Добірка наукової літератури з теми "Покриття металеві"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Покриття металеві".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Покриття металеві"

1

Роп’як, Л. Я., М. Я. Николайчук, М. В. Шовкопляс, В. С. Витвицький, М. М. Романів та В. М. Білінський. "АВТОМАТИЗОВАНА УСТАНОВКА ДЛЯ ОЧИЩЕННЯ ГАЛЬВАНІЧНИХ ВІДХОДІВ". Bulletin of Sumy National Agrarian University. The series: Mechanization and Automation of Production Processes, № 2 (44) (5 травня 2022): 70–80. http://dx.doi.org/10.32845/msnau.2021.2.15.

Повний текст джерела
Анотація:
У праці розглянуто основні типи покриттів та їх розповсюдженість у світі за частотою застосування в машинобудуванні. Відзначено, що найбільш розповсюдженими серед них є металеві – електрохімічні хромові покриття та неме-талеві – оксидні покриття, сформовані у різних електролітах. Проведено аналіз способів та обладнання для утилізації відпрацьованих електролітів для формування покриттів на деталях машин у гальванічних цехах і дільницях. Як об’єкти дослідження вибрали електроліти для електрохімічного хромування сталей та для плазмовоелектролітичного оксидування алюмінієвих сплавів. Використано системний підхід до вирішення актуальної проблеми утилізації відпрацьованих електролітів гальванічних ванн для нанесення покриттів, що є особливо важливим завданням на етапі переходу до «зелених технологій». Розроблено технологічну схему переробки відпрацьованих електролітів, яка включає процеси осадження, нейтралізації та очищення. Застосовано мехатронний підхід і комп’ютерне моделювання під час проектування установки для реалізації вказаної технології, котра містить два реактори і гідроциклон-фільтр, які сполучені трубопроводами, а також оснащену насосами, вказівниками рівня рідини, рН-метричним обладнанням та автоматизованою системою керу-вання. В склад установки входить розроблена нова конструкція гідроциклон-фільтра, який забезпечує комбіноване очищення рідин від завислих частинок забруднення шляхом одночасного поєднання відцентрового очищення та фільтрування, а також дозволяє здійснювати промивання його кільцевого зазору та регенерацію фільтрувальної зернистої засипки фі-льтрувальної касети. Розроблена технологія утилізації відпрацьованих електролітів є ефективною під час експлуатації та не потребує дороговартісного обладнання, процес є екологічно безпечним як для обслуговуючого персоналу, так і для навколишнього природного середовища, а продукти переробки можна повторно використовувати у виробничому циклі.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Середа, Б. П., О. С. Баскевич, В. В. Соболев та Д. Б. Середа. "МОДЕЛЮВАННЯ УМОВ ФАЗОВИХ ПЕРЕТВОРЕНЬ В МІКРООБЛАСТЯХ МЕТАЛЕВИХ МАТЕРІАЛІВ ПРИ НАДГЛИБОКОМУ ПРОНИКАННІ МІКРОЧАСТИНОК". Математичне моделювання, № 2(45) (13 грудня 2021): 91–102. http://dx.doi.org/10.31319/2519-8106.2(45)2021.246963.

Повний текст джерела
Анотація:
Проведено моделювання стійкості хімічних зв’язків під дією ударних хвиль та вільних електронів в товщі металічних мішеней на основі квантово-механічних розрахунків. При цьому проведені аналітичні розв’язки рівняння Шредингера в еліпсоїдальних координатах та отримані залежності енергії хімічних зв’язків при різних умовах, які наглядно показують умови їх стійкості. Залежно від швидкості, температури, властивостей частинок та оброблюваної поверхні утворюються покриття та відбувається імплантація в поверхневий шар. При цьому можуть використовуватися потоки частинок, що мають широкий діапазон швидкостей — від десятків до декількох тисяч метрів в секунду та тисків до десятків ГПа. Для з'ясування умов надглибокого проникнення мікрочастинок у металеві перешкоди запропоновано ідею дестабілізації мікроструктури металевих матеріалів в обмежених мікрооб'ємах під час дії зовнішніх фізичних факторів. Рух мікрочастинки в металевій мішені вздовж каналу супроводжується високим тиском, впливом мікросекундних високоенергетичних ударних хвиль, що призводять до руйнування хімічних зв'язків. Рух мікрочастинки в товщині металу можливий тільки при попаданні мікрочастинки у фронт ударних хвиль і при дотриманні масштабного фактора мікрочастинок. В обмеженому обсязі відбувається розпад кристалічного стану і перехід його в стан холодної плазми, яка подібна до рідкого стану. Цей стан спостерігається протягом процесів розпаду та утворення хімічних зв'язків. Експериментально встановлені умови надглибокого проникання мікрочастинок та показано, що агрегатний стан під час надглибокого проникання може змінюватися від плазмового до аморфного або кристалічного стану.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zakharova, Irina, та Vyacheslav Royanov. "ОБҐРУНТУВАННЯ КОНСТРУКТИВНИХ ОСОБЛИВОСТЕЙ ПУЛЬСАТОРА ДЛЯ ЗАБЕЗПЕЧЕННЯ ПУЛЬСУЮЧОГО РОЗПИЛЮВАЛЬНОГО ПОТОКУ ПОВІТРЯ ПРИ ДУГОВІЙ МЕТАЛІЗАЦІЇ". TECHNICAL SCIENCES AND TECHNOLOGIES, № 1(19) (2020): 65–71. http://dx.doi.org/10.25140/2411-5363-2020-1(19)-65-71.

Повний текст джерела
Анотація:
Актуальність теми дослідження. У світовій практиці застосування понад 50 % займають металеві покриття, що наносяться методом електродугової металізації, яка має такі переваги: висока продуктивність, простота обладнання, низька енергоємність, можливість отримання покриттів з високими експлуатаційними властивостями за рахунок застосування недефіцитних і недорогих дротів промислового виробництва. Постановка проблеми. При дуговому напиленні має місце інтенсивне окислення металу, який розпилюється киснем повітря, що призводить до значного вигоряння легуючих елементів та значно знижує якість нанесеного покриття. Аналіз останніх досліджень і публікацій. Багато робіт науковців спрямовано на вдосконалення конструкцій розпилювальних головок електродугових металізаторів, що передбачає вдосконалення конструкції повітряного сопла шляхом використання вставок і пристроїв, що забезпечують зміну в повітряно-розпилювальному потоці та призводить до значного удорожчання процесу. Виділення недосліджених частин загальної проблеми. Відомі розпилювальні головки не суттєво знижують окисний вплив розпилювального повітря, не забезпечують ресурсозбереження за рахунок зменшення витрати розпилювального повітря і витрат електроенергії на його отримання. Таким чином, метою досліджень є зниження окислення часток металу, при дуговій металізації для отримання покриттів із зазначеними властивостями та застосування ресурсозбереження. Виклад основного матеріалу. З метою зниження окисного впливу повітряно-розпилювального струменя на рідкий метал електродів розроблений метод пульсуючої подачі повітря в зону плавлення електродів. У даній роботі представлено пристрій для створення пульсуючого розпилювального потоку повітря при електродуговому напиленні. Висновки відповідно до статті. Показано, що при використанні різних перетинів клапана пульсатора для створення пульсуючого розпилювального потоку для дугової металізації, спостерігаються зміни в обсязі повітря та маси кисню розпилювального струменя в кілька разів.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Габ, Ангеліна Іванівна, Дмитро Борисович Шахнін, Віктор Володимирович Малишев, Тетяна Миколаївна Нестеренко, Володислав Ростиславович Румянцев та Ольга Русланівна Бережна. "КОМПОЗИЦІЙНІ ЕЛЕКТРОХІМІЧНІ ПОКРИТТЯ НА ОСНОВІ НІКЕЛЮ: ОДЕРЖАННЯ, СТРУКТУРА, ВЛАСТИВОСТІ (ОГЛЯД)". Scientific Journal "Metallurgy", № 2 (22 лютого 2022): 44–55. http://dx.doi.org/10.26661/2071-3789-2021-2-06.

Повний текст джерела
Анотація:
Здійснено систематизацію літературних даних щодо одержання композиційних електрохімічних покриттів на основі нікелю, структури та властивостей покриттів нікелю з частинками ультрадисперсних алмазів, фулерену, фторопласту, різних сполук металів. Найбільшого поширення серед композиційних електрохімічних покриттів (КЕП) набули покриття з нікелевою матрицею, які характеризуються високою твердістю та зносостійкістю, а також стійкістю в корозійних середовищах. В останні роки значну увагу приділяють нікелевим покриттям, що містять як дисперсну фазу ультрадисперсні алмази (наноалмази; УДА), фулерен С60 і фторопласт (тефлон). Для осадження КЕП нікель-УДА Зазвичай використовують класичні сірчанокислі електроліти. УДА позитивно впливають на якість нікель-алмазних покриттів. Коефіцієнти тертя, порівняно з нікелевими покриттями, зменшуються з 0,43 до 0,33, а мікротвердість зростає з 2,45 до 4,31 ГПа. Деталі, покриті КЕП-нікель-УДА, можуть служити в 20 разів довше ніж деталі з нікелевим покриттям. При осадженням алмазних шарів з нікелевим покриттям на різальних інструментах одержують рівномірні КЕП із вмістом частинок від 20000 до 25000 на см2 поверхні. Входження наноалмазних частинок до нікелевої матриці призводить до зменшення розміру зерна, утворення дислокацій у вигляді клубків і сіток уздовж меж зерен. КЕП нікель-УДА має стовпчасту структуру. Збільшення мікротвердості За включенням бору в нікель-алмазні КЕП, можливо, пов’язане з переходом від стовпчастої до ланцюго-розширеної структури. Введення в сірчанокислий електроліт нікелювання частинок фулерену С60 полегшує катодний процес осадження КЕП нікель-фулерен. Одержаний КЕП має шорстку поверхню, мікровиступи якої утворюються за зарощуванням дисперсних частинок металом.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Роп’як, Любомир Ярославович, Максим Володимирович Шовкопляс та Василь Степанович Витвицький. "ВИЗНАЧЕННЯ ПРИПУСКІВ НА МЕХАНІЧНУ ОБРОБКУ ДЕТАЛЕЙ З ХРОМОВИМИ ПОКРИТТЯМИ". Вісник Черкаського державного технологічного університету, № 2 (22 червня 2021): 117–27. http://dx.doi.org/10.24025/2306-4412.2.2021.242339.

Повний текст джерела
Анотація:
Проведено аналіз методів визначення припусків на механічну обробку металевих, оксидних та керамічних покриттів, які базуються на міцності покриттів, зміні мікротвердості, забезпечені одержання мінімальної шорсткості обробленої поверхні. Визначення раціональних припусків на механічну обробку деталей з електрохімічними хромовими покриттями є важливою техніко-економічною задачею машинобудування, оскільки занижені значення припусків не гарантують досягнення необхідної точності розмірів та відповідної шорсткості робочої поверхні деталей, призводить до зниження ресурсу роботи виробів, а завищені значення припусків призводять до зростання витрат на механічну обробку. Мета – розроблення інженерної методики визначення припусків на механічну обробку сталевих деталей з хромовими електрохімічними покриттями для забезпечення необхідної точності та шорсткості зовнішніх циліндричних поверхонь. Покриття наносили на циліндричні сталеві зразки у спокійному та проточному електроліті на установці спорядженій автоматизованою системою контролю технологічних параметрів процесу електрохімічного хромування. Досліджено шорсткість поверхонь після алмазного круглого шліфування електрохімічних хромових покриттів нанесених у спокійному та в проточному електролітах. Встановлено, що товщина дефектного шару залежить від способу нанесення електрохімічного хромового покриття. Хромування сталевих деталей у проточному електроліті забезпечує одержання меншої товщини дефектного шару порівняно з хромуванням у спокійному електроліті. Також встановлено, що мінімальний припуск, для одержання поверхонь із мінімальною шорсткістю після алмазного шліфування електрохімічного хромового покриття, залежить від загальної товщини покриття та збільшується із її зростанням. Аналіз результатів розрахунку припусків показав, що припуск на механічну обробку заготовок деталей з хромовим покриттям, нанесеним у спокійному електроліті, є більшим у порівнянні із покриттям, отриманим у проточному електроліті в 2,5 рази. Це обумовлено нерівномірним нанесенням електрохімічного хромового покриття у спокійному електроліті внаслідок ускладнення газовідведення з поверхні покриття у процесі електролізу порівняно із електролізом у проточному електроліті. Вказані недоліки хромування в спокійному електроліті усуваються під час нанесення покриття на циліндричні деталі в проточному електроліті, про що свідчить також, зменшення конусоподібності деталей з покриттями близько в 1,7 раза та глибини дефектного поверхневого шару – 2,6 раза відповідно. Наукова новизна роботи полягає у встановленні товщини дефектного шару для хромових електрохімічних покриттів, нанесених у спокійному та проточному електроліті на циліндричні сталеві деталі, після зняття якого алмазним круглим шліфуванням забезпечується отримання обробленої поверхні з мінімальною шорсткістю. Практична цінність – розроблено інженерну методику розрахунку припусків на механічну обробку (операцію алмазного шліфування) циліндричних сталевих деталей з хромовими електрохімічними покриттями.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Бойко-­Гагарін, А. С. "Технологічні аспекти виготовлення фальшивих монет у Російській та Австро-Угорській імперії у ХІХ – на початку ХХ ст". Studies in history and philosophy of science and technology 29, № 2 (26 грудня 2020): 67–76. http://dx.doi.org/10.15421/272022.

Повний текст джерела
Анотація:
Вивчення процесів виготовлення монет є невід’ємною складовою нумізматичних студій, що дозволяє не лише встановити відношення монети до карбування того чи іншого монетного двору та визначити її різновид, а і встановити відмінності між автентичними монетами державного карбування та антикварними підробками, так само як і фальшивими монетами, виготовленими з метою нанесення збитку грошовому обігу та отримання несанкціонованого прибутку. В статті використано комплекс загальнонаукових методів, цитування архівних матеріалів виконано транскрибуванням. В якості джерел вивчення використано раніше неопубліковані матеріали державних історичних архівів та зразки тогочасних підробок монет із зібрань державних музеїв. Повний ланцюг виготовлення фальшивих монет поетапно складався із вибору металу, виготовлення ливарної форми чи штемпеля, виготовлення заготовки для майбутньої фальшивки (металевого кружечка), нанесення зображень на заготовку, за необхідності – нанесення поверхневого покриття та доопрацювання отриманої підробки іншими інструментами для уникнення видимих дефектів фальсифікату. Отримати готові підробки монети з нанесеним шаром поверхневого покриття за допомогою амальгами можна було двома шляхами: покриття заготовки із вже нанесеним штемпелями рельєфом, або карбування штемпелем по вже покритій шаром золота чи срібла основі. Щодо застосування технології лиття підроблених грошей, найчастіше в тогочасних джерелах згадуються гіпсові форми, хоча нами введено в науковий обіг лише металеві (частіше мідні). Елементний вміст поверхні інструментів практично ідентичний у струмках робочої частини та зворотної гладкої сторони, що дає підстави стверджувати про те, що ці інструменти не були у використанні. Ми припускаємо, що потенційні фальшивомонетники позбулись цих ливарних форм як невдалих та непридатних для використання. Продуктом ливарних форм, пресів чи інших виробничих устаткувань фальшивомонетників були заготовки фальшивих монет. Через недосконале лиття отримані заготовки часто вимагали доопрацювання та коригування за допомогою інших оброблювальних інструментів. Застосовуваний фальшивомонетниками технічний процес суттєво відрізнявся від того ланцюга процесів, які практикувались на державному монетному дворі. Причиною цьому ми бачимо недоступність для фальшивомонетників складних технічних засобів та користування ними з незаконною метою таким чином, що цей процес був непомітний для оточуючих для приховування злочинної діяльності. Перспективою подальших досліджень ми бачимо розширення використаної джерельної бази та проведення вивчення збережених зразків підробок монет та інструментів для їх виготовлення за допомогою новітніх вимірювальних пристроїв та технологій.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Мартинець, О. Р., та Б. В. Копей. "Дослідження та аналіз способів ремонту насосних штанг". Prospecting and Development of Oil and Gas Fields, № 1(78) (18 травня 2021): 43–50. http://dx.doi.org/10.31471/1993-9973-2021-1(78)-43-50.

Повний текст джерела
Анотація:
На даний час питання підвищення надійності та довговічності нафтогазового обладнання набули особливої актуальності. Колона насосних штанг (КНШ) є однією із найслабших ланок штангових свердловинних насосних установок (ШСНУ). Саме насосні штанги різко обмежують їх надійність і довговічність. Це пов’язано із надзвичайно важкими умовами роботи насосних штанг. Змінні навантаження розтягу та згину, вплив корозійно-активного середовища, тертя до колони насосно-компресорних труб (особливо в похилоспрямованих свердловинах), відкладення асфальто-смоляно-парафінових речовин та інші експлуатаційні фактори призводять до появи та інтенсивного розвитку корозійно-втомних тріщин і, як наслідок, до руйнування колони штанг. Такі аварії пов’язані з великими матеріальними затратами на ремонт і відновлення експлуатації свердловин. Близько 70% нафтових свердловин в Україні експлуатується штанговими свердловинними насосними установками (ШСНУ). Однією з основних проблем, пов'язаних з експлуатацією обладнаних ШСНУ свердловин, є частий вихід з ладу насосних штанг (НШ). Проведений аналіз існуючих способів ремонту насосних штанг дасть можливість визначити ефективний метод їх ремонту. Запропоновано комбінований метод ремонту штанг обробкою металевими щітками та нанесенням модифікованого поліуретанового покриття. Проведені експерименти відрізків натурних штанг показують, що металеві щітки є ефективним засобом очищення і зміцнення штанг, особливо тих, які вже були в експлуатації. Встановлено, що метод комбінованого зміцнення обробкою щітками та нанесенням поліуретанового покриття додатково підвищує величину G-критерію на 20%. Модифіковане поліуретанове покриття дасть змогу підвищити стійкість штанги до стирання при терті до колони насосно-компресорних труб, з однієї сторони, та попередити відкладання асфальто-смоляно-парафінових речовин на тілі штанг, з іншої.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Посувайло, Володимир Миколайович, Максим Володимирович Шовкопляс, Микола Миколайович Романів та Володимир Юрійович Малінін. "ПОРІВНЯННЯ МЕТОДІВ ПОВЕРХНЕВОГО ЗМІЦНЕННЯ ДЕТАЛЕЙ МАШИН ПОКРИТТЯМИ". Вісник Черкаського державного технологічного університету, № 4 (24 грудня 2021): 83–97. http://dx.doi.org/10.24025/2306-4412.4.2021.253298.

Повний текст джерела
Анотація:
У статті проведено аналіз та порівняння найбільш поширених методів поверхневого зміцнення деталей машин покриттями. Відзначено, що шляхом використання захисних покриттів можна вирішувати низку науково-технічних проблем машинобудування, забезпечуючикомплексне раціональне використання властивостей основи деталі та властивостей матеріалу захисного покриття. Мета дослідження – провести аналіз і порівняння сучасних методів поверхневого зміцнення деталей машин металевими електрохімічними хромовими та оксидними покриттями і встановити тенденції їх розвитку. Для проведення досліджень технологій нанесення електрохімічних хромових покриттів на сталь та алюміній і формування оксидних покриттів на алюмінієвих литих та деформованих сплавах у режимі анодування та плазмоелктролітичного оксидування в електроліті застосували системний підхід і використали бібліографічний метод. Під час досліджень використовували електронні ресурси бібліографічних реферативних баз даних: Scopus, Web of Science, Google Scholar. Досліджено технологічні процеси нанесення металевих електрохімічних хромових покриттів на сталь, мідь та алюміній. Розглянуто процеси електролізу в спокійному та проточному електроліті на основі шестивалентного та тривалентного хрому за різних струмових режимів. Вивчено формування оксиднихпокриттів на алюмінієвих деформованих, литих сплавах та напилених алюмінієвих шарах, а також магнієвих сплавах. Встановлено, що тверде анодування забезпечує одержання оксидних покриттів меншої товщини порівняно з інноваційним методом – плазмоелектролітичним оксидуванням. Описано хімічні, електро- та плазмохімічні реакції під час утворення шарів оксидних покриттів. Проведено порівняння технологічних режимів нанесення та властивостей сформованих покриттів. Наукова новизна отриманих результатів дослідження полягає у застосуванні системного підходу до аналізу та порівняння сучасних методів формування металевих електрохімічних хромових та оксидних покриттів і визначенні перспектив їх подальшого вдосконалення. Практична значущість – обґрунтувано раціональний вибір металевих та оксидних покриттів для зміцнення деталей машин.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Габ, Ангеліна Іванівна, Віктор Володимирович Малишев, Дмитро Борисович Шахнін, Юрій Володимирович Куріс, Олексій Геннадієвич Кириченко, Оксана Сергіївна Воденнікова та Роман Миколайович Воляр. "КОМПОЗИЦІЙНІ ЕЛЕКТРОХІМІЧНІ ПОКРИТТЯ НА ОСНОВІ ХРОМУ, МІДІ, ЦИНКУ, ЗАЛІЗА, ОЛОВА, БЛАГОРОДНИХ МЕТАЛІВ: ОДЕРЖАННЯ, СТРУКТУРА, ВЛАСТИВОСТІ (ОГЛЯД)". Scientific Journal "Metallurgy", № 2 (22 лютого 2022): 56–74. http://dx.doi.org/10.26661/2071-3789-2021-2-07.

Повний текст джерела
Анотація:
Здійснено систематизацію літературних даних щодо одержання композиційних електрохімічних покриттів на основі хрому, міді, цинку, олова, благородних металів, структури та властивостей покриттів хрому з частинками наповнювачів різної природи. Одним із способів поліпшення фізико-механічних властивостей є одержання комплексних електрохімічних покриттів (КЕП). Вихід за струмом хрому в присутності ультрадисперсних алмазів (УДА) знижується як у стандартному, так і в саморегулівному електролітах хромування. Композиційні покриття хром-графіт можуть бути використані у виробах, які працюють за умов сухого тертя. Зносостійкість і твердість КЕП на основі хрому значно підвищується за введення в стандартний електроліт хромування дисперсних частинок кремнію або діоксиду титану. Основне зазначення КЕП на основі міді – надання металевим поверхням зносостійкості, жароміцності й антифрикційних властивостей. Для одержання КЕП на основі міді найчастіше використовують сульфатні електроліти. Введення в електроліт УДА не змінює природу та механізм електродного процесу. Мікротвердість покриттів, осаджених з електроліту з вмістом УДА зростає майже в півтора разів порівняно з осадами, одержаними з базового електроліту. Електролітичні залізні покриття використовують для відновлення деталей машин і механізмів. Композиційні покриття на основі цинку застосовують для захисту сталевих поверхонь від корозії з поліпшенням їх фізико-механічних властивостей. КЕП на основі срібла з електропровідними частинками осаджують на електричні контакти для поліпшення провідності.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ненастіна, Т., М. Ведь, М. Сахненко, С. Зюбанова та І. Черепньов. "Електродні матеріали для водневої енергетики". Науковий журнал «Інженерія природокористування», № 1(15) (26 жовтня 2020): 6–12. http://dx.doi.org/10.37700/enm.2020.1(15).6-12.

Повний текст джерела
Анотація:
Електроосадження сплавів молібдену, вольфраму і цирконію з кобальтом з білігандних електролітів на імпульсному струмі дозволило отримати композиційні покриття з унікальним поєднанням фізико-хімічних властивостей, недосяжних при використанні інших методів нанесення. Окрім складу отриманих композиційних електролітичних покриттів на каталітичне виділення водню впливають характеристики їх поверхні, зокрема рельєф і морфологія. Дослідження топографії поверхні проводили за допомогою сканівного атомно-силового мікроскопа контактним методом. Порівняно топографію поверхні осаджених покриттів і показано, що найбільш рівномірно розвиненими і мікроглобулярними є композити складу Со-Мо-WOx і Со-Мо-ZrО2. Електролітична реакція виділення водню є багатостадійним процесом, тому для встановлення каталітичної активності композиційних сплавів на основі кобальту необхідно визначити механізм за яким відбувається даний процес. Оцінку електрокаталітичних властивостей композиційних електролітичних покриттів на основі сплавівкобальту різного складу здійснювали на підставі аналізу кінетичних параметрів модельної реакції виділення водню з розчинів електролітів різної кислотності. Визначено постійні Тафеля, коефіцієнти переносу, густину струму обміну для електрохімічного виділення водню на композиційних електролітичних покриттях сплавами кобальту. За величиною струму обміну електрохімічної реакції виділення водню на покриттях Со-Мo-WОх, Со-Мо-ZrО2, Co-W-ZrО2 встановлено їх високу електрокаталітичну активність порівняно із індивідуальними металами і бінарними сплавами. Встановлено, що електровідновлення водню на композиційних сплавах кобальту протікає за механізмом Фольмера-Тафеля з уповільненою стадією рекомбінації. Запропоновано схеми реакцій, за якимипротікає відновлення водню, якщо проміжним продуктом загального процесу є гідриди металів.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Покриття металеві"

1

Гаврилюк, Т. В., та У. В. Логвінчук. "Нанесення хромового покриття на металеві деталі". Thesis, Київський національний університет технологій та дизайну, 2019. https://er.knutd.edu.ua/handle/123456789/13989.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Майзеліс, Антоніна Олександрівна, Борис Іванович Байрачний та Лариса Валентинівна Трубнікова. "Вплив товщини мідно-нікелевих шарів на властивості багатошарових покрить". Thesis, НТУ "ХПІ", 2008. http://repository.kpi.kharkov.ua/handle/KhPI-Press/20653.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Бохан, Т. С., М. І. Протченко, Світлана Германівна Дерібо та Валентина Мефодіївна Артеменко. "Аспекти вибору електролітів для нанесення нікелевих покриттів". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/45468.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Лебідь, Андрій Леонідович, Дмитро Іванович Покурбанич, Andrii Lebid та Dmytro Pokurbanych. "Автоматизовані методи нанесення захисних покриттів з підвищеними технологічними властивостями на металеві поверхні". Master's thesis, Тернопільський національний технічний університет ім. І. Пулюя, Факультет прикладних інформаційних технологій та електроінженерії, Кафедра автоматизації технологічних процесів і виробництв, 2019. http://elartu.tntu.edu.ua/handle/lib/29645.

Повний текст джерела
Анотація:
Робота виконана на кафедрі автоматизації технологічних процесів і виробництв факультету прикладних інформаційних технологій та електроінженерії Тернопільського національного технічного університету імені Івана Пулюя Міністерства освіти і науки України. Захист відбудеться «24» грудня 2019 р. о 8.00год. на засіданні екзаменаційної комісії №43 у Тернопільському національному технічному університеті імені Івана Пулюя
У магістерській роботі розроблено різні схеми автоматичного фарбування при безперервному русі фарбованого виробу і реверсивному (поперек виробу) руху розпилювача; при статичному положенні виробів і одночасному реверсивному і подовжньому русі розпилювача: фарбування тіл обертання (циліндрів, барабанів, і еластичних матеріалів, розтягнутих на барабані); фарбування конусоподібних виробів.
In the master's work various schemes of automatic coloring are developed: at continuous movement of the painted product and reversible (across the product) movement of the sprayer; at a static position of products and at the same time reversible and longitudinal movement of a spray: painting of bodies of rotation (cylinders, drums,and elastic materials stretched on a drum); coloring of conical products.
Вступ 9 1. Аналітична частина 1.1. Аналіз стану покриттів нафто- та газопроводів 10 1.1.1 Бітумні покриття 10 1.1.2. Епоксидно-кам’яновугільні покриття 14 1.1.3. Поліетиленові стрічки 14 1.1.4. Порошкове покриття 15 1.1.5. Поліпропіленове покриття 16 1.1.6. Багатошарові покриття 18 1.1.7. Епоксикомпозитні покриття 19 1.2. Проблеми з міцнісними параметрами та руйнуванням в процесі експлуатації 24 1.3. Проблеми автоматизації 27 2. Технологічна частина 2.1. Характеристика виробу і його призначення 29 2.1.1. Аналіз умов експлуатації 29 2.1.2. Властивості епоксидних смол 30 2.1.3. Технологічні особливості виготовлення одношарових покриттів 32 2.1.4. Технологічні особливості виготовлення тришарового покриття на основі рідкої епоксидної фарби 34 2.1.5. Технологічні особливості виготовлення тришарового покриття на основі порошкової фарби 37 2.1.6. Технологічні особливості виготовлення двошарового покриття 37 2.2. Розробка технологічного процесу виготовлення виробу 38 2.2.1 Підготовка поверхні для нанесення епоксидних лакофарбових матеріалів 38 2.2.2. Зжирювання поверхні труб перед фарбуванням 42 2.2.1. Підготовка епоксидних лакофарбових матеріалів 42 2.2.2. Нанесення епоксидних лакофарбових матеріалів 43 8 2.2.3. Сушка епоксидних лакофарбових матеріалів 44 2.3. Метод визначення складових ударної в’язкості 45 3. Конструкторська частина 3.1. Технологія нанесення покриттів 50 3.2. Установки безповітряного розпилення з підігрівом 52 3.3. Насоси високого тиску 55 3.4. Установка для антикорозійного покриття УНП2-7-65 безповітряним методом 56 3.5. Автоматичний розпилювач Iwata AL-96 S5 59 3.6. Мікроконтроллер ОВЕН ПЛК110-32 60 3.7. Розрахунок параметрів автоматизації процесу фарбування 61 3.8. Приклад розрахунку 65 3.9. Розрахунок частоти обертання двигуна АІР 132 М8 66 4. Наукова частина 4.1. Автоматизоване визначення фрактальної розмірності 69 4.2. Застосування фрактальної розмірності D для опису структури зламів епоксикомпозитів 5. Спеціальна частина 5.1 Мова релейних діаграм LD 77 5.2. Розробка керуючих програм для системи програмного керування 77 6. Обгрунтування економічної ефективності 80 7. Охорона праці та безпека в надзвичайних ситуаціях 88 8. Екологія 93 Висновки 98 Перелік посилань
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Андріянов, О. Д., І. О. Кузнецова та К. А. Янченко. "Захисні покриття на основі металів змінної валентності". Thesis, Видавництво СумДУ, 2012. http://essuir.sumdu.edu.ua/handle/123456789/27086.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Говорун, Тетяна Павлівна, Татьяна Павловна Говорун, Tetiana Pavlivna Hovorun та А. П. Устименко. "Електрофізичні властивості плівок Ni з діелектричним та металевим покриттям". Thesis, Видавництво СумДУ, 2004. http://essuir.sumdu.edu.ua/handle/123456789/23635.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Г, Бережанський Т., Башинський О. І та Балацький О. Т. "Регенерація металевих частин пожежної техніки зносостійкими покриттями". Thesis, Стратегія реформування організації цивільного захисту, 2018. http://hdl.handle.net/123456789/5169.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Левків, О. Я. "Застосування електроіскрових технологій для обробки металів". Thesis, Київський національний університет технологій та дизайну, 2017. https://er.knutd.edu.ua/handle/123456789/8582.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Чернишенко, Д., та В. Горяной. "Нові методи захисту металів від корозії". Thesis, Київський національний університет технологій та дизайну, 2018. https://er.knutd.edu.ua/handle/123456789/11735.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Кириченко, Ольга Михайлівна, Ольга Михайловна Кириченко, Olha Mykhailivna Kyrychenko, Світлана Борисівна Большаніна, Светлана Борисовна Большанина та Svitlana Borysivna Bolshanina. "Дослідження впливу сполук важких металів у складі електроліту "GROVISION" на якість цинкового покриття". Thesis, Сумський державний університет, 2013. http://essuir.sumdu.edu.ua/handle/123456789/31713.

Повний текст джерела
Анотація:
В даній роботі досліджено вплив сполук важких металів у складі електроліту "GROVISION" на якість цинкового покриття. При цитуванні документа, використовуйте посилання http://essuir.sumdu.edu.ua/handle/123456789/31713
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії