеми. В подальшому пропонується обґрунтувати вимоги до приладів перетворення видів енергії для цих перспективних двигунів.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

КРИШТОПА, Святослав, Людмила КРИШТОПА, Іван МИКИТІЙ, Марія ГНИП та Федір КОЗАК. "ПОКРАЩЕННЯ РОД ЕКОЛОГІЧНИХ РОД ПАРАМЕТРІВ РОД ДИЗЕЛЬНИХ РОД ДВИГУНІВ РОД ПРИ РОД ЇХНЬОМУ РОД ПЕРЕВЕДЕННЯ РОД НА РОД ПРОДУКТИ РОД КОНВЕРСІЇ РОД МЕТАНОЛУ". СУЧАСНІ ТЕХНОЛОГІЇ В МАШИНОБУДУВАННІ ТА ТРАНСПОРТІ 1, № 16 (20 травня 2021): 91–105. http://dx.doi.org/10.36910/automash.v1i16.512.

Повний текст джерела
Анотація:
Стаття род спрямована род на род вирішення род проблеми род конвертації род існуючих род автомобільних род дизельних род двигунів род на род газові род палива, род які род є род більш род дешевою род та род екологічною род альтернативою род дизельного род палива. род Був род удосконалений род метод род підвищення род енергії род альтернативних род палив. род Розглянута род хімічна род сутність род підвищення род енергії род палива род на род основі род наукових род положень род термодинаміки. род В род якості род вихідного род продукту род для род конверсійного род процесу род здійснено род вибір род альтернативного род метанольного род палива, род що род враховує род його род собівартість, род екологічність род та род температурні род умови. род Проведені род розрахунки род показали, род що род тепловий род ефект род від род спалювання род конвертованій род суміші род перевищує род ефект род від род спалювання род тієї род ж род кількості род неконвертованого род метанолу. род Енергія род палива род підвищувалась род за род рахунок род термохімічної род регенерації род теплоти род відпрацьованих род газів. род Створена род експериментальна род установка род для род дослідження род род родроботи род переробленого род дизельного род двигуна род на род продуктах род конверсії род метанолу. род Проведені род експериментальні род дослідження род екологічних род показників род дизельного род двигуна, род який род був род переобладнаний род на род роботу род на род продуктах род конверсії род метанолу. род Виконані род експериментальні род дослідження род показали, род що род переведення род дизельних род двигунів род на род роботу род з род використанням род продуктів род конверсії род метанолу род є род технічно род обгрунтованим. род Зниження род витрати род палива род супроводжувалося род поліпшенням род екологічних род якостей род дизеля, род що род працює род спільно род з род термохімічним род реактором род конверсії род метанолу. род У род залежності род від род частоти род обертання род колінчастого род валу род та род навантаження род на род двигун род утворення род оксидів род азоту род у род відпрацьованих род газах род знижувалося род на род 53-60 род %, род оксиду род вуглецю род відбувалось род в род межах род 52-62 род %. род З род врахуванням род того, род що род ціна род метанолу род складає род до род 20 род % род від род вартості род дизельного род палива, род переведення род автомобільних род дизельних род двигунів род на род роботу род з род використанням род продуктів род конверсії род метанолу род є род дуже род вигідним. Ключові слова: род дизельний род двигун; род альтернативне род паливо; род метиловий род спирт; род утилізація род теплоти; род відпрацьовані род гази; род оксиди род азоту; род вуглеводні.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Shraiber, O. A. "Determination of the optimal conditions of implementing the process of thermochemical recuperation for using the heat of exhaust gases of a gas-turbine plant." Problems of General Energy 2015, no. 3 (October 30, 2015): 36–49. http://dx.doi.org/10.15407/pge2015.03.036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yatsenko, V. P., and V. B. Redkin. "Influence of operating parameters and non-equilibrium conversion on the characteristics of thermochemical recuperation of the heat of gases of high-temperature installations." Problems of General Energy 2016, no. 1 (April 27, 2016): 48–53. http://dx.doi.org/10.15407/pge2016.01.048.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Міlovanov, V. І., V. M. Yarochenko, and А. А. Yabs. "TECHNOLOGY UTILIZATION OF HEAT EXHAUST GASES GAS TURBINE COMPRESSOR STATION AS ONE METHOD OF IMPROVING THE EFFICIENCY OF COMPRESSOR STATIONS." Key title Zbìrnik naukovih pracʹ Odesʹkoï deržavnoï akademìï tehnìčnogo regulûvannâ ta âkostì -, no. 1(6) (2015): 94–101. http://dx.doi.org/10.32684/2412-5288-2015-1-6-94-101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Радченко, А. М., Я. Зонмін, С. А. Кантор та Б. С. Портной. "Порівняння ефективності охолодження повітря на вході газотурбінного двигуна в умовах помірного і субтропічного клімату". Refrigeration Engineering and Technology 54, № 5 (30 жовтня 2018): 31–35. http://dx.doi.org/10.15673/ret.v54i5.1246.

Повний текст джерела
Анотація:
Проаналізовано охолодження повітря на вході газотурбінного двигуна при змінних упродовж року кліматичних умовах експлуатації. Запропоновано для охолодження повітря застосування тепловикористовуючих холодильних машин, що використовують для отримання холоду теплоту відпрацьованих газів газотурбінного двигуна. Досліджено ефективність охолодження повітря на вході газотурбінного двигуна в абсорбційній бромистолітієвій холодильній машині до температури 15ºС та у двоступінчастій абсорбційно-ежекторній холодильній машині до 10ºС. Хладонова ежекторна холодильна машина вибрана як конструктивно найбільш проста і надійна в експлуатації. При цьому абсорбційна бромистолітієва холодильна машина використовується в якості першого високотемпературного ступеня попереднього охолодження зовнішнього повітря від його поточних температур до 15ºС, а хладонова ежекторна машина – як другий низькотемпературний ступінь його доохолодження до 10ºС. Ефективність охолодження повітря проаналізована для експлуатації в умовах характерного для України помірного клімату і субтропічного клімату (на прикладі КНР). Як показник використано зменшення витрати палива. Показано, що охолодження повітря на вході газотурбінного двигуна для субтропічного клімату забезпечує у 1,6…1,8 рази більшу економію палива порівняно з умовами помірного клімату. Однак більш глибоке охолодження повітря на вході газотурбінного двигуна до температури 10ºС в абсорбційно-ежекторній холодильній машині порівняно з температурою охолодження повітря 15ºС в абсорбційній бромистолітієвій холодильній машині забезпечує більше скорочення витрати палива для умов помірного клімату ніж для субтропічного клімату. Показано, що якщо для умов помірного клімату його контактне охолодження і забезпечує економію палива близьку до її величини при охолодженні до температури 15ºС в абсорбційній бромистолітієвій холодильній машині, то для субтропічного вологого клімату воно практично не дає ефекту.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Радченко, А. М., Я. Зонмін, С. А. Кантор та Б. С. Портной. "Аналіз паливної ефективності глибокого охолодження повітря на вході газотурбінної установки в різних кліматичних умовах". Refrigeration Engineering and Technology 54, № 6 (30 грудня 2018): 23–27. http://dx.doi.org/10.15673/ret.v54i6.1258.

Повний текст джерела
Анотація:
Проаналізовано паливну ефективність глибокого охолодження повітря на вході газотурбінної установки (ГТУ) при для кліматичних умов півдня України (регіон м. Одеса) та субтропічного клімату КНР (на прикладі м. Чженьцзян, провінція Цзянсу). Досліджено ефективність двоступеневого охолодження повітря на вході газотурбінної установки: попереднього охолодження зовнішнього повітря холодною водою з температурою 7ºС від абсорбційної бромистолітієвої холодильної машини (АБХМ) до температури 15ºС у першому високотемпературному ступені повітроохолоджувача та наступного більш глибокого його доохолодження до температури 10ºС у другому низькотемпературному ступені киплячим хладоном від ежекторної холодильної машини (ЕХМ), як конструктивно найбільш прості і надійні в експлуатації. При цьому як абсорбційна бромистолітієва холодильна машина, так і хладонова ежекторна машина використовують для отримання холоду теплоту відпрацьованих газів газотурбінної установки. В якості критерія застосовано питому витрату палива. Ефективність глибокого охолодження повітря на вході газотурбінної установки аналізували як за поточними величинами зменшення питомої витрати палива упродовж року при змінних кліматичних умовах експлуатації, так і за накопиченням щомісячно та за рік. Показано, що більш глибоке охолодження повітря на вході ГТУ до температури 10 ºС в ЕХМ забезпечує зменшення витрати палива у півтора-два рази завдяки взаємно пов’язаному подвійному ефекту: збільшенню самої величини зниження температури повітря Dt10 до 10 ºС за рахунок обумовленого нею ж зростання тривалості охолоджувального сезону на 20…30 % порівняно з традиційним охолодженням повітря до температури 15 ºС в АБХМ. Результати аналізу паливної ефективності застосування двоступеневого охолодження повітря в украй напружених тепловологісних умовах, зокрема субтропічного клімату, дають підстави для розширення географії застосування глибокого охолодження повітря й на регіони, в яких найбільш поширене традиційне охолодження повітря в АБХМ, а застосування контактних методів зниження температури повітря упорскуванням води не дає бажаного ефекту через високу вологість повітря.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Теплота відпрацьованих газів"

1

Хамза, Хамза Алі Адел. "Вибір та обґрунтування параметрів дизель-електричної станції з системою утилізації теплоти". Thesis, НТУ "ХПІ", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/31934.

Повний текст джерела
Анотація:
Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.05.03 – двигуни та енергетичні установки. – Національний технічний університет "Харківський політехнічний інститут". – Харків, 2017. Дисертація присвячена вибору і обґрунтуванню параметрів дизель-електричної станції з системою утилізації вторинної теплоти дизеля з використанням циклу Ренкіна, що використовує теплоту відпрацьованих газів та системи охолодження. В результаті аналізу особливостей перспективної енергетичної установки з двигуном Hyundai 25/33 для виробництва електричної енергії на заводі в Іраку розроблена технологічна схема комплексної системи утилізації вторинної теплоти дизель-електричної станції з додатковим отриманням електроенергії, теплоти для підігріву важкого палива, конденсації технічної води з відпрацьованих газів двигуна. Для утилізації вторинної теплоти двигуна Hyundai H25/33 запропоновано утилізаційний контур установки, який працює за органічним циклом Ренкіна (ОЦР). В якості робочого тіла в циклі Ренкіна доцільно використовувати воду системи охолодження двигуна. З використанням розробленої математичної моделі утилізаційного контуру дизель-електростанції виконане розрахунково-експериментальне дослідження впливу температури навколишнього середовища на показники ефективності утилізаційного контуру. При зміні температури навколишнього середовища від 0 ° С до 40 ° С кількість електроенергії, виробленої за циклом Ренкіна для двигуна Hyundai H25/33 збільшується до 10%. При роботі однієї когенераційної установки з двигуном Hyundai H25/33 та розробленим утилізаційним комплексом можна отримати на добу до 2300 кг конденсату водяної пари, що є дуже цінною в Іраку. На основі результатів дослідження було розроблено два варіанта технологічної схеми (проекти "А" та "Б") модернізації дизельних електростанцій компанії Hyundai Heavy Industries. Виконана техніко-економічна оцінка проектів за метод NPV показала, що після того, як обладнання утилізаційного контуру в повному обсязі буде введено у експлуатацію, максимально досяжний прибуток складе близько 1 406 219 дол. США/рік.
Dissertation for the degree of candidate of technical sciences in specialty 05.05.03 – engines and power plants. – National Technical University "Kharkiv Polytechnic Institute". – Kharkiv, 2017. The dissertation is devoted to the choice and substantiation of parameters of a diesel power plant with heat recovery system of recycling the secondary heat from diesel engine using the Rankin cycle, which uses the heat of exhaust gases and cooling water systems. As a result of the analysis of the features of a promising power plant with a Hyundai 25/33 engine for the production of electric power at a plant in Iraq, a technological scheme of a comprehensive system for recycling diesel fuel from an electric power station with the additional generation of electricity, heat for heating heavy fuel, condensing technical water from exhaust gases. As a working fluid in the Rankin cycle, it is advisable to use the hot water from the engine cooling system. Using the developed mathematical model of the distillation circuit of the diesel power plant, the design-experimental study of the influence of the ambient temperature on the indicators of the efficiency of heat recovery was performed. When the ambient temperature changes from 0 ° C to 40 ° C, the amount of electric energy generated by the Rankin cycle for the Hyundai H25 / 33 engine increases to 10%. With a single cogeneration unit with a Hyundai H25 / 33 engine and a recycling complex developed, it is possible to get up to 2300 kg of water vapor condensate per day, which is very valuable in Iraq. Based on the results of the study, two variants of the technological scheme (projects A and B) were developed for the modernization of Hyundai diesel power plants. The feasibility study for the NPV method has shown that after the full recovery equipment is put into operation, the maximum achievable profit will be about 1 406 219 $ /year.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Хамза, Хамза Алі Адел. "Вибір та обґрунтування параметрів дизель-електричної станції з системою утилізації теплоти". Thesis, НТУ "ХПІ", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/31663.

Повний текст джерела
Анотація:
Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.05.03 – двигуни та енергетичні установки. – Національний технічний університет "Харківський політехнічний інститут". – Харків, 2017. Дисертація присвячена вибору і обґрунтуванню параметрів дизель-електричної станції з системою утилізації вторинної теплоти дизеля з використанням циклу Ренкіна, що використовує теплоту відпрацьованих газів та системи охолодження. В результаті аналізу особливостей перспективної енергетичної установки з двигуном Hyundai 25/33 для виробництва електричної енергії на заводі в Іраку розроблена технологічна схема комплексної системи утилізації вторинної теплоти дизель-електричної станції з додатковим отриманням електроенергії, теплоти для підігріву важкого палива, конденсації технічної води з відпрацьованих газів двигуна. Для утилізації вторинної теплоти двигуна Hyundai H25/33 запропоновано утилізаційний контур установки, який працює за органічним циклом Ренкіна (ОЦР). В якості робочого тіла в циклі Ренкіна доцільно використовувати воду системи охолодження двигуна. З використанням розробленої математичної моделі утилізаційного контуру дизель-електростанції виконане розрахунково-експериментальне дослідження впливу температури навколишнього середовища на показники ефективності утилізаційного контуру. При зміні температури навколишнього середовища від 0 ° С до 40 ° С кількість електроенергії, виробленої за циклом Ренкіна для двигуна Hyundai H25/33 збільшується до 10%. При роботі однієї когенераційної установки з двигуном Hyundai H25/33 та розробленим утилізаційним комплексом можна отримати на добу до 2300 кг конденсату водяної пари, що є дуже цінною в Іраку. На основі результатів дослідження було розроблено два варіанта технологічної схеми (проекти "А" та "Б") модернізації дизельних електростанцій компанії Hyundai Heavy Industries. Виконана техніко-економічна оцінка проектів за метод NPV показала, що після того, як обладнання утилізаційного контуру в повному обсязі буде введено у експлуатацію, максимально досяжний прибуток складе близько 1 406 219 дол. США/рік.
Dissertation for the degree of candidate of technical sciences in specialty 05.05.03 – engines and power plants. – National Technical University "Kharkiv Polytechnic Institute". – Kharkiv, 2017. The dissertation is devoted to the choice and substantiation of parameters of a diesel power plant with heat recovery system of recycling the secondary heat from diesel engine using the Rankin cycle, which uses the heat of exhaust gases and cooling water systems. As a result of the analysis of the features of a promising power plant with a Hyundai 25/33 engine for the production of electric power at a plant in Iraq, a technological scheme of a comprehensive system for recycling diesel fuel from an electric power station with the additional generation of electricity, heat for heating heavy fuel, condensing technical water from exhaust gases. As a working fluid in the Rankin cycle, it is advisable to use the hot water from the engine cooling system. Using the developed mathematical model of the distillation circuit of the diesel power plant, the design-experimental study of the influence of the ambient temperature on the indicators of the efficiency of heat recovery was performed. When the ambient temperature changes from 0 ° C to 40 ° C, the amount of electric energy generated by the Rankin cycle for the Hyundai H25 / 33 engine increases to 10%. With a single cogeneration unit with a Hyundai H25 / 33 engine and a recycling complex developed, it is possible to get up to 2300 kg of water vapor condensate per day, which is very valuable in Iraq. Based on the results of the study, two variants of the technological scheme (projects A and B) were developed for the modernization of Hyundai diesel power plants. The feasibility study for the NPV method has shown that after the full recovery equipment is put into operation, the maximum achievable profit will be about 1 406 219 $ /year.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Долішній, Б. В. "Підвищення ефективності використання теплоти відпрацьованих газів газомотокомпресорів". Thesis, Івано-Франківський національний технічний університет нафти і газу, 2003. http://elar.nung.edu.ua/handle/123456789/3989.

Повний текст джерела
Анотація:
Захищаються результати досліджень, спрямовані на підвищення ефективності використання теплоти відпрацьованих газів газомотокомпресорів. Розроблена і створена експериментальна установка для дослідження тепловіддачі пульсуючої течії відпрацьованих газів. Конструкція установки забезпечувала зміну частоти обертання колінчастого вала дизеля, так і міру його навантаженості з одночасним вимірюванням значень амплітуд пульсацій тиску і температури на вході і виході з теплообмінника. Створено апаратурне забезпечення для експериментальних досліджень процесів теплообміну пульсуючої течії відпрацьованих газів згідно розробленої методики. Отримано алгоритм розрахунку амплітуд пульсацій тиску і температури течії відпрацьованих газів з врахуванням експериментально встановлених динамічних властивостей розроблених малоінерційних давачів тиску та температури. Здійснений метрологічний аналіз результатів вимірювання частоти й амплітуди пульсацій. Досліджено зміну температури пульсуючого газового потоку та температури стінки внутрішньої труби теплообмінника вздовж її осі, що дало можливість експериментально визначити закономірності зміни локального та середнього коефіцієнтів тепловіддачі. За результатами досліджень отримано критеріальне рівняння конвективного теплообміну пульсуючої течії відпрацьованих газів.
Защищаются результаты исследований, направленные на повышение эффективности использование теплоты выхлопных газов двигателей внутреннего сгорания. Разработана и создана экспериментальная установка для исследования процессов в пульсирующем потоке выхлопных газов дизеля. Конструкция установки обеспечивает регулирование как частоты вращения коленчатого вала дизеля, так и степени его нагрузки с одновременным измерением значений амплитуд пульсаций давления и температуры выхлопных газов на входе и выходе из теплообменника. Осуществлена разработка аппаратурного обеспечения для экспериментальных исследований процессов теплообмена пульсирующего течения выхлопных газов согласно разработанной методике экспериментальных исследований. Разработан алгоритм расчета амплитуд пульсаций давления и температуры течения выхлопных газов с учетом экспериментально установленных динамических свойств разработанных малоинерционных датчиков давления и температуры. Осуществлен метрологический анализ результатов измерения частоты и амплитуды пульсаций. Исследовано изменение температуры пульсирующего газового потока и температуры стенки внутренней трубы теплообменника вдоль его оси, что дало возможность экспериментально определить закономерности изменения локального и среднего коэффициентов теплоотдачи. По результатам исследований получено критериальное уравнение конвективного теплообмена пульсирующего потока выхлопных газов.
There are defended results of experiments, which provide increase of effectiveness using heat of exhausted gasses of internal-combustion engine. Experimental installation is prepared and made to explore processes in pulsed flow exhausted gasses of diesel. The construction of experimental installation provide regulation of frequency of circulating diesel crankshaft and level of its load with simultaneously dimension of amplitude of pressure and temperature pulsing on entrance and exit from heat exchanger. The apparatus providing for experimental exploration of heat exchange processes in pulsing flow of exhausted gasses is made due to experimental observational methodic. The algorithm of computation of amplitude pulsing flow of exhausted gasses of pressure and temperature is provide with consideration to experimental determination dynamic characteristics of pressure and temperature transmitter. The metrological analysis of dimensional results of frequency and amplitude of pressure and temperature pulsing are made too. The temperature change of pulsing gas flow and interior side heat exchanger apparatus along axle were explored as well. It helped to achieve experimental regularity in changing local and average coefficients of heat giving. The criterion equation of convective heat exchange of pulsing flow exhausted gasses is taken due to observational results.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hamza, Hamza Ali Adel. "Selection and justification the parameters of diesel power plant with heat recovery system." Thesis, NTU "KhPI", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/31664.

Повний текст джерела
Анотація:
Dissertation for the degree of candidate of technical sciences in specialty 05.05.03 – engines and power plants. – National Technical University "Kharkiv Polytechnic Institute". – Kharkiv, 2017. The dissertation is devoted to the choice and substantiation of parameters of a diesel power plant with heat recovery system of recycling the secondary heat from diesel engine using the Rankin cycle, which uses the heat of exhaust gases and cooling water systems. As a result of the analysis of the features of a promising power plant with a Hyundai 25/33 engine for the production of electric power at a plant in Iraq, a technological scheme of a comprehensive system for recycling diesel fuel from an electric power station with the additional generation of electricity, heat for heating heavy fuel, condensing technical water from exhaust gases. As a working fluid in the Rankin cycle, it is advisable to use the hot water from the engine cooling system. Using the developed mathematical model of the distillation circuit of the diesel power plant, the design-experimental study of the influence of the ambient temperature on the indicators of the efficiency of heat recovery was performed. When the ambient temperature changes from 0 ° C to 40 ° C, the amount of electric energy generated by the Rankin cycle for the Hyundai H25 / 33 engine increases to 10%. With a single cogeneration unit with a Hyundai H25 / 33 engine and a recycling complex developed, it is possible to get up to 2300 kg of water vapor condensate per day, which is very valuable in Iraq. Based on the results of the study, two variants of the technological scheme (projects A and B) were developed for the modernization of Hyundai diesel power plants. The feasibility study for the NPV method has shown that after the full recovery equipment is put into operation, the maximum achievable profit will be about 1 406 219 $ /year.
Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.05.03 – двигуни та енергетичні установки. – Національний технічний університет "Харківський політехнічний інститут". – Харків, 2017. Дисертація присвячена вибору і обґрунтуванню параметрів дизель-електричної станції з системою утилізації вторинної теплоти дизеля з використанням циклу Ренкіна, що використовує теплоту відпрацьованих газів та системи охолодження. В результаті аналізу особливостей перспективної енергетичної установки з двигуном Hyundai 25/33 для виробництва електричної енергії на заводі в Іраку розроблена технологічна схема комплексної системи утилізації вторинної теплоти дизель-електричної станції з додатковим отриманням електроенергії, теплоти для підігріву важкого палива, конденсації технічної води з відпрацьованих газів двигуна. Для утилізації вторинної теплоти двигуна Hyundai H25/33 запропоновано утилізаційний контур установки, який працює за органічним циклом Ренкіна (ОЦР). В якості робочого тіла в циклі Ренкіна доцільно використовувати воду системи охолодження двигуна. З використанням розробленої математичної моделі утилізаційного контуру дизель-електростанції виконане розрахунково-експериментальне дослідження впливу температури навколишнього середовища на показники ефективності утилізаційного контуру. При зміні температури навколишнього середовища від 0 ° С до 40 ° С кількість електроенергії, виробленої за циклом Ренкіна для двигуна Hyundai H25/33 збільшується до 10%. При роботі однієї когенераційної установки з двигуном Hyundai H25/33 та розробленим утилізаційним комплексом можна отримати на добу до 2300 кг конденсату водяної пари, що є дуже цінною в Іраку. На основі результатів дослідження було розроблено два варіанта технологічної схеми (проекти "А" та "Б") модернізації дизельних електростанцій компанії Hyundai Heavy Industries. Виконана техніко-економічна оцінка проектів за метод NPV показала, що після того, як обладнання утилізаційного контуру в повному обсязі буде введено у експлуатацію, максимально досяжний прибуток складе близько 1 406 219 дол. США/рік.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії