Добірка наукової літератури з теми "Пристрій вимірювання тиску"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Пристрій вимірювання тиску".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Пристрій вимірювання тиску"

1

Мармут, Игорь. "Розробка методики повірки системи вимірювання потужності на роликовому стенді пересувної діагностичної станції легкових автомобілів". Науковий жарнал «Технічний сервіс агропромислового лісового та транспортного комплексів», № 22 (7 грудня 2020): 19–26. http://dx.doi.org/10.37700/ts.2020.22.19-26.

Повний текст джерела
Анотація:
Розвиток технічної діагностики автомобілів слід розглядати у безпосередньому зв'язку з розвитком всієї системи їх технічної експлуатації. В теперішній час розроблені різні засоби діагностування, які застосовуються в багатьох галузях промисловості і транспорту. Діагностику технічного стану багатьох агрегатів і систем автомобілів необхідно розглядати як особливий вид фізичного моделювання, що поєднує фізичні моделі з натурними приладами. Діагностичні стенди повинні забезпечувати моделювання фізичних процесів, що протікають у реальних дорожніх умовах. Є важливим реалістичне моделювання процесів взаємодії елементів автомобіля з діагностичним обладнанням з урахуванням реально діючих сил, яке дозволить підвищити точність діагностування автомобілів на стенді. У статті розглянуто питання моделювання умов для отримання діагностичної інформації щодо складних об'єктів. Як приклад розглянута перевірка тягових властивостей легкових автомобілів на інерційному роликовому стенді. Таке обладнання повинно мати навантажувальний пристрій, який може забезпечити проведення перевірки тягово-економічних властивостей легкового автомобіля. В якості альтернативи електричним машинам постійного та змінного струму, для навантажувального пристрою роликового стенда можна застосувати гідравлічний насос-мотор аксіально-поршневого типу. Для такого типу приводу потрібно розробити методику визначення потужності на колесах автомобіля. Паралельно з типовими методиками визначення потужності за допомогою балансирних пристроїв, пропонується для конкретної моделі стенда вимірювати потужність за перепадом тиску у гідросистемі. Крім того, вимірювальна система інерційного стенду повинна забезпечувати: об'єктивність оцінки параметрів, які заміряються; мінімальний час, необхідний для проведення діагностичних операцій; стабільність вимірів; простоту і доступність для обслуговуючого персоналу; необхідну точність вимірів. Для цього розроблені методики експериментального дослідження метрологічних характеристик (повірки) каналу вимірювання потужності та каналу вимірювання тиску в гідросистемі стенду. У висновках обґрунтована можливість застосування розробленої методики при проектуванні або модернізації інерційних роликових стендів для перевірки тягових властивостей легкових автомобілів.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Дитятьев, Александр. "Питання локализації несправностей в системі подачі палива з безпосереднім уприскуванням". Науковий жарнал «Технічний сервіс агропромислового лісового та транспортного комплексів», № 22 (7 грудня 2020): 232–41. http://dx.doi.org/10.37700/ts.2020.22.232-241.

Повний текст джерела
Анотація:
Система безпосереднього уприскування - (Gasoline Direct Injection (GDI) - система подачі палива для бензинових двигунів внутрішнього згоряння, у якій форсунки розташовані в голівці блоку циліндрів і уприскування палива відбувається безпосередньо в циліндри. Широке поширення системи безпосереднього уприскування (БУ) отримала завдяки суттєвій економії палива, що досягає до 20% [1]. Популярність системи в сумі з тим, що її конструкція багато в чому відрізняється від пристрою попередників, визначили запит автомобільної громадськості на доступність послуги діагностики системи і локалізації несправностей її компонентів. До теперішнього часу відомо багато варіантів системи різних екологічних стандартів, виробників та років випуску. У статті поставлено завдання на прикладі конкретної моделі системи показати послідовність кроків локалізації і необхідний обсяг попередніх відомостей для розробки та складання матриці визначення несправних компонентів контуру високого тиску. Масове поширення систем живлення з БУ передбачає широкий доступ до послуг технічного обслуговування та ремонту, зокрема, до послуг діагностики. Для цього можуть бути залучені сканери OBD-2, універсальні і орієнтовані на конкретні марки автомобілів, а також універсальні засоби вимірювань фізичних величин (манометри, омметри, амперметри та ін.). Не останню роль тут грає спостереження за особливостями поведінки двигуна, такими як смикання, раптова втрата потужності, раптова зупинка та ін. Особливості системи подачі палива з БУ: наявність самодіагностики, двох контурів - низького тиску та високого тиску. Крім того, в кожному контурі є свій контур регулювання тиску зі зворотним зв'язком, що забезпечує подачу палива за потребою. Цю функцію також підтримує регулюючий клапан в паливному насосі високого тиску (ПНВТ), що має відкрите нормальне положення. Особливості структури системи використовувалися при розробці алгоритмів та матриці діагностування. Крім того, враховувалися результати спостережень за поведінкою автомобіля, причинно-наслідкові зв'язки при наявності несправностей, розмикання зворотних зв'язків в контурах. При розробці раціональних діагностичних алгоритмів зазвичай використовуються різні критерії вибору послідовності операцій: імовірнісний критерій, критерії мінімізації трудомісткості операції перевірки. В даному випадку використовувався комплексний критерій - ставлення ймовірнісної характеристики і характеристики трудомісткості, використання якого, в силу двостороннього дії, може підвищити ефективність діагностування. Перевага віддавалася максимізації відносини параметра інтенсівністі відмов до трудомісткості заміни компонента, маючи на увазі, що виробники автомобілів і їх електричних та електронних компонентів при підозрі несправності рекомендують заміну на час діагностування.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Здещиц, Валерий Максимович. "Вимірювання сенсомоторної реакції учнів як засіб вдосконалення процесу їх навчання". Theory and methods of e-learning 2 (3 лютого 2014): 272–80. http://dx.doi.org/10.55056/e-learn.v2i1.286.

Повний текст джерела
Анотація:
Вивчення швидкості простої руховій реакції людини починається у 1796 р., коли глава Грінвічської обсерваторії Маськелайн звільнив молодого астронома, оскільки він спізнювався відзначати проходження зірки через меридіан на півсекунди. Помилковість обчислень Маськелайн встановив порівнянням отриманих даних зі своїми, які він вважав за непогрішимі. Тільки через тридцять років німецький астроном Бессел відновив репутацію молодого астронома, показавши, що неточно відмічають час всі астрономи, у тому числі і Маськелайн, та і він сам, і що у кожного астронома є свій середній час помилки. Цей час з тих пір включався в астрономічні обчислення у вигляді коефіцієнта, що отримав назву «особисте рівняння». Проте особисте рівняння – це не швидкість простої реакції, а точність реакції на рухомий об’єкт. Адже астроном може не тільки запізнитися, але і поквапитися відмітити той час, коли нитка в окулярі телескопу як би перерізує світило навпіл.Проста рухова реакція – це можливо швидша відповідь простим і заздалегідь відомим рухом на відомий сигнал, що раптово з’являється. Більш повно і точно ця реакція називається простою сенсомоторною реакцією, оскільки існує і складна сенсомоторна реакція вибору.Час простої реакції, тобто час від моменту появи сигналу до моменту початку рухової відповіді, вперше виміряв Гельмгольц у 1850 р. Він залежить від того, на який сенсор діє сигнал, від сили сигналу і від фізичного і психологічного стану людини. Зазвичай він дорівнює: на світло – 100–200 мс, на звук – 120–150 мс і на електрошкірний подразник – 100–150 мс. Нейрофізіологічні методи дозволили розкласти цей час на ряд відрізків.Однією з основних властивостей центральної нервової системи (ЦНС), разом із збудженням і гальмуванням, є швидкість проведення збудження. Даний показник характеризує загальний стан нервової системи і показує, наскільки швидко здійснюються процеси, що приводять до реакції організму на який-небудь стимул.Час, протягом якого людина відповідає руховою реакцією на зовнішній стимул, називається латентним періодом (ЛП), тобто, іншими словами, латентний (прихований) період – це час проходження нервового імпульсу від рецептора до м’яза.Час латентного періоду складається з ряду подій, які відбуваються як в ЦНС, так і за її межами. Так в латентний час слухо-моторної реакції входить: 1) час збудження кортієва органу внутрішнього вуха; 2) проведення нервового імпульсу по слуховому нерву; 3) декілька синаптичних перемикань в ЦНС; 4) проведення нервового імпульсу по руховому (моторному) волокну; 5) збудження і скорочення м’яза.За наявності стомлення в ЦНС латентний період реакції збільшується. Крім того, на час реакції впливають типологічні особливості темпераменту і вік людини.З віком час реакції зменшується. У дітей латентні періоди реакцій значно перевищують значення, характерні для дорослої людини. Це пояснюється низьким рівнем розвитку ЦНС і зокрема низьким рівнем мієлінізації волокон і тривалішим часом синаптичних перемикань. У літніх людей спостерігається збільшення латентних періодів реакцій.Залежність латентного періоду реакції від стомлення, віку відкриває можливість управління процесом навчання людини на підставі науково обґрунтованого часового навантаження. Відомо, що при зміні програми навчання, часу занять, тривалість уроків є величиною сталою. Доза нового теоретичного матеріалу і часові рамки його викладання тепер можуть бути визначені рівнем сприйняття школярів і студентів, тобто адекватністю їх реакції. Перманентно контролювати цей процес в наш комп’ютерний час не представляється складним.Тому метою даної роботи є 1) розробка сучасних вимірників простої сенсомоторної реакції і складної сенсомоторної реакції вибору, 2) визначення латентних періодів сенсомоторних і розумових реакцій учнів, 3) на підставі аналізу отриманих даних розробка методик навчання з урахуванням фактору сенсомоторної реакції учня.У цієї статті розглядаються перші два пункти проведеної роботи. Третій етап потребує значно більших зусиль і часу. Тому результати виконання цього дуже важливого для педагогічної практики етапу роботи будуть оприлюднені пізніше.Зробимо короткий огляд пристроїв, методів і результатів вимірювання сенсомоторних реакцій, які відомі у наш час.О. Пиріжків, С. Кочеткова (Кубанська державна академія фізичної культури, Краснодар, Росія) досліджували сенсомоторні реакції 35 бійців спеціальних підрозділів 21–32 років, що займаються різними видами рукопашного бою, що має в основі: самбо (12), карате (11), кікбоксинг (12 чоловік) і 13 чоловіків ідентичного віку, що не займаються спортом. Диференціювання уніполярного світлового подразника досліджуваний здійснював стоячи на платформі, забезпеченій мікровимикачами. Реакцією на спалах верхніх світлодіодів було максимально швидке натиснення кнопки великим пальцем однойменної руки, нижніх – відрив відповідної ноги від платформи. Реєстрували час простої (ЧПРР) і складної рухових реакцій (ЧСРР), розраховували відсоток помилок від кількості проб. Дані обробляли згідно критерію Стьюдента. Отримані результати приведені в таблиці 1.Каратисти виявили найкоротший ЧПРР на звук і при реагуванні на світло руками і ногами. Вони зберегли пріоритет і у ЧСРР руками і ногами, припустивши при цьому мінімальну кількість помилок.Таблиця 1Час рухових реакцій у представників різних шкіл єдиноборства ГрупиЧПРРЧСРРЧСРРрукирукиногирукиногируки-ногизвуксвітлосвітлопомилкасвітлопомилкасвітлопомилкамсмс%мс%мс%Самбо135±8,4170±10,1240±8,6267±9,811,2335±7,411,0395±10,012,4Карате134±9,2155±8,9223±9,3223±7,910,1309±8,911,2368±11,416,0Кікбоксинг148±7,8172±11,4243±11,1264±10,210,0328±6,617,1437±12,319,3Нетреновані146±6,6180±9,9281±12,0285±11,612,8360±9,518,7464±11,325,2Ускладнений варіант реакції (ЧСРР р-н) підтвердив надійність швидкісних проявів центральної нервової системи у представників карате. У цих умовах вони відреагували на 27-96 мс швидше (P<0,05–0,001) за однолітків з інших груп. У нетренованих чоловіків кожна четверта реакція була помилковою при низькій швидкості реагування на хаотично виникаючі світлові сигнали (464 мс).Як показали спостереження, ускладнення умов пред’явлення стимулу подовжує час реагування особливо в ситуаціях, що вимагають прояву екстраполяції, зростає відсоток неадекватних дій на світлові подразники, що хаотично пред’являються.Для оцінки швидкості психомоторної реакції, функціонального стану центральної нервової системи розроблений також реакціометр – вимірник RA–1. Вимірник реакції призначений для вимірювання часу реакції людини на червоне (небезпека), зелене світло, а також звуковий сигналТехнічні дані пристрою: дискретність вимірювання часу реакції 1 мс, абсолютна похибка вимірювання часу реакції не більш ±2мс.Дослідження сенсомоторних реакцій у робітників показало, що зміна часу реакції при стомленні пов’язана із зміною стійкості уваги і швидкості переробки інформації. Час реакції ближче до кінця зміни може перевищувати мінімальне значення більш ніж в 2 рази. Час реакції дуже збільшується при хворобливому стані і після прийому навіть невеликих доз алкоголю.Особливості сенсомоторної реакції людини при флуктуації атмосферного тиску в наш час досліджували Р. Шарафі, С. Богданов, Д. Горлов, Ю. Горго, Р. Коробейників (Київський національний університет ім. Тараса Шевченка). Всього в експериментах брали участь 135 осіб. Віковий діапазон випробовуваних складав від 15 до 30 років і з середнім віком 20±2 роки. Було проведено дослідження латентних періодів простої сенсомоторної реакції за допомогою комп’ютерної програми «React 22». При дослідженнях подавали 100 сигналів середньої інтенсивності з інтервалом 1500-3000 мс, який змінювався випадковим чином у вказаному діапазоні. Випробовувані повинні були сидіти за столом перед монітором (відстань від монітора до очей випробовуваних близько 50 см) і реагувати натисненням на будь-яку клавішу правою рукою на появу кожного квадрата якнайскоріше.Паралельно вимірювали флуктуації атмосферного тиску (ФАТ). Абсолютний тиск весною 2005 р. (Київ) склав 99046±24 Па; восени 2005 р., (Київ) 99922±19 Па; взимку 2006 р. (Шираз) 84618±10 Па.Результати дослідження латентного періоду під час участі чоловіків в експерименті в різний час року на території України і Ірану наведені в табл. 2.Таблиця 2Результати дослідження простої сенсомоторної реакції Весна, Київ, чоловіки (n = 48)I групаОсінь, Київ, чоловіки (n = 15)II групаЗима, Шираз, чоловіки (n = 25)III група222 (197-254)227 (202-260)210 (179-257)Знайдена середня величина часу простої сенсомоторної реакції чоловіків на 30-50 мс більше, ніж наведена в табл. 1. Це можна пояснити тільки постійною помилкою вимірювань.Отже, вимірювання, яки були зроблені у 1970-х роках і за допомогою новітніх комп’ютерних програм XXI-го ст., мають однакові недоліки, пов’язані з недосконалістю техніки і методики вимірювань. Тому до сіх пір є актуальною проблема розробки вимірників як простої, так і складної сенсомоторної реакції людини.Досвід вимірювання багатьох дослідників вказує на ряд факторів, які впливають на реакцію людини. Розглянемо ті фактори, які впливають безпосередньо на ефективність навчання школярів і студентів. Це дозволить скласти програму дослідження, тривалість якої може сягати десятиріч.Особливості рухової асиметрії правої і лівої руки в шкільному віці вивчали А. Т. Бондар, Н. А. Отмахова, А. І. Федотчев.Асиметрія , що є різницею між часом реакції правої і лівої рук, у всіх вікових групах відображає наявність швидших реакцій правої руки. Було виявлено, що вік 11–12 років є критичним періодом в розвитку рухової асиметрії у людини.Особливості динаміки латентного періоду за допомогою правої і лівої руки під час больового стресу у чоловіків і жінок вивчав М. Ю. Каменськов зі студентами 2-3 курсів у віці 18-20 років. Виявлено, що час реакції коротший, а больовий поріг вище у правшей.Для вдосконалення цього методу, на наш погляд, спостереження асиметрії часу руху треба вести на протязі всього часу навчання одних й тих же учнів, тобто, 10-15 років. Це дозволить достатньо детально описати становлення рухової функції і її асиметрії в шкільні і студентські роки навчання.Підведемо підсумки огляду.1. Високоточне вимірювання сенсомоторної реакції людини є актуальним завданням. Результати вимірювань використовуються в найрізноманітніших областях людської діяльності.2. Величина сенсомоторної реакції людини залежить від віку, особливостей темпераменту, рухової ассиметрії, роду занять, погодних умов, стомленості, хворобливості стану, прийому доз алкоголю, наркотиків і тому подібне.3. Дослідження складної сенсомоторної реакції вибору представлені в публікаціях дуже мало, а ця галузь знань найбільш важлива для процесу навчання.Все це вимагає подальшої розробки вимірювальної техніки і удосконалення методик вимірювання та обробки їх результаті.Розробка вимірника простої і складної сенсомоторної реакції в Криворізькому державному педагогічному університеті велась на кафедрі фізики та методики її навчання з урахуванням тих вад, які перекручували результати вимірювань попередників. Особлива увага приділялася врахуванню часу власної затримки вимірювальних приладів, яка не враховувалася, як видно з обзору, деякими дослідниками, особливо при роботі з комп
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Гуржій, Андрій Миколайович, Валерій Яковлевич Жуйков, Анатолій Тимофійович Орлов, Віктор Михайлович Співак, Олександр Володимирович Богдан, Микола Іванович Шут, Людмила Юріївна Благодаренко та ін. "Викладання фізики з використанням вітчизняної електронної цифрової лабораторії, створеної на основі ІКТ". Theory and methods of e-learning 4 (17 лютого 2014): 69–78. http://dx.doi.org/10.55056/e-learn.v4i1.372.

Повний текст джерела
Анотація:
У зв’язку із загальною інформатизацією освіти і швидким розвитком цифрових засобів обробки інформації назріла необхідність впровадження в лабораторні практикуми вищих та середніх навчальних закладів цифрових засобів збору, обробки та оформлення експериментальних результатів, в тому числі під час виконання лабораторних робот з основ електротехнічних пристроїв та систем. При цьому надмірне захоплення віртуальними лабораторними роботами на основі комп’ютерного моделювання в порівнянні з реальним (натурним) експериментом може призводити до втрати особової орієнтації в технології освіти і відсутності надалі у випускників навчальних закладів ряду практичних навичок.У той же час світові компанії, що спеціалізуються в учбово-технічних засобах, переходять на випуск учбового устаткування, що узгоджується з комп’ютерною технікою: аналого-цифрових перетворювачів і датчиків фізико-хімічних величин, учбових приладів керованих цифро-аналоговими пристроями, автоматизованих учбово-експеримен­тальних комплексів, учбових експериментальних установок дистанційного доступу.У зв’язку із цим в області реального експерименту відбувається поступовий розвиток інформаційних джерел складної структури, до яких, у тому числі, відносяться комп’ютерні лабораторії, що останнім часом оформлюються у новий засіб реалізації учбового натурного експерименту – цифрові електронні лабораторії (ЦЕЛ).Відомі цифрові лабораторії для шкільних курсів фізики, хімії та біології (найбільш розповсюджені компаній Vernier Software & Technology, USA та Fourier Systems Inc., Israel) можуть бути використані у ВНЗ України, але вони мають обмежений набір датчиків, необхідність періодичного ручного калібрування, використовують застарілий та чутливий до електромагнітних завад аналоговий інтерфейс та спрощене програмне забезпечення, що не дозволяє проводити статистичну обробку результатів експерименту та з урахуванням низької розрядності аналого-цифрових перетворювачів не може використовуватись для проведення науково-дослідних робіт у вищих навчальних закладах, що є однією із складових підготовки висококваліфікованих спеціалістів, особливо в університетах, які мають статус дослідницьких.Із вітчизняних аналогів відомі окремі компоненти цифрових лабораторій, що випускаються ТОВ «фірма «ІТМ» м. Харків. Вони поступаються продукції компаній Vernier Software & Technology, USA та Fourier Systems Inc. та мають близькі цінові характеристики на окремі компоненти. Тому необхідність розробки вітчизняної цифрової навчальної лабораторії є нагальною, проблематика досліджень та предмет розробки актуальні.Метою проекту є створення сучасної вітчизняної цифрової електронної лабораторії та відпрацювання рекомендацій по використанню у викладанні на її основі базового переліку науково-природничих та біомедичних дисциплін у ВНЗ I-IV рівнів акредитації при значному зменшенні витрат на закупку приладів, комп’ютерної техніки та навчального-методичного забезпечення. В роботі використані попередні дослідження НДІ Прикладної електроніки НТУУ «КПІ» в галузі МЕМС-технологій (micro-electro-mechanical) при створенні датчиків фізичних величин, виконано огляд технічних та методичних рішень, на яких базуються існуючі навчальні цифрові лабораторії та датчики, розроблені схемотехнічні рішення датчиків фізичних величин, проведено конструювання МЕМС – первинних перетворювачів, та пристроїв реєстрації інформації. Розроблені прикладні програми інтерфейсу пристроїв збору інформації та вбудованих мікроконтролерів датчиків. Сформульовані вихідні дані для розробки бездротового інтерфейсу датчиків та програмного забезпечення цифрової лабораторії.Таким чином, у даній роботі пропонується нова вітчизняна цифрова електронна лабораторія, що складається з конструкторської документації та дослідних зразків обладнання, програмного забезпечення та розробленого єдиного підходу до складання навчальних методик для цифрових лабораторій, проведення лабораторних практикумів з метою економії коштів під час створення нових лабораторних робіт із реєстрацією даних, обробки результатів вимірювань та оформленням результатів експерименту за допомогою комп’ютерної техніки.Цифрова електронна лабораторія складається із таких складових частин: набірного поля (НП); комплектів модулів (М) із стандартизованим вихідним інтерфейсом, з яких складається лабораторний макет для досліджування об’єкту (це – набір електронних елементів: резисторів, ємностей, котушок індуктивності, цифро-аналогових та аналого-цифрових перетворювачів (ЦАП та АЦП відповідно)) та різноманітних датчиків фізичних величин; комп’ютерів студента (планшетного комп’ютера або спеціалізованого комп’ютера) з інтерфейсами для датчиків; багатовходових пристроїв збору даних та їх перетворення у вигляд, узгоджений з інтерфейсом комп’ютера (реєстратор інформації або Data Logger); комп’ютер викладача (або серверний комп’ютер із спеціалізованим програмним забезпеченням); пристрої зворотного зв’язку (актюатори), що керуються комп’ютером; трансивери для бездротового прийому та передачі інформації з НП.Таким чином, з’являється новий клас бездротових мереж малої дальності. Ці мережі мають ряд особливостей. Пристрої, що входять в ці мережі, мають невеликі розміри і живляться в основному від батарей. Ці мережі є Ad-Hoc мережами – високоспеціалізованими мережами з динамічною зміною кількісного складу мережі. У зв’язку з цим виникають завдання створення та функціонування даних мереж – організація додавання і видалення пристроїв, аутентифікація пристроїв, ефективна маршрутизація, безпека даних, що передаються, «живучість» мережі, продовження часу автономної роботи кінцевих пристроїв.Протокол ZigBee визначає характер роботи мережі датчиків. Пристрої утворюють ієрархічну мережу, яка може містити координатор, маршрутизатори і кінцеві пристрої. Коренем мережі являється координатор ZigBee. Маршрутизатори можуть враховувати ієрархію, можлива також оптимізація інформаційних потоків. Координатор ZigBee визначає мережу і встановлює для неї оптимальні параметри. Маршрутизатори ZigBee підключаються до мережі або через координатор ZigBee, або через інші маршрутизатори, які вже входять у мережу. Кінцеві пристрої можуть з’єднуватися з довільним маршрутизатором ZigBee або координатором ZigBee. По замовчуванню трафік повідомлень розповсюджується по вітках ієрархії. Якщо маршрутизатори мають відповідні можливості, вони можуть визначати оптимізовані маршрути до визначеної точки і зберігати їх для подальшого використання в таблицях маршрутизації.В основі будь-якого елементу для мережі ZigBee лежить трансивер. Активно розробляються різного роду трансивери та мікроконтролери, в які потім завантажується ряд керуючих програм (стек протоколів ZigBee). Так як розробки ведуться багатьма компаніями, то розглянемо та порівняємо новинки трансиверів тільки кількох виробників: СС2530 (Texas Instruments), AT86RF212 (Atmel), MRF24J40 (Microchip).Texas Instruments випускає широкий асортимент трансиверів. Основні з них: CC2480, СС2420, CC2430, CC2431, CC2520, CC2591. Всі вони відрізняються за характеристиками та якісними показниками. Новинка від TI – мікросхема СС2530, що підтримує стандарт IEEE 802.15.4, призначена для організації мереж стандарту ZigBee Pro, а також засобів дистанційного керування на базі ZigBee RF4CE і обладнання стандарту Smart Energy. ІС СС2530 об’єднує в одному кристалі РЧ-трансивер і мікроконтролер, ядро якого сумісне зі стандартним ядром 8051 і відрізняється від нього поліпшеною швидкодією. ІС випускається в чотирьох виконаннях CC2530F32/64/128/256, що розрізняються обсягом флеш-пам’яті – 32/64/128/256 Кбайт, відповідно. В усьому іншому всі ІС ідентичні: вони поставляються в мініатюрному RoHS-сумісному корпусі QFN40 розмірами 6×6 мм і мають однакові робочі характеристики. СС2530 являє собою істотно покращений варіант мікросхеми СС2430. З точки зору технічних параметрів і функціональних можливостей мікросхема СС2530 перевершує або не поступається CC2430. Однак через підвищену вихідну потужність (4,5 дБм) незначно виріс струм споживання (з 27 до 34 мА) при передачі. Крім того, ці мікросхеми мають різні корпуси і кількість виводів (рис. 1). Рис. 1. Трансивери СС2530, СС2430 та СС2520 фірми Texas Instruments AT86RF212 – малопотужний і низьковольтний РЧ-трансивер діапазону 800/900 МГц, який спеціально розроблений для недорогих IEEE 802.15.4 ZigBee-сумісних пристроїв, а також для ISM-пристроїв з підвищеними швидкостями передачі даних. Працюючи в діапазонах частот менше 1 ГГц, він підтримує передачу даних на малих швидкостях (20 і 40 Кбіт/с) за стандартом IEEE 802.15.4-2003, а також має опціональну можливість передачі на підвищених швидкостях (100 і 250 Кбіт/с) при використанні модуляції O-QPSK у відповідності зі стандартом IEEE 802.15.4-2006. Більше того, при використанні спеціальних високошвидкісних режимів, можлива передача на швидкості до 1000 Кбіт/с. AT86RF212 можна вважати функціональним блоком, який з’єднує антену з інтерфейсом SPI. Всі критичні для РЧ тракту компоненти, за винятком антени, кварцового резонатора і блокувальних конденсаторів, інтегровані в ІС. Для поліпшення загальносистемної енергоефективності та розвантаження керуючого мікроконтролера в ІС інтегровані прискорювачі мережевих протоколів (MAC) і AES- шифрування.Компанія Microchip Technology виробляє 8-, 16- і 32- розрядні мікроконтролери та цифрові сигнальні контролери, а також аналогові мікросхеми і мікросхеми Flash-пам’яті. На даний момент фірма випускає передавачі, приймачі та трансивери для реалізації рішень для IEEE 802.15.4/ZigBee, IEEE 802.11/Wi-Fi, а також субгігагерцового ISM-діапазону. Наявність у «портфелі» компанії PIC-мікроконтролерів, аналогових мікросхем і мікросхем пам’яті дозволяє їй запропонувати клієнтам комплексні рішення для бездротових рішень. MRF24J40 – однокристальний приймач, що відповідає стандарту IEEE 802.15.4 для бездротових рішень ISM-діапазону 2,405–2,48 ГГц. Цей трансивер містить фізичний (PHY) і MAC-функціонал. Разом з мікроспоживаючими PIC-мікроконтролерами і готовими стеками MiWi і ZigBee трансивер дозволяє реалізувати як прості (на базі стека MiWi), так і складніші (сертифіковані для роботи в мережах ZigBee) персональні бездротові мережі (Wireless Personal Area Network, WPAN) для портативних пристроїв з батарейним живленням. Наявність MAC-рівня допомагає зменшити навантаження на керуючий мікроконтролер і дозволяє використовувати недорогі 8-розрядні мікроконтролери для побудови радіомереж.Ряд компаній випускає завершені модулі ZigBee (рис. 2). Це невеликі плати (2÷5 кв.см.), на яких встановлено чіп трансивера, керуючий мікроконтролер і необхідні дискретні елементи. У керуючий мікроконтролер, у залежності від бажання і можливості виробника закладається або повний стек протоколів ZigBee, або інша програма, що реалізує можливість простого зв’язку між однотипними модулями. В останньому випадку модулі іменуються ZigBee-готовими (ZigBee-ready) або ZigBee-сумісними (ZigBee compliant).Всі модулі дуже прості в застосуванні – вони містять широко поширені інтерфейси (UART, SPI) і управляються за допомогою невеликого набору нескладних команд. Застосовуючи такі модулі, розробник позбавлений від роботи з високочастотними компонентами, так як на платі присутній ВЧ трансивер, вся необхідна «обв’язка» і антена. Модулі містять цифрові й аналогові входи, інтерфейс RS-232 і, в деяких випадках, вільну пам’ять для прикладного програмного забезпечення. Рис. 2. Модуль ZigBee із трансивером MRF24J40 компанії Microchip Для прикладу, компанія Jennic випускає лінійку ZigBee-сумісних радіомодулів, побудованих на низькоспоживаючому бездротовому мікроконтролері JN5121. Застосування радіомодуля значно полегшує процес розробки ZigBee-мережі, звільняючи розробника від необхідності конструювання високочастотної частини виробу. Використовуючи готовий радіомодуль, розробник отримує доступ до всіх аналогових і цифрових портів вводу-виводу чіпу JN5121, таймерам, послідовного порту і інших послідовних інтерфейсів. У серію входять модулі з керамічної антеною або SMA-коннектором з дальністю зв’язку до 200 метрів. Розмір модуля 18×30 мм. Версія модуля з підсилювачем потужності і підсилювачем вхідного сигналу має розмір 18×40 мм і забезпечує дальність зв’язку більше 1 км. Кожен модуль поставляється з вбудованим стеком протоколу рівня 802.15.4 MAC або ZigBee-стеком.За висновками експертів з аналізу ринку сьогодні одним з найперспективніших є ринок мікросистемних технологій, що сягнув 40 млрд. доларів станом на 2006 рік зі значними показниками росту. Самі мікросистемні технології (МСТ) почали розвиватися ще з середини ХХ ст. і, отримуючи щоразу нові поштовхи з боку нових винаходів, чергових удосконалень технологій, нових галузей науки та техніки, динамічно розвиваються і дедалі ширше застосовуються у широкому спектрі промислової продукції у всьому світі.Прилад МЕМС є об’єднанням електричних та механічних елементів в одну систему дуже мініатюрних розмірів (значення розмірів механічних елементів найчастіше лежать у мікронному діапазоні), і достатньо часто такий прилад містить мікрокомп’ютерну схему керування для здійснення запрограмованих дій у системі та обміну інформацією з іншими приладами та системами.Навіть з побіжного аналізу структури МЕМС зрозуміло, що сумарний технологічний процес є дуже складним і тривалим. Так, залежно від складності пристрою технологічний процес його виготовлення, навіть із застосуванням сучасних технологій, може тривати від кількох днів до кількох десятків днів. Попри саме виготовлення, доволі тривалими є перевірка та відбраковування. Часто виготовляється відразу партія однотипних пристроїв, причому вихід якісної продукції часто не перевищує 2 %.Для виготовлення сучасних МЕМС використовується широка гама матеріалів: різноманітні метали у чистому вигляді та у сплавах, неметали, мінеральні сполуки та органічні матеріали. Звичайно, намагаються використовувати якомога меншу кількість різнорідних матеріалів, щоби покращити технологічність МЕМС та знизити собівартість продукції. Тому розширення спектра матеріалів прийнятне лише за наявності специфічних вимог до елементів пристрою.Спектр наявних типів сенсорів в арсеналі конструктора значно ширший та різноманітніший, що зумовлено багатоплановим застосуванням МЕМС. Переважно використовуються ємнісні, п’єзоелектричні, тензорезистивні, терморезистивні, фотоелектричні сенсори, сенсори на ефекті Холла тощо. Розроблені авторами в НДІ Прикладної електроніки МЕМС-датчики, їх характеристики, маса та розміри наведені у табл. 1.Таблиця 1 №з/пМЕМС-датчикиТипи датчиківДіапазони вимірюваньГабарити, маса1.Відносного тиску, тензорезистивніДВТ-060ДВТ-1160,01–300 МПа∅3,5–36 мм,5–130 г2.Абсолютного тиску,тензорезистивніДАТ-0220,01–60 МПа∅16 мм,20–50 г3.Абсолютного тиску, ємнісніДАТЄ-0090,05–1 МПа5×5 мм4.Лінійного прискорення,тензорезистивніДЛП-077±(500–100 000) м/с224×24×8 мм,100 г5.Лінійного прискорення,ємнісніАЛЄ-049АЛЄ-050±(5,6–1200) м/с235×35×22 мм, 75 г6.Кутової швидкості,ємнісніДКШ-011100–1000 °/с
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Khudetskyy, I. Yu, Yu V. Antonova-Rafi, N. M. Khudetska та I. V. Pushchyna. "АПАРАТ ОЦІНКИ КУКСИ ДЛЯ ПРОТЕЗУВАННЯ КІНЦІВОК". Здобутки клінічної і експериментальної медицини, № 4 (26 січня 2018). http://dx.doi.org/10.11603/1811-2471.2017.v0.i4.8236.

Повний текст джерела
Анотація:
Вступ. Розроблено та віпробувано необхідні зонди, Які поєднують в Собі здатність візначаті форму та стан тканини Кукса. Зонди ма ють шкалу регулювання відносно "нульового" рівня Кукса та об'єднані з датчиками руху. На Основі Отримання Даних програмне забезпечення формує форму протеза. Це дает можлівість Здійснювати автоматичні вимірювання, Забезпечує метрологічні вимоги во время Калібрування пристрою. Для визначення механічніх властівостей тканин зонди оснащені датчиками тиску та прибудований для создания конкретного механічного НАВАНТАЖЕННЯ на зонди, что відповідає реальному, дБА на куксу в цілому. Є кілька режімів для вимірювання механічніх властівостей тканини Кукса.Мет ою дослідження Було Розробити прилад для визначення 3-D форми та механічніх характеристик тканин Кукса, что взаємодіють з гільзою протеза.Матеріали и методи. У процесі дослідження були проаналізовані матеріали про основні найбільш пошірені технології протезування кінцівок. Медичні, реабілітаційні та ерготерапевтічні проблеми пацієнтів в процесі протезування и ЕКСПЛУАТАЦІЇ протезів. Для проектування були вікорістані пакети MatCad, SolidWorks та технології метрологічної ОЦІНКИ датчіків.Визначили такоже вимоги до автоматизації Втрата Даних та сумісності з технологіямі CAD-CAM. У конструкції пристрою враховуються економічні та технологічні возможности его реализации. Технологія может буті частина технології CAD / CAM для виробництва протезів кінцівок.Висновки. Розроблення Пристрій дозволяє розробляті форму та стан залішкової кінцівкі тканини. Автоматизована система дозволяє зніматі та збіраті дані з вимірювальних зондів и передаваті ЦІ дані на комп'ютер для Подальшого АНАЛІЗУ. Це дозволяє використовуват розроблення Пристрій як CAD-CAM технологічний елемент при формуванні оптімальної-протезної системи "протезування кінцівок".
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Пристрій вимірювання тиску"

1

Цюрпіта, Юлія Степанівна. "Автоматичний пристрій вимірювання барометричного тиску в безпілотних літаках". Бакалаврська робота, Хмельницький національний університет, 2021. http://elar.khnu.km.ua/jspui/handle/123456789/10419.

Повний текст джерела
Анотація:
Кваліфікаційна робота присвячена розгляду питань створення автоматичного пристрою вимірювання барометричного тиску в безпілотних літаках. В роботі висвітлено наступні питання: проведено аналіз методів вимірювання барометричного тиску на безпілотних літальних апаратах для автоматичного визначення висоти; проведено аналіз методів передачі даних з безпілотного літального апарату на пуль оператора. Розроблено алгоритм роботи передаючої та приймальної частини системи. Розроблено апаратне та програмне забезпечення.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Трубчанінов, Р. М., та І. В. Свид. "Пристрій вимірювання тиску в судинах екстреного оповіщення в критичній ситуації". Thesis, ХНУРЕ, 2020. http://openarchive.nure.ua/handle/document/13389.

Повний текст джерела
Анотація:
Blood pressure is the pressure that blood exerts on the walls of blood vessels. One of the indicators of vital functions and biomarkers. And by this marker, one can judge the acute and pathological changes of the body. In the course of this work, a device was developed that, with a low level of blood pressure, implements an emergency call function in the shortest possible time.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Масняк, Олег Ярославович. "Вимірювання витрати та кількості супутнього нафтового газу". Diss., Національний університет "Львівська політехніка", 2021. https://ena.lpnu.ua/handle/ntb/56469.

Повний текст джерела
Анотація:
Дисертаційна робота присвячена розробленню системи вимірювання витрати та кількості супутнього нафтового газу на основі методу змінного перепаду тиску та розробленню методології визначення відносної розширеної невизначеності результату вимірювання витрати. За результатом аналізу існуючих методів вимірювання витрати та кількості визначено критерії для побудови системи вимірювання витрати та кількості супутнього нафтового газу. Відповідно до цих критеріїв вибрано метод змінного перепаду тиску для побудови системи вимірювання витрати та кількості супутнього нафтового газу. Для методу змінного перепаду тиску сформовано підхід до побудови системи обліку супутнього нафтового газу з врахуванням обмежень щодо його компонентних складів та умовами виконання вимірювання у визначених діапазонах тиску та температури. За результатом дослідження термодинамічних параметрів супутнього нафтового газу розроблено нові залежності для визначення густини, показника адіабати та коефіцієнта динамічної в′язкості супутнього нафтового газу в діапазонах робочих тиску і температур. На основі методу змінного перепаду тиску із стандартними пристроями звуження потоку розроблено удосконалену математичну модель витратоміра супутнього нафтового газу та удосконалені алгоритми розрахунку витрати та кількості супутнього нафтового газу. Застосовуючи удосконалені алгоритми розрахунку витрати та кількості супутнього нафтового газу, розроблено модуль в системі автоматичного розрахунку та проектування витратоміра змінного перепаду тиску САПР "Расход-РУ" (версія 2.0) для супутнього нафтового газу. Розроблено структуру системи обліку супутнього нафтового газу на основі методу змінного перепаду тиску та вибрано технічні засоби для реалізації системи обліку витрати та кількості супутнього нафтового газу. Удосконалено рівняння для розрахунку відносної стандартної невизначеності об′ємної витрати супутнього нафтового газу. Проведено експериментальне дослідження для визначення відносної стандартної невизначеності об′ємної витрати системи вимірювання витрати та кількості супутнього нафтового газу в залежності від зміни в часі компонентного складу супутнього нафтового газу. Результати дисертаційної роботи впроваджено у науково-дослідних та виробничих підприємствах, що займаються дослідженням, проектуванням, виробництвом та налагодженням систем вимірювання витрати енергоносіїв. The dissertation is devoted to development of a system for measurement of flow rate and volume of concomitant oil gas based on the differential pressure method and to development of a methodology for determining the relative expanded uncertainty of the flow rate measurement result. Based on the analysis of the existing methods for flow rate and volume measurement, the criteria for constructing a system for measurement of flow rate and volume of concomitant oil gas have been determined. According to these criteria, the differential pressure method was chosen to construct a system for measurement of flow rate and volume of concomitant oil gas. For the differential pressure method, an approach to the construction of a metering system for concomitant oil gas was created with taking into account the limitations in its component compositions and the conditions of measurement in certain ranges of pressure and temperature. As a result of the study of thermodynamic parameters of concomitant oil gas, new dependences have been developed to determine the density, adiabatic index and coefficient of dynamic viscosity of concomitant oil gas in the operating pressure and temperature ranges. Based on the differential pressure method with standard primary devices, the improved mathematical model of the flow meter has been developed together with the algorithms for calculating the flow rate and volume of concomitant oil gas. A module in the system of automatic calculation and design of differential pressure flow meter "Raskhod-RU" CAD (version 2.0) has been developed for concomitant oil gas with application of advanced algorithms for flow rate and volume calculation. The structure of the metering system for concomitant oil gas on the basis of differential pressure method has been developed and technical instruments have been selected for implementation of the metering system. The equation for calculating the relative standard uncertainty of volumetric flow rate of concomitant oil gas has been improved. Experimental study was performed to determine the relative standard uncertainty of concomitant oil gas volumetric flow rate measurement depending on the component composition variation in time. The results of the dissertation are implemented in the research and development companies involved in research, design, production and commissioning of energy carrier metering systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Шиманов, М. М., та Сергій Іванович Кондрашов. "Інтелектуальний вимірювач тиску". Thesis, НТУ "ХПІ", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/25941.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Лащенко, Сергій Вікторович. "Дослідження та розробка пристрою автоматичного вимірювання навантаження на вісь вантажного автомобіля". Магістерська робота, 2020. https://dspace.znu.edu.ua/jspui/handle/12345/4973.

Повний текст джерела
Анотація:
Лащенко С. В. Дослідження та розробка пристрою автоматичного вимірювання навантаження на вісь вантажного автомобіля : кваліфікаційна робота магістра спеціальності 171 "Електроніка" / наук. керівник Д. Г. Алексієвський. Запоріжжя : ЗНУ, 2020. 72 с.
UA : Розроблено алгоритм роботи обчислювача з використанням показників датчика тиску та акселерометру. За допомогою комп’ютерного моделювання перевірено адекватність роботи обчислювача. Також проведено огляд існуючих методів вимірювання ваги великогабаритного транспорту.
EN : The algorithm of work of the calculator with use of indicators of the pressure sensor and the accelerometer is developed. The adequacy of the computer was checked by computer simulation. A review of existing methods for measuring the weight of large vehicles was also conducted.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії