Добірка наукової літератури з теми "Рибофлавін"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Рибофлавін".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Рибофлавін"
Волчегорский, Илья Анатольевич, Любовь Михайловна Рассохина та Светлана Геннадьевна Ермакова. "Влияние цитофлавина и его компонентов на расстройства поведения мышей при аллоксановом диабете". Химико-фармацевтический журнал 48, № 3 (31 березня 2014): 3–8. http://dx.doi.org/10.30906/0023-1134-2014-48-3-3-8.
Повний текст джерелаTyurina, I. A., E. V. Nevskaya, A. E. Borisova, and I. P. Peshkina. "DEVELOPMENT OF NUTRITIONALLY ADAPTED BAKERY PRODUCTS FOR BABY FOOD BASED ON BAKERY MIXTURES." Baking in Russia 1, no. 3 (2020): 53–60. http://dx.doi.org/10.37443/2073-3569-2020-1-3-53-60.
Повний текст джерелаХалимов, Азат Рашидович, В. А. Катаев, Г. А. Дроздова, Г. М. Казакбаева та Р. А. Халиков. "Результаты ex vivo исследования нового офтальмологического средства для рибофлавин-УФ-А индуцированного сшивания коллагена тонких роговиц". Экспериментальная и клиническая фармакология 81, № 2 (27 березня 2018): 30–32. http://dx.doi.org/10.30906/0869-2092-2018-81-2-30-32.
Повний текст джерелаДоровских, В. А., Н. В. Симонова, С. В. Панфилов, А. В. Моталыгина, А. А. Лялина, А. М. Махмудова та М. А. Штарберг. "Влияние цитофлавина и его составных компонентов на перекисное окисление липидов в эксперименте". Экспериментальная и клиническая фармакология 85, № 3 (1 квітня 2022): 8–12. http://dx.doi.org/10.30906/0869-2092-2022-85-3-8-12.
Повний текст джерелаDmytruk, K. V., V. Y. Yatsyshyn, A. Y. Voronovsky, D. V. Fedorovych, and A. A. Sibirny. "Construction of Riboflavin (Vitamin B2) Overproducers of the Yeast Candida Famata." Nauka ta innovacii 5, no. 6 (November 30, 2009): 70–74. http://dx.doi.org/10.15407/scin5.06.070.
Повний текст джерелаНикитюк, Д. Б., О. А. Шихова та А. Л. Новокшанова. "ИССЛЕДОВАНИЕ ВЗАИМОСВЯЗЕЙ МАКРОНУТРИЕНТНОГОИ МИКРОНУТРИЕНТНОГО СОСТАВА НЕКОТОРЫХ ЗЕРНОВЫХ КУЛЬТУР МЕТОДОМКОРРЕЛЯЦИОННО-РЕГРЕССИОННОГО АНАЛИЗА". Ползуновский вестник, № 2 (4 липня 2018): 27–31. http://dx.doi.org/10.25712/astu.2072-8921.2018.02.006.
Повний текст джерелаДерахшан, М., Т. Шамспур, Е. Молаакбари, А. Мостафави та А. Салёки. "Новый электрохимический сенсор для определения рибофлавина в реальных образцах различных напитков". Электрохимия 56, № 3 (2020): 195–203. http://dx.doi.org/10.31857/s0424857020030032.
Повний текст джерелаAlekseenko, O. M., T. M. Polishko та A. I. Vinnikov. "Пищевая, лечебная и экологическая ценность грибов Pleurotus ostreatus". Biosystems Diversity 18, № 1 (28 липня 2010): 3–9. http://dx.doi.org/10.15421/011001.
Повний текст джерелаMagomedbekov, U. G., U. G. Gasangadzhiyeva, Kh M. Gasanova, and A. M. Yusupov. "Chemical oscillations in a homogeneous system riboflavin – oxygenated complexes of cobalt (II)." HERALD of Dagestan State University 31, no. 2 (November 10, 2016): 60–66. http://dx.doi.org/10.21779/2542-0321-2016-31-2-60-66.
Повний текст джерелаРязанцева, Лариса Тихоновна, and Валерий Павлович Октябрьский. "DETERMINATION OF ANTIOXIDANT POTENTIAL OF SUBSTANCES OF DIFFERENT NATURE IN THE SYSTEM GENERATING SUPEROXIDE ANION RADICAL USING THE METHOD OF MATHEMATICAL MODELING." Вестник Тверского государственного университета. Серия: Химия, no. 3(41) (November 10, 2020): 79–87. http://dx.doi.org/10.26456/vtchem2020.3.9.
Повний текст джерелаДисертації з теми "Рибофлавін"
Полуян, Д. В., та Наталія Юріївна Масалітіна. "Дослідження біотехнології одержання вітамінів групи В". Thesis, НТУ "ХПІ", 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/39096.
Повний текст джерелаПоліщук, Валентина Юріївна. "Розробка технології виробництва рибофлавіну і ефірної олії, що продукуються Eremothecium ashbyi Guill". Doctoral thesis, Київ, 2018. https://ela.kpi.ua/handle/123456789/23301.
Повний текст джерелаA well-known microorganism-producer of riboflavin is ascomycete Eremothecium ashbyi used in industry. Besides overexpression of riboflavin, E. ashbyi also performs synthesis of flavinadeninedinucleotide (FAD). Using E. ashbyi, one can obtain either forage riboflavin used as a feed additive for livestock, or, using certain isolation and purification methods, riboflavin of medical purpose. Concomitantly with riboflavin synthesis, E. ashbyi performs synthesis of essential oil, identical by its aroma and properties to essential oil derived from rose petals. It contains such aromatic substances as geraniol (69.5–84.5%), nerol, linalool, and β-phenylethanol (12.7–27.7%). This allows viewing E. ashbyi as a promising producer of aromatic substances, which are necessary for perfume and toiletry industry. Biotechnology of rose essential oil, one of the most valuable in the world, has not been developed so far. At present, manufacture of riboflavin using biotechnology is not established in Ukraine, and the potential of concomitant production of essential oil as well makes the topic of this thesis urgent, timely, and important. During the work, morphological and cultural peculiarities of the strain Eremothecium ashbyi F-340 have been investigated. It belongs to ascomycetes not generating ascocarps, has true dichotomic branched bright-yellow mycelium composed of multinucleate cells. Mycelium color is due to the presence of riboflavin, which is accumulated in such quantities that it is precipitated in vacuoles as crystals. Natural variability of the strain has been shown. The fungus forms pigmented yellow and orange colonies with high ability to riboflavin biosynthesis, and white colonies with low biosynthetic ability. Most frequently, white colonies develop upon archive culture reactivation and almost do not appear upon regular reinoculations and alterations of liquid and agar nutrient media. The strain storage conditions have been investigated. It has been established that short-term storage of E. ashbyi F-340 in the active state is possible on agar glucose-peptone-yeast and soybean media at storage temperature 5°C. Long-term storage of E. ashbyi culture (for 7 months) is possible only at room temperature. Temperature effects on viability of Eremothecium ashbyi F-340 mycelium have been investigated. The lower limit temperature for E. ashbyi is 4°С. The upper limit temperature is equal to 38°С. Minor growth of the fungus is still observed at this temperature, and at 39°С no mycelium growth is observed, and growth restoration at 28°С is not observed. Growth dynamics of E. ashbyi strain F-340 in submerged culture follows the known regularities for periodic cultures. Exponential growth phase lasts for about 2 days; after this, growth deceleration and culture switch into stationery growth phase are observed; the latter one lasts for about 5 days of culturing, after which the culture is switched into die-off or autolysis phase. It has been established that pH decrease to 5.2 occurs during intensive strain growth; intensive riboflavin accumulation in cultural fluid and biomass is associated with pH increase to 7.8. The most intensive riboflavin accumulation occurs in stationery growth phase on culturing day 3–4, and its concentration reaches 341,6 mg/dm3. The second stage of riboflavin accumulation occurs on day 5-7 and is associated with culture autolysis; riboflavin content reaches 55,22,7 mg/dm3. Riboflavin is accumulated at the beginning in E.ashbyi mycelium, where it reaches the level of 8.1-10.7 mg/g of dry biomass and remains at that level until completion of culturing. Despite continuous maintenance selection during the strain culturing under laboratory conditions for 3 years, gradual considerable decrease in riboflavin accumulation and relevant increase in biomass accumulation level has been observed. It is known from literature data that riboflavin overexpression by fungus E. ashbyi in natural conditions occurs as a defense reaction on the effect of sun ultraviolet radiation. That is why we suggested to perform UV irradiation of the producer in order to increase riboflavin synthesis. Irradiation of the producer cultural fluid results in increase of riboflavin biosynthesis by 72-74%, and irradiation of aqueous suspension of mycelium of the producer strain results in synthesis increase by 80%. It has been established that the highest riboflavin yield is achieved when the inoculum aged 3-4 days in quantity 1% is used. The effect of culturing conditions on biosynthetic ability of the producer has been investigated at the following stage. It has been shown that the initial pH level of media intended for biomass and riboflavin production has to be different. In order to obtain maximum quantities of biomass and inoculum, it is expedient to adjust the medium pH to the level 5.5–6.0, and for maximum riboflavin accumulation, initial medium рН has to be 7.5. It has been established that, under aeration conditions on a rocker at 180 rpm, 70 % more riboflavin is synthesized compared to 70 rpm. E. ashbyi is capable to growth in a wide range of temperatures from 20 to 38С. The optimal temperature for maximum target product yield is 27-29С. The effect of various carbon sources on biomass accumulation and riboflavin synthesis by E. ashbyi strain F-340 has been studied. Monosaccharides (fructose, galactose) and hexatomic alcohol sorbitol are better suitable for riboflavin synthesis, and biomass is accumulated better in the presence of fructose, sucrose, and glycerol in the medium. The best nitrogen source for E.ashbyi F-340 turned out to be yeast extract; riboflavin quantity synthesized in a medium with yeast extract was 54% more compared to other nitrogen sources. Nevertheless, no medium for Eremothecium ashbyi culturing containing the said carbohydrates and being cheap and technological enough has been suggested yet. In order to solve this problem, we have suggested to use such a promising natural carbon source as glucose-fructose syrup (GFS), manufactured from corn starch via its enzymatic hydrolysis to glucose with following isomerization of glucose parts into fructose and further purification. It has been shown that the highest vitamin quantity is synthesized with the use of GFS-10 (140 mg/dm3), which is 7 times as high as in a medium with glucose, and 3.8 times as high as in a medium with fructose. For the nutrient medium optimization, we have planned a complete factorial experiment at two levels for 3 factors; the planning matrix was supplemented with “star” points, and orthographic central composite design of second order for 3-factor experiment has been obtained. As a result of calculations, regression equation of the second order has been obtained. Statistical significance of the equation coefficients was verified according to Student’s criterion, and adequacy of the obtained equation was verified according to Fisher’s criterion. As a result of mathematical processing of experimental data, we have obtained the regression equation of relation between riboflavin concentration in cultural fluid and concentrations of GFS-10 (m), yeast extract (w) and peptone (v): Y1= –758.483+41.029·m+9.959·w+5.777·v+0.693·m·w–0.472·m·v–3.51·w·v– –0.547·m2+5.701·v2 Analyzing the response surfaces, we have established the composition of modified medium: optimal GFS-10 concentration for maximum riboflavin accumulation is 40 g/dm3, and concentrations of yeast extract and peptone in the medium are 10 and 1 g/dm3, respectively. Riboflavin concentration observed during culturing on modified medium in cultural fluid is 350.4 mg/dm3, which is 17 times higher than on GPY medium and 2.5 times higher than on initial medium with GFS- 10. Testing of essential oil content in cultural medium was performed via triple extraction with hexane with further removal of the solvent. Wide range of variation of essential oil content has been shown. The highest quantity is observed in the medium containing GFS-10 (273…420 mg/dm3) as carbon source. Essential oil quantity is increased with increase of GSF concentration in the medium. Technological flow chart for concomitant production of riboflavin and essential oil production by hydrodistillation with further separation of riboflavin and essential oil isolation flows is provided. Scientific novelty of the obtained results: - growth dynamics, biomass yield, riboflavin and essential oil accumulation by the selected producer strain Eremothecium ashbyi have been investigated in media with different nutrition sources; - composition and acid content of media, favorable for the growth of the producer strain in submerged culture, have been determined; - rational biotechnological parameters for achievement of maximum riboflavin and essential oil yield have been determined: culturing temperature 27-29С, initial medium pH 7,5, stirring 180 rpm; - nutrient medium for riboflavin and essential oil accumulation has been optimized using experiment planning methods (such medium includes GFS-10, yeast extract and peptone), and possibility of concomitant production of these products has been verified; - biotechnology for riboflavin and essential oil production from domestic renewable raw material – glucose-fructose syrup manufactured from corn – has been scientifically justified are developed for the first time.
Тези доповідей конференцій з теми "Рибофлавін"
Боєва, Юлія, Юлія Соколовська та Володимир Дейниховський. "НАШ КЛІНІЧНИЙ ДОСВІД ВИКОРИСТАННЯ РИБОФЛАВІНУ В ПІСЛЯОПЕРАЦІЙНОМУ ПЕРІОДІ У ХВОРИХ НА КАТАРАКТУ". У DO DESENVOLVIMENTO MUNDIAL COMO RESULTADO DE REALIZAÇÕES EM CIÊNCIA E INVESTIGAÇÃO CIENTÍFICA. European Scientific Platform, 2020. http://dx.doi.org/10.36074/09.10.2020.v3.06.
Повний текст джерела